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Abstract: The nature of the nanoscale structural organization in modulated nematic phases formed
by molecules having a nonlinear molecular architecture is a central issue in contemporary liquid
crystal research. Nevertheless, the elucidation of the molecular organization is incomplete and poorly
understood. One attempt to explain nanoscale phenomena merely “shrinks down” established
macroscopic continuum elasticity modeling. That explanation initially (and mistakenly) identified the
low temperature nematic phase (NX), first observed in symmetric mesogenic dimers of the CB-n-CB
series with an odd number of methylene spacers (n), as a twist–bend nematic (NTB). We show that
the NX is unrelated to any of the elastic deformations (bend, splay, twist) stipulated by the continuum
elasticity theory of nematics. Results from molecular theory and computer simulations are used to
illuminate the local symmetry and physical origins of the nanoscale modulations in the NX phase,
a spontaneously chiral and locally polar nematic. We emphasize and contrast the differences between
the NX and theoretically conceivable nematics exhibiting spontaneous modulations of the elastic
modes by presenting a coherent formulation of one-dimensionally modulated nematics based on
the Frank–Oseen elasticity theory. The conditions for the appearance of nematic phases presenting
true elastic modulations of the twist–bend, splay–bend, etc., combinations are discussed and shown
to clearly exclude identifications with the nanoscale-modulated nematics observed experimentally,
e.g., the NX phase. The latter modulation derives from packing constraints associated with nonlinear
molecules—a chiral, locally-polar structural organization indicative of a new type of nematic phase.

Keywords: nematic dimers; polar twisted nematic; twist bend nematic; bent-core liquid crystal;
nematic-nematic phase transition

1. Introduction

Unexpectedly, nonlinear (“bent-core”) dimer molecules exhibit two distinct nematic
phases. The lower-temperature nematic, initially termed NX [1], exhibits form chirality—
distinct macroscopic domains with left- or right-handed twisted molecular organization
forming a very tight helical modulation (~10 nm)—despite the achirality of the ~3 nm-
long dimers. This is one example of a category of mirror-symmetry-breaking phenomena
identified in liquids and liquid crystals (LCs) [2,3].

In recent years there have been impressive developments in the synthesis and charac-
terization of a large number of mesogens that combine molecular flexibility with a bent-core
shape while exhibiting nematic phases with nanoscale modulations of the orientational
order [4–13]. In attempts to rationalize this nano-scale modulation, some authors simply
“miniaturized” known continuum macrostructures insinuating that the twisted structure in
the NX is driven by nematic elasticity (a brief review can be found in ref. [14]). The idea
of spontaneously modulated nematics originated five-decades ago [15] when R.B. Meyer
proposed a “twist–bend” nematic, NTB, in which the uniaxial and apolar director n twists
about a macroscopic axis generating a 1-D modulated phase wherein the ordering is locally
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uniaxial and apolar (D∞h), and the modulation length scale of n is macroscopic, as implied
by the elastic origin of the modulation in a continuum description of LCs.

Forcing the applicability of continuum elasticity theory on the molecular scale con-
stitutes a grave conflation of structure scales that renders the concept of the nematic
director—its symmetries and canonical distortions—ill-defined, if not totally wrong. More-
over, it obscures the underlying physics responsible for the modulation. On the other
hand, both molecular theory [16] and simulations [17–20] suggest that NX has a single
polar director m which is a C2 symmetry axis that roto-translates, generating a molecular
length-scale 1-D modulation which confers form-chirality to the microstructure, i.e., it
implies a new type of nematic organization, the so-called polar-twisted nematic, NPT.

In this work we consider the nanoscale modulation observed in the NX, focusing on
the underlying physics of the molecular organization and the symmetries thereof. Results
from molecular theory and simulations are used to highlight the distinguishing features
of this new nematic phase and its successful description within the framework of the NPT
model. In order to emphasize that the new phase is not an elastically modulated state
of the conventional uniaxial nematic phase—NTB or otherwise—we present a systematic
description of the 1-D spontaneously modulated states that derive from the classical Frank–
Oseen theory of elasticity [21,22], stressing the conditions for the applicability of the latter
and contrasting the properties of the so-derived elastically modulated states with well-
established properties of the NX.

Section 2 deals with the 1-D elastically modulated nematics. The molecular theory of
nanoscale-modulated nematics, leading to the NPT model is outlined in Section 3. Results
from molecular dynamics simulations of model CB-7-CB dimers, supporting the NPT
picture, are presented in Section 4. Section 5 is devoted to a critical discussion of issues
regarding various models that have been proposed for the NX phase; the conclusions are
drawn in Section 6.

Terminology: For the clarity of the exposition to follow it is useful to stress some
distinctions regarding the terminology used for the various nematic phases and states
involved:

• The twist–bend nematic (NTB): This is a theoretical model, first formulated by R.B.
Meyer [15] on the basis of nematic elasticity. According to the model, states exhibit-
ing spontaneous twist and bend elastic deformations can be stabilized, under certain
conditions, in a uniaxial nematic phase (NU).

• The splay–bend nematic (NSB): Another theoretical model, also first presented by R.B.
Meyer, simultaneously with the NTB [15]. Here the possibility of a NU developing
stable states with spontaneous splay and bendelastic deformations is considered. The
necessity for the formation of domains in the NSB model was pointed out in the
original work.

• The NX phase: The name is reserved for the experimentally-identified, low- temperature
nematic phase, first found in certain classes of achiral, mesogenic dimers [1] and
subsequently in a variety of compounds combining mesogenic features with an overall
bent-core (banana-shaped) molecular architecture, see for instance refs [8,23]. For
the last decade this phase has often been termed NTB, although its experimentally
determined nanoscale modulation features clearly could not stem from twist and/or
bend elastic deformations of a uniaxial nematic medium as originally envisaged by
R.B. Meyer [15].

• The polar-twisted nematic (NPT): A theoretical model formulated on the basis of molec-
ular interactions [16,17] and presenting the possibility of local polar packing of the
molecules along a polar director m which, in turn, undergoes periodic roto-translation
modulations over molecular length scales, thereby eliminating macroscopic polarity.
This model has been proposed for the description of the experimental NX phase [16].



Nanomaterials 2022, 12, 93 3 of 21

2. Elastic Deformations of Uniaxial Apolar Nematics
2.1. Fundamental Deformations and Free Energy

The uniaxial nematic (NU) has the simplest supramolecular organization: As in or-
dinary liquids, there is no positional order in the NU. However, the molecules have
long-range orientational order defining the NU’s “nematic director” n, an apolar local axis
of complete rotational symmetry (D∞h) [21]. This subtle orientational order imparts macro-
scopic anisotropy (e.g., optical, dielectric, magnetic, mechanical) that is exploited in the
ubiquitous LCD because field-induced elastic deformations of n reversibly recover.

Oseen and Zocher used continuum mechanics to describe such macroscopic defor-
mations [24,25]. The continuum description of matter—viewed as an idealized medium
endowed with physical properties that are devoid of microscopic structure—has its origins
in a two-century-old oral presentation by Augustin Cauchy [26]. The nematic continuum
approach of Oseen and Zocher was critically reviewed by Frank in the late 1950s [27]; the
approach is now referred to as the Frank– Oseen, continuum theory of LCs.

The Frank–Oseen theory (FOt) accounts for spatial deformations of the nematic di-
rector field, n(r), by identifying three fundamental bulk distortions of n(r) that contribute
to the total free energy density. These distortions, called splay, twist and bend (Figure 1),
span macroscopic scales (typically µm) and define the splay vector s = n(∇× n), the
twist pseudoscalar t = n× (∇× n) and the bend vector b = n× (∇× n). The quadratic
contributions of these distortions to the bulk deformation free energy density Fd define
three elastic constants, K11, K22 and K33,

Fd =
1
2

K11(s · s) +
1
2

K22t2 +
1
2

K33(b · b). (1)

One can infer the delicate nature of the forces involved in deforming the n-field
from the magnitudes of the elastic constants, typically on the order 10−8 Pa [28]; the
elastic constant (Youngs modulus) of steel is nearly twenty orders of magnitude larger
(2 × 1011 Pa).
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phases having lower point symmetries. This expression for the bulk elastic free energy 
density is often supplemented by two “surface terms” (see ref [22]), namely 

Figure 1. Three canonical bulk deformations of the nematic director field. In the Frank–Oseen
continuum description, these deformations span macroscopic length scales. Splay (s) and bend (b)
vectors are shown respectively, tangentially and radially with respect to the director field lines. The
director field n(r) rotates about h in the twist distortion; double headed red arrows emphasize the
apolarity of the nematic director n.

Equation (1) is strictly valid for NU nematics; different elastic contributions emerge
in phases having lower point symmetries. This expression for the bulk elastic free energy
density is often supplemented by two “surface terms” (see ref [22]), namely 1

2 K24∇ · (s + b),
representing the so called “saddle splay” deformation, and 1

2 K31∇ · (s− b). In addition
to free energy contributions from the application of external stimuli (electric or magnetic
fields, surface anchoring, etc., which will not be considered here) the free energy also
receives contributions from the coupling between polar molecular attributes to the bend
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and splay elastic deformations. Thus, the local transverse molecular polarization density
P⊥ [15] couples to the local bend deformation b and contributes a transverse polarization
component FP⊥ = 1

2 α3P⊥ · P⊥ − a3P⊥ · b to the free energy density. Here the constant α3
accounts for the entropic increase of the free energy due to the emergence of polarization
as well as for related intermolecular interactions, while the transverse flexopolarization
coefficient a3 measures the strength of the coupling between P⊥ and b. Minimization of this
part of the free energy density with respect to P⊥ yields for the equilibrium P⊥ the relation

P⊥ = a3
α3

b and for the respective minimized free energy density FP⊥ = −
(

1
2

a2
3

α3

)
(b · b).

Therefore, inclusion of this contribution in the total free energy density amounts, ac-
cording to Equation (1), to a renormalization of the bend elastic constant according to

K33 ⇒ K′33 =

(
K33 −

a2
3

α3

)
. Similarly, the longitudinal molecular polarization density P‖,

which couples to the splay deformation s through the flexopolarization coefficient a1, leads

to an analogous renormalization of the splay elastic constant K11 ⇒ K′11 =

(
K11 −

a2
1

α1

)
.

2.2. Conditions for the Applicability of the Frank–Oseen Theory of Elasticity

The FOt, from which twist, bend and splay immerge as the three fundamental defor-
mations of a uniaxial nematic continuum, is based on a number of assumptions regarding
the local symmetry of the nematic medium and the length-scale of the director-field defor-
mations. These are listed below (see for example [21]):

(i) The deformations extend over regions of spatial dimension l much larger than the
molecular dimensions a (a/l � 1).

(ii) The curvatures of the nematic director field are “soft” (a∇n� 1).
(iii) The D∞h local symmetry of the molecular ordering is preserved (in the sense that

conceivabele deviations therefrom are negligible) under the distortions. This is an
essential requirement; it is an important prerequisite for defining the local nematic
director n(r), and thereby its curvatures and fundamental elastic deformations.

(iv) The principal value of the nematic order paramater S shows negligible spatial variation
in the presence of the elastic distortions.

(v) The changes in mass density, induced by the elastic distortions, are also negligible.

Regarding the symmetry condition (iii), it should be noted that a bend deformation
introduces the bend vector b, perpendicular to the nematic director n (see Figure 1);
similarly, a splay deformation introduces the splay vector s, tangential to n. In addition,
a twist deformation introduces a pseudoscalar t. These deformations can induce polar
(such as P⊥, P‖ discussed in in the previous section) and chiral biases to the molecular
ordering through respective couplings with transverse and longitudinal polar aspects of the
molecular structure and/or with the chirality of its conformations. However, the condition
a∇n � 1 (see condition (ii) above) implies a|b|� 1 , a|s|� 1 and a|t|� 1 . Therefore,
the polarity (along or perpendicular to n) that can possibly be induced by the splay or
bend deformations has, within the FOt formulation, a necessarily negligible effect on
the local symmetry of the molecular ordering and is sometimes referred to as phantom
polarity. Similarly, a twist deformation would induce a chiral influence on the molecular
conformations, whose magnitude is on the order of a|t| or smaller, and therefore negligible.

2.3. Spontaneous 1-D Modulations of Nematics within the Frank–Oseen Elasticity Theory

We seek the possible stable states in which one or more of the elastic deformation
elements b, s, t have non-zero bulk values in the absence of external fields, surface anchor-
ing, etc. We consider 1-D modulations. This means that, defining the fixed direction of
modulation as the Z-axis, the director n has a fixed orientation on any plane (X-Y) perpen-
dicular to Z and can vary only from plane to plane on moving along Z, i.e., n(r) = n(Z).
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Accordingly, with the notation
.
f ≡ ∂ f

∂Z , we have for the fundamental deformation elements
the expressions:

b = −nZ
[
X

.
nX + Y

.
nY + Z

.
nZ
]
; s =

.
nZ[XnX + YnY + ZnZ]; t = nY

.
nX − nX

.
nY (2)

Note that, for these 1-D elastic modulations, the projections of the bend and splay vectors
along the modulation directions differ only by a sign, i.e., Z · s = −Z · b = nZ

.
nZ.

The deviation of the direction of n from the plane normal Z defines the pseudovector
ψ(Z) ≡ (n(Z)× Z) in each X-Y plane. Thus, the modulation along the Z-axis can be
monitored by the variations of both the magnitude and the direction of ψ = (XnY − YnX)
on moving from one X-Y plane to another. Obviously, the unperturbed state (uniform n
field) corresponds to constant ψ , which can be reduced to zero everywhere by choosing n
to be along Z.

Proceeding in the framework of the FOt, the free energy is to be formulated in terms
of the elastic deformation elements b, s, t, the pseudovector ψ and their couplings, in
rotationally invariant combinations compatible with the apolarity symmetry (n⇔ −n ).
In addition to the fundamental quadratic contributions in Equation (1), with properly
renormalized elastic constants to account for possible flexopolarization effects, the following
terms, involving ψ, can be included:

(1) A quadratic contribution associated the magnitude ofψ, i.e., A(ψ ·ψ) = A(n2
X + n2

Y).
As this term accounts for the entropic effects of a finite, uniformly aligned, ψwithin each
X-Y plane, the constant A comes with a positive sign.

(2) A scalar coupling ofψwith (∇× n), namely B[ψ · (∇× n)] = −B(Z · b) = BnZ
.
nZ

(3) A pseudoscalar coupling, C∗(Z×ψ) · (∇× n) = C∗t.
There are also quadratic combinations which can be represented by the set of two

independent terms D(Z · b)2 = D(nZ
.
nZ)

2; E∗[t(Z · b)] = −E∗tnZ
.
nZ.

The sign of the pseudoscalar coupling constants C∗ and E∗ is reversed on changing the
handedness of twist deformation. Clearly these pseudoscalar constants imply the existence
of couplings between some chiral aspect at the microscopic level and the macroscopic
twist deformation. Such chiral aspects could originate directly from molecular chirality
or from the presence of chirally assembled molecular clusters. The former case covers
both intrinsically chiral molecules and statistically achiral flexible molecules adopting
chiral conformations. Analogously, chiral as well as achiral molecules could present chiral
organization within clusters. Clearly, in all cases involving statistically achiral molecules,
domains of opposite twist–handedness are thermodynamically equivalent. The signs of the
constants B and D are not fixed by any obvious physical considerations; in fact, the signs of
these terms will be shown not to be critical to the 1-D modulations considered below.

Lastly, there are quadratic invariants of the form (Z · ∇(n · Z))2, or (∇(n · Z))2; in the
present case of 1-D modulations their contribution is identical to that of the quadratic splay
term, i.e., ∼

( .
nZ
)2 and therefore their net effect is simply to further renormalize the splay

elastic constant K′11 into an effective constant K′′ 11. This effective constant, as well as the
renormalized bend K′33, are assumed to preserve positive signs, as required by thermody-
namic stability considerations. Regarding the surface terms in the FOt, the “saddle-splay”
contribution, ∇ · (s + b), strictly vanishes in this case of 1-D modulated nematics, while
the contribution of the other surface term, ∇ · (s− b), reduces to K13

∂
∂Z
(
nZ

.
nZ
)
.

Collecting all the invariant terms that can be formed from the curvatures of n(Z) and
their couplings with ψ(Z) up to quadratic terms, the following expression for the free
energy density is obtained:

F(Z) = F0 +
1
2 K′′ 11s2 + 1

2 K22t2 + 1
2 K′33b2 + K13

∂
∂Z
(
nZ

.
nZ
)

+A
(
1− n2

Z
)
+ C∗t + BnZ

.
nZ + D

(
nZ

.
nZ
)2 − E∗tnZ

.
nZ

(3)

Here F0 is the free energy density of the non-modulated (uniform n) state. An expression
whose bulk part, in the 1-D modulated case, is essentially identical to the above expression
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(aside from the K13 contribution) for the free energy density was obtained in ref [29] based
on somewhat different postulates and considerations.

We will limit our attention to periodic modulations of externally unbiased samples,
implying that the spatially averaged bend, b, and splay, s, vectors, over a full repeat
length of the modulation, should vanish. This is in accord with the notion of spontaneous
symmetry breaking, wherein the symmetries of the ground state (here the fully aligned
NU) are broken locally but preserved globally in the spontaneously deformed states. It
is worth noting here that s is a local axis of full rotational symmetry (in particular such
rotations do not affect the orientation of the local n), and b is a local C2 axis preserving the
symmetry n⇔ −n (i.e., apolarity of the director). Below we consider three possible types
of modulations (see Figure 2):

(1) Modulations at constant magnitude ofψ; equivalently at constant nZ. The modulation
then consists of the periodic rotation of the direction of ψ. Such modulations exclude
the possibility of splay deformations.

(2) Modulations with ψ confined to oscillate along a single fixed axis in the X-Y plane.
In this case the director reorients periodically while remaining on a fixed plane
containing the Z-axis. Such modulations exclude twist deformations.

(3) A combination of the previous two modes, i.e., ψ confined to oscillate along a single
axis whose orientation is rotated on moving along the Z-axis.
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Figure 2. Motifs of 1-D periodically modulated states of a uniaxial nematic elastic continuum; top
and side views. The arrows represent the nematic director n. Lk and Lq denote, respectively, the
repetition lengths of the rotation and vibration modes of the director. (a) The twist–bend state, NTB.
The director n has a fixed projection, cos θ0, along the modulation axis Z. (b) The pure twist state,
NT. The director n is perpendicular to the modulation axis Z. (c) The splay–bend state, NSB. The
director n is shown to remain on the Y-Z plane, with its projection along the Y axis oscillating with
amplitude sin θ0. (d) A state showing twist, splay and bend deformation (NTSB) with the oscillation
repeat length Lq chosen to be twice the rotation repeat length Lk. The angle ϕ0 represents a constant
phase difference between the rotation and oscillation modes.
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2.3.1. States of Fixed nZ and Rotating (n× Z)

In this case nX = sin θ0 cos kZ; nY = sin θ0sinkZ; nZ = cos θ0, with θ0 constant. The
free energy in Equation (3) reduces to

∆F ≡ F− F0 = sin2 θ0

{
A− C∗k +

1
2

k2
[
K′33 +

(
K22 − K′33

)
sin2 θ0

]}
. (4)

Obviously, the state with sin2 θ0 = 0 corresponds to uniformly aligned director n
along Z i.e., the NU. At the other end of the acceptable range of sin2 θ0, the value sin2 θ0 = 1
corresponds to n perpendicular to Z. Minimization of ∆F with respect to k yields, in the
case sin2 θ0 = 1, the value kT = C∗/K22 and this “pure-twist” nematic state (NT) is stable
relative to NU for

[
(C∗)2/2AK22

]
> 1. Accordingly, the wavenumber kT (and therefore the

value of the twist pseudoscalar t) of the modulation in this purely twisted nematic state has
a lower bound given by k2

T > 2A/K22.
The stability of periodic states with intermediate values of sin2 θ0—these would nec-

essarily exhibit both twist and bend deformations, hence NTB states—may be explored
when ∆F is minimized with respect to both the parameters k and sin2 θ0. This leads
to the requirement K22 > K′33 for the stability of a NTB state, with equilibrium values

k2
TB = 2A/K′33 for the modulation wavenumber and sin2 θ0

∣∣
TB =

|C∗ |
√

K′33/2A−K′33
K22−K′33

for
the “cone angle” formed by the nematic director n(Z). The latter lies within the acceptable
range 0 < sin2 θ0 < 1 provided that K′33 < (C∗)2/2A < K2

22/K′33.
In terms of the dimensionless parameters g ≡ (C∗)2/2AK22, ρ ≡ K′33/K22, and of

k2
0 ≡ 2A/K22, the stability conditions and the respective wavenumbers and cone angles θ0

for the NT and NTB states can be summarized as follows:

NT: stability relative to NU for g > 1;
modulation wavenumber kT = k0

√
g; sin2 θ0

∣∣
T = 1

NTB: stability relative to NU for ρ < g < 1/ρ with ρ < 1;

modulation wavenumber kTB = k0/
√

ρ; sin2 θ0
∣∣
TB =

√
gρ−ρ
1−ρ .

Note that there is a common g > 1 range over which both the NTB and NT solutions
exist and are stable relative to the NU. It is straightforward to show that, in that common
range, the NTB is stable over the NT due to the condition ρ < 1.

Clearly, the pseudoscalar coupling parameter C∗ is essential for the formation of
both the NT and the NTB states. In physical terms, the existence of some chiral aspect
at the molecular level, and the strength of its coupling to the twist elastic deformation
is a determining factor for the appearance of these states. Specifically, for the NTB state,
there is no particular requirement regarding the bend elastic constant K′33 other than
0 < K′33 < K22. Notably, for the assumed A > 0, a negative value of K′33 implies physically
unacceptable stability conditions (k2

TB < 0)!
In Figure 3 we plot the dependence of sin2 θ0 and (k/k0)

2 as functions of the dimen-
sionless parameter g and of the elastic constant ratio ρ.

One might naively deduce from the relation kTB = k0/
√

ρ that, for finite k0, the wave
vector kTB could grow unboundedly large as the ratio ρ(= K′33/K22) tends to zero, i.e., as
K′33 → 0 . Although the possibility of the renormalized bend elastic constant becoming
very small, or even crossing through a null value, is not in principle ruled out, it should be
kept in mind that, within the FOt description, the repeat length of the modulation (pitch),
LTB = 2π/kTB, should remain much larger than the molecular dimensions, otherwise
the whole continuum approach brakes down (see Section 2.2). In other words, the self-
consistency of the FOt restricts the unlimited growth of kTB. This remark is particularly
relevant to interpretations that glibly attribute molecular length-scale dimensions to the
NTB pitch.

The possibility of an elastically modulated state of constant twist and bend (NTB) was
first demonstrated by R.B. Meyer [15] in the context of the FOt and under the assumption
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of the presence of a finite polarization P0. More than two decades later, a twist–bend state
was derived starting from the FOt but assuming a negative bend elastic constant, which
makes it necessary to include higher order curvatures of the nematic director in the free
energy [30]. None of these assumptions are necessary (nor are they made) in the present
derivation.

Nanomaterials 2022, 12, x FOR PEER REVIEW 9 of 23 
 

 

  

Figure 3. Phase diagrams in the space of the dimensionless parameters ( )= *2
22/ 2g C AK  and 

( )ρ ′= 33 22/K K  showing the boundaries of states with constant projection of the uniaxial nematic 
director n along the modulation direction Z. For NU the projection is maximal, ⋅ = 1n Z ; for NT it is 
minimal, ⋅ = 0n Z  and intermediate for the NTB, θ⋅ = 0cosn Z . The values of θ2

0sin  and of the 
scaled wavenumber 0/k k  are indicated on the constant-value contours of (a,b) respectively. 

2.3.2. States with n Oscillating on a Fixed Plane 
Suppose that the X, Y axes are chosen so that the periodic modulation of the director 

takes place on the Y-Z plane. Assuming a simple harmonic oscillation of repeat length 
π= 2 /qL q  for this “splay–bend” modulation we have  

Figure 3. Phase diagrams in the space of the dimensionless parameters g
(
= C∗2/2AK22

)
and

ρ(= K′33/K22) showing the boundaries of states with constant projection of the uniaxial nematic
director n along the modulation direction Z. For NU the projection is maximal, n · Z = 1; for NT it is
minimal, n ·Z = 0 and intermediate for the NTB, n ·Z = cos θ0. The values of sin2θ0 and of the scaled
wavenumber k/k0 are indicated on the constant-value contours of (a,b) respectively.
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2.3.2. States with n Oscillating on a Fixed Plane

Suppose that the X, Y axes are chosen so that the periodic modulation of the director
takes place on the Y-Z plane. Assuming a simple harmonic oscillation of repeat length
Lq = 2π/q for this “splay–bend” modulation we have

nX = 0; nY = sin θ0 cos qZ (5)

and the free energy density of Equation (3) is expressed as:

FSB(Z)− F0 = sin2 θ0

×
{

1
2 K′′ 11q2 sin2 θ0

sin2 qZ cos2 qZ
1−|sin θ0|2 cos2 qZ

+ 1
2 K′33q2 sin2 qZ + K13q2 cos 2qZ

+A cos2 qZ + 1
2 Bq sin 2qZ + 1

4 Dq2 sin2 θ0 sin2 2qZ

}
(6)

Note that the director modulations of Equation (5) lead to vanishing average splay
and bend over a repeat length of the modulation. However, the singling out of a plane, in
this case defined as the Y-Z plane, breaks the global full rotational symmetry. This would
imply that particular external stimuli are applied; the respective free energy contribution is
not included in Equation (6).

Unlike the Z-independent expression in Equation (4), this form of the free energy
density has a periodic Z-dependence of repeat length Lq/2. Therefore, to look into the
stability of this “splay–bend” modulated nematic state throughout the Z-range we consider
the integrated free energy over a full repeat length of the free energy density. Assuming
constant molecular density and degree of ordering, as dictated by the conditions (iv) and
(v) in Section 2.2, we have

2
Lq

Lq/2∫
0

FSB(Z)dZ− F0 ∼ |sin θ0|2
(

q2C1 + A
)

.

Therefore, the modulated phase cannot be continuously stabilized for any finite q
irrespectively of the sign of the composite parameter C1. This does not eliminate the
possibility of stabilization of modulated “splay–bend” domains over a fragment of Lq/2, in
contact with NU domains. Note that the K13 and B terms do not contribute to the integrated
free energy, but they do influence the free energy over fragments of Lq/2. The possibility
of alternating NSB−NU domains will not be further considered here. Different mechanisms
for the stabilization of NSB states are discussed in [31].

2.3.3. States with n Oscillating on a Rotating Plane

This can be equivalently viewed as a twist–bend modulation with periodically varying
“cone angle”. The latter variation generates a splay deformation and the resulting total
modulation can be termed as twist–splay–bend (NTSB). Such a state, showing simple
harmonic Z-dependence of the director components can be represented by the following
parameterization:

nX = n⊥ cos ϕ, nY = n⊥ sin ϕ; nZ =
√

1− n2
⊥; ϕ = ϕ0 + kZ; n⊥ = sin θ0 cos qZ (7)

For the modulation to be periodic, the wave numbers q, k should be integer multiples
of a fundamental wavenumber p0, i.e., q = lq p0 , k = lk p0, with lq , lk = 1, 2, 3.... The
repeat length of the modulation is then 2π/p0. Furthermore, the vanishing of the averaged
splay and bend vectors over a repeat length of the modulation requires that the sum of the
integers lq, lk be an odd integer, namely lq + lk = 2l + 1, with l = 1, 2, 3...

According to Equation (3), the free energy density in this case reduces to:

FTSB(Z) = FSB(Z)− C∗kn2
⊥ +

1
2

k2 sin2 θ0 ×
{ [

(K22 − K′33)n2
⊥ + K′33

]
cos2 qZ+

+E∗(q/k) sin 2qZ

}
. (8)
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Obviously, for q→ 0 or for k→ 0 the above expression tends, respectively, to the ex-
pressions in Equation (4) or Equation (6). Below we illustrate the case where the oscillation
wavenumber q is identified with the fundamental wavenumber p0. This corresponds to
setting lq = 1, in which case the repeat length of the modulation is Lq = 2π/q and the wave
number k is an even multiple of q, i.e., k = 2lq. The periodicity of the free energy density in
Equation (8) is in this case Lq/2. Therefore, Z-integration over the latter length yields:

2
Lq

Lq/2∫
0

FSB(Z)dZ− F0 ∼ sin2 θ0

(
q2C1 + A− C∗2lq + l2q2

[
3
2
(
K22 − K′33

)
sin2 θ0 + 2K′33

])

It is apparent from this expression that for given l, a continuous NSBT state can be stabi-
lized for finite wavenumber q, under certain conditions for the parameters C1, A, C∗, K22, K′33.
However, this stability tends to increase with increasing l, indicating that, unless specific
boundary conditions favoring a finite l are imposed, the most stable state is the one for
which l → ∞ , therefore q→ 0 , i.e., the NTB. Of course, as in the case of the NSB, stabiliza-
tion of alternating domains over fragments of the repeat length are not in principle ruled
out and in this case the overall stability is influenced also by the terms involving K13, B and
D together with the free energy density at the interface of the alternating domains.

In summary, for the simple harmonic 1-D elastic modulations considered in this
section, only the NT and NTB are associated with a Z-independent free energy density
(compare Equation (4) with Equations (6) and (8)), and these are the only states that can in
principle be stable continuously over an arbitrary Z-range without the need of particular
stabilizing boundary conditions.

Naturally, in actual samples, the modulation Z-range as well as the transverse X-Y
sample dimensions are finite, implying that the stability will, in any case, be somehow
influenced by boundary conditions. This has to be taken into account particularly in
relation to the length scale of the modulations: Since the validity of the nematic elasticity
FOt is restricted to modulations typically on the order of 1 µm or larger (see condition
(i) in Section 2.2), the X, Y and Z dimensions of the sample should be orders of magnitude
larger in order for the periodicity along the Z-direction to be allowed to develop and,
furthermore, in order for the 1-D character of the modulation to avoid inhibition by lateral,
boundary-surface-induced deformations. These considerations are of particular relevance
to experimental attempts at stabilizing, identifying and characterizing states of truly elastic
1-D spontaneous modulations, such as the NTB or the NSB.

3. Modulations of Molecular Ordering in Nematics

These are quite distinct from the elastic modulations of the previous section, primarily
in that the modulation length-scale is not restricted to macroscopic lengths but can extend
down to molecular dimensions. Nanoscale modulations have been long known in smectic
liquid crystals; these include the molecular density modulations characteristic of SmA and
SmC (synclinic) [22] as well as the combined density and orientational-order modulations
typical of the SmC (anticlinic) [32,33] and of a variety of short-pitch, tilted smectics [34].
The nanoscale modulations in the case of smectics are one-dimensional. Analogous density
and density-orientation modulations in two dimensions characterize the various columnar
phases [22]. Nematics have, by definition, uniform density and therefore only modulations
of orientational ordering are applicable. However, until very recently, no such nanoscale
modulations were known experimentally, or even conceived of theoretically. Interestingly,
the first experimental indications [1,4,35,36] of periodic orientational-order modulations
in nematics of achiral molecules were (mistakenly) described in terms of elastic defor-
mations [35], despite the orders of magnitude difference in the length scales involved.
Here we outline the description of 1-D molecular order modulations with emphasis on the
fundamental differences in the methodology and in the underlying physics vis a vis the
elastic deformations of the director field n(r).
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The modulations of molecular order in a nematic phase are directly reflected on the
single-molecule distribution function fs(ω). This function gives the probability of finding a
(generally flexible) molecule of the phase in conformation s and orientation ω relative to a
phase-fixed macroscopic frame X, Y and Z. The orientation is often conveniently described
in two steps, with the help of the so called “director frame” in which the distribution
of molecular orientations is subject to specific symmetries. Thus the orientation of the
molecular axes relative to the director frame is denoted by ωD, the orientation of the
latter relative to the macroscopic frame is denoted by Ω and the distribution function is
equivalently written as fs(ωD; Ω). In the absence of spatial modulations the director frame
has a constant (uniform throughout the spatial extent of the phase) orientation relative to
the phase-fixed frame. The two frames can therefore be chosen to coincide and in this case
the distribution function is simply fs(ωD). For a nematic phase presenting 1-D modulation
of the molecular ordering, defining Z as the modulation axis and X, Y remaining arbitrary,
the orientation Ω depends on the Z-coordinate, Ω = Ω(Z), indicating that the director
frame is fixed on any X-Y plane and its axes can only change direction on moving along
the Z-axis. Accordingly, the distribution function in this case is written as fs(ωD; Z).

To formulate fs(ωD; Z), one can start from a concrete model for the molecular structure
and for the intra-and intermolecular interactions. A closed form for the distribution
function is eventually reached in terms of the so called effective potential, defined by
fs(ωD; Z) ∼ exp

(
−V(ωD; Z)/kBT

)
, via a statistical mechanical approximation for the

evaluation of the average potential energy of a dimer molecule [16] (also of a rigid [37] or
flexible [38] solute molecule) as a result of its interaction with the other dimer molecules in
the phase.

A detailed application of this procedure has been presented [16] in an attempt to
rationalize the structure of the low temperature nematic phase (NX) formed by a variety of
LC dimers with bent average structure, the CB-n-CB with odd-n (see Figure 4a) being a
typical representative.

The molecular model used (see Figure 4b for structure and molecular axes assignment)
embodies minimally the essential features of this class of symmetric dimers: statistical
achirality, two mesogenic units in a bent configuration, elementary flexibility (by allowing
for just two chiral conformations of opposite handedness) and C2 symmetry about a
common axis (the y axis in Figure 4b) for both conformations. This molecular C2 axis can
show preferential alignment along a polar phase axis m that becomes a C2 symmetry axis
of the phase i.e., a “polar director”. The modulation of the molecular ordering consists
of the continuous roto-translation of m about the modulation axis Z, to which it remains
perpendicular, according to

mX = cos ϕ; mY = sinϕ; mZ = 0, with ϕ = kZ + ϕ0.

The molecular interactions are also modelled in the simplest non-trivial scheme: a
mere uniaxial second-rank potential u(Rij)

(
3
2
(
Li · Lj

)2 − 1
2

)
for any pair of mesogenic

units whose orientations are given by the unit vectors Li, Lj and their centers are a distance
Rij apart.
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Figure 4. (a) Molecular structure of the CB-7-CB molecule in the all-trans conformation. (b) Molecular
model used in the molecular theory of Section 3. The model mimics minimally the architecture of the
mesogenic dimer in (a), particularly the bent-core structure and statistical a-chirality (equal weight for
α and –α angles). (c) Spherical united atom representation of the mesogenic dimer in (a) as used in
the molecular dynamics simulations of Section 4. The model is endowed with the full flexibility of the
spacer chain, with conformations generated according to the Ryckaert–Bellemans torsional potential
and segmental interactions parameterized as in [39]. The rigid segments L and L’ in (b,c) denote the
mesogenic units of the dimer molecule.

Finally, the effective potential is obtained by applying the mean field approximation.
Despite the extreme simplicity of the molecular modeling and of the statistical mechanical
treatment, the resulting effective potential V(ωD; Z) has a rich content as it includes terms
promoting the polar ordering (although the interaction among the mesogenic units is
strictly apolar) and also the roto-translational modulation of the respective polar director
on moving along the Z-axis. This is a consequence of a key feature of the otherwise quite
primitive molecular modeling: the molecules consist of two individually interacting units
separated by a finite (non-vanishing and bounded) distance d and maintaining a (“bent-
core”) configuration that confers to the overall molecule significant deviation from linearity.
The crucial contribution to the effective potential comes from a term [16] of the form

∼ [(z · Z)(y ·m) + (z ·m)(y · Z)]× sin
(

kd
2
(z · Z)

)
,

where Z is the unit vector along the modulation direction (Z axis), m is the polar director
(local C2 axis of the phase), y is the molecular C2 axis and z is the molecular axis along the
line connecting the centers of the two mesogenic units of the molecule (Figure 4b). Note
that the scale of the modulation wave number k is set by the intramolecular distance d.

For reasonable bend-angles β (0 to π/4), the model yields up to 3 positionally dis-
ordered fluid phases, the isotropic (I) fluid, the uniaxial nematic (NU) and the so called
polar-twisted nematic (NPT) in which there is polar order along the director m, which
roto-translates along the modulation direction Z at wavenumber k of the order of 1/d. The
local symmetry of the phase is C2 while the global symmetry of the phase (i.e., averaged
over a large number of repeat lengths of the modulation) is uniaxial about Z and apolar.
Due to the molecular achirality, domains of opposite twisting sense (i.e., differing in the
sign of k) are thermodynamically equivalent. The thermodynamic stability of the NPT phase
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extends over reasonably broad ranges of the geometrical parameters of the molecular model
and, depending on the particular values of these parameters, the NPT can be obtained, on
lowering the temperature, either from the sequence I → NU → NPT or directly from the
isotropic fluid. The NPT phase shows very strong polar ordering of the y-molecular (C2) axis
along the polar director m, quantified by the order parameter P = 〈y ·m〉. On the contrary,
the handedness of the roto-translation modulation appears to induce only marginal shifts
(induced molecular achirality) in the balance between molecular conformations of opposite
handedness.

The temperature dependences of the polar order parameter P and of the modulation
wave vector k (in units of 1/d) are shown in Figure 5a for different values of the bend angle
β. It is apparent that the transition temperature and the phase sequence leading to the NTP
(either directly from the isotropic or via NU) are sensitive to the angle β; above a critical
value of β, the NU is eliminated from the stable-phase sequence and the transition takes
place directly from the isotropic fluid. Similarly, the polar order parameter P is sensitive to
the angle β, as expected from the sensitivity of the molecular-shape-polarity to variations
of that angle. The temperature dependence of P shows a gradual or abrupt increase at
the onset of the modulated phase, depending on whether the transition is from the NU or
directly from the isotropic fluid. Notably, k shows marginal dependence on the angle β
as well as on the reduced temperature, aside from a rapid or abrupt (in the case of direct
transition from the isotropic) rise at the onset of the modulated phase. This is in accord
with the notion that the modulation is generated by the molecular packing and therefore
k is essentially determined by the molecular geometry. The situation here is in marked
contrast with the elastic modulation wave number kTB, which is determined by the twist
and bend elastic constants (see Section 2.3.1).

It is interesting to examine the ordering of the mesogenic units of the symmetric dimer
molecule in the NPT phase. In marked contrast with the NU, the mesogenic units show
strong polar ordering, P(L) ≡ 〈L ·m〉 = P cos α sin β, along m. The local quadrupolar
ordering is also significantly different: the ordering tensor SLL

AB ≡
〈

3
2 LALB − 1

2 δAB

〉
has

three different principal values, therefore the ordering is not uniaxial. One of the principal
axes of the ordering tensor is the polar director m; the other two, denoted by n(L) and l(L),
are on the plane perpendicular to m and make angles θ(L) and (π/2)− θ(L) with the mod-
ulation axis Z. Of course, neither of n(L) or l(L) is a symmetry axis of any kind. The angle
θ(L), together with the major principal value S(L) of the ordering tensor, corresponding
to the principal axis n(L), as well as the difference ∆(L) of the other two principal values
are plotted in Figure 5b as functions of the reduced temperature for selected values of the
angle β.

Obviously, the angle θ(L) is not to be confused with the angle θ0 of the twist–bend
state, nor should the principal axis n(L) be confused with the nematic director n under the
respective twist and bend deformation. Whilst θ0 is identical for all molecular segments in
the NTB state, each molecular segment M has its own principal axis frame in the NPT phase
(with the C2 symmetry axis m being common to all such frames) and therefore the angle
θ(M) is different for different molecular segments. This has direct bearing on observables
obtained by NMR measurements in the NX phase [37,38]. In Figure 6, the temperature
dependence of the angles θ(M) and the respective major principal values S(M) are plotted
for two molecular axes (see Figure 4b), i.e., for M = y, z, together with the difference ∆(M)

between the two minor principal values of the second rank ordering tensors for these
molecular axes. A clear segment-dependence of both the degree of ordering S(M) and of
the biaxiality ∆(M) is apparent from the plots in Figure 6a,b and also from Figure 5b for the
mesogenic units (i.e., M = L).
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Figure 5. Representative diagrams of molecular theory results for the parameters characterizing the
modulated ordering in the NPT phase as a function of the dimensionless inverse-temperature parame-
ter ε∗(∼ 1/T) for three different values of the “bend-angle” β (see Figure 4b) and the torsion angle α

held at α = 0. The phase sequence for β = 25◦ is I → NU → NPT , with decreasing temperature; for
the values β = 30◦, 35◦ the sequence is I → NPT . (a) Plots of the modulation wavenumber k scaled
over the molecular size d (k̃ ≡ kd) and of the polar order parameter P = 〈y ·m〉, measuring the degree
of polar alignment of the C2 molecular axis y along the local polar director m. The points indicated by
solid symbols are MD results [17] for k̃ (circle) and P (square) calculated at T = 0.965TN−NX . (b) Plots
of (i) the maximal principal value S(L) of the second rank ordering tensor of the mesogenic units, (ii)
the difference ∆(L) of the other two principal values (i.e., the biaxiality) of the tensor, (iii) of the angle
θ(L) (in radians) by which the modulation axis Z is locally rotated about the director m to obtain
diagonalization of the ordering tensor (equivalently, angle formed between the modulation direction
Z and the principal axis of the second rank ordering tensor of the mesogenic unit L). As in (a), the
points indicated by solid symbols are MD results [17] for S(L) (square) and θ(L) (circle).
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Figure 6. Temperature dependence, calculated from the molecular theory [16] for principal values and
rotation angles for the second rank ordering tensors of the C2 molecular axis y and of the molecular
axis z connecting the centers of the mesogenic units of the model dimer molecule (see Figure 4b). The
polar director m is, by symmetry, a common principal axis for all the tensors. The other two principal
axes, denoted by n(M), l(M), are obtained through a rotation about m by an angle θ(M). The plots are
for β = 25◦ and α = 30◦. (a) The three principal values of the ordering tensor for the molecular axis z.
It is seen that the maximal ordering of this axis in the NPT is along a direction, n(z), perpendicular to
m. The biaxiality (difference the principal values ∆(z) = Szz

mm − Szz
l(z) l(z) ) of the ordering sets in below

the transition from the NU and remains relatively small throughout the NPT range. (b) Same as in
(a) for the C2 axis of the molecule, y. Here, however, the maximal ordering of this axis in the NPT

is along m. Thus the major principal value is Syy
mm and the biaxiality ∆(y) = Syy

n(y)n(y) − Syy
l(y) l(y)

sets in
abruptly at the transition and remains large in the NPT. (c) Temperature dependence of the rotation
angles θ(M), for the molecular segments M = y, z, and L. The differences are not large, but increase
with decreasing temperature.
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In summary, although the ordering modulation in NPT is parameterized in terms of
a wave vector k and a variety of deviation angles θ(M), these parameters have distinctly
different physical meaning from the parameters kTB and θ0 that apply to the NTB state of
modulated uniaxial nematic elastic continua. These distinct differences have often been
overlooked (as pointed out in [14,40], see also Figure 7 below) resulting in confused pictures
of the underlying physics, the length scales and the symmetries of the NX phase.

4. Molecular Dynamics Simulations of Modulated Nematic Ordering

The results regarding the structure and stability of the NPT phase presented in the
previous section need to be tested in at least two respects:

(1) The thermodynamic stability of the NPT phase, relative to the isotropic fluid and
the NU phase, found over a range of the model parameters, does not exclude the
possibility that, over the same parameter range, some other LC phase (e.g., smectic)
or even a solid, would be more stable than the NPT.

(2) How would the stability and the main structural characteristics of the NPT phase be
influenced if the primitive molecular model were enriched by realistic features of
the actual molecules, e.g., the CB-n-CB dimers of odd n, forming the experimental
NX phase? Such features include the extensive flexibility of the spacer chain and the
related partition of the molecular interactions into successions of aromatic–aliphatic–
aromatic zones which are thought to promote structural microsegregation.

Molecular simulations provide a fairly reliable means of elucidating such points as
the stable phase under given conditions is produced by the simulation and the molecular
structure can accommodate considerable complexity, as opposed to the molecular theory
approach wherein the various phases are predetermined, their relative stability is assessed
on the basis of a postulated form of the free energy (in terms of effective molecular potentials
and distribution functions) and computational tractability restricts the modeling of the
molecular structure and interactions to levels of minimal complexity.

Indeed, both of the above issues were addressed by molecular simulations using
a fairly realistic parameterization (see Figure 4c) of the CB-7-CB dimer molecules [17].
The results provided a clear corroboration of the theoretical predictions. Specifically, a
second, lower temperature, nematic phase was found to be the stable mode of molecular
organization, with polar ordering showing roto-translation modulations on the nanoscale.

Although the molecular models in Figure 4b,c share in common only very gross
features, there is satisfactory quantitative agreement between the results obtained from the
molecular theory (model in Figure 4b) and simulation (model in Figure 4c), reflected in
the wavenumber values, the polar order parameter and the principal value of the ordering
tensor of the mesogenic units. These are shown as singular points in the plots of Figure 5
for comparison with the results obtained from the molecular theory. The scaling of the
simulation wavenumber k is done with respect to the conformationally averaged distance
〈d〉 between the centers of the mesogenic units of the dimer molecule, i.e k̃ = k〈d〉. The
polar order parameter P is obtained from the simulations as the averaged projection of
the molecular y-axis of Figure 4c along the local director m. It is apparent from Figure 5
that not only the orders of magnitude but also the numerical values obtained from the MD
simulations for k̃, P, S(L), θ(L) are remarkably close to the respective values obtained from
the molecular theory calculations based on the minimal molecular model in Figure 4b.

5. Discussion

The discrepancies resulting from identifying the NX phase with the NTB model were
pointed out in a recent paper, The twist bend nematic: a case of mistaken identity [14]. Since
that publication two additional papers [18,41] appeared opposing the misidentification
critique: one paper [41] was a direct rebuttal of [14]; a detailed reply to that rebuttal
was given in [40]). Briefly, the authors of the rebuttal—apparently realizing some of the
incompatibilities of NX with elasticity models—have chosen (perhaps as a way of salvaging
their initial identification of NX with NTB) to broaden the notion of the twist–bend nematic.
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Thus, they directly advocate that there is no unique NTB model but an evolving cluster of
different NTB models, not necessarily based on elasticity, into which even the NPT model is
subsumed. In essence, the authors trivialize the question of the structure and underlying
physics operative in the NX to mere nomenclature: The NX is defined as NTB, therefore,
whatever it takes to describe correctly the NX is by definition included in their evolving
cluster of NTB models.

The second paper [18] is, in that respect, a few steps behind the cluster advocates as
its authors insist on using the idea of elasticity-driven modulations in order to interpret
simulation results that, nevertheless, provide clear evidence of polar molecular ordering
accompanied by 1-D nanometer spatial modulation of the direction of that ordering. Their
modeling mixes macroscopic continuum concepts with local molecular ordering thereby
generating inconsistencies in both the length scales and the symmetries on those length
scales. In fact, none of the conditions for the applicability of the FOt (see Section 2.1) are
valid in their theoretical modeling and simulations. Moreover, their simulation data prove
directly that the modulations have nothing to do with elasticity and are generated by
molecular organization at the nanoscale. The experimentally determined modulation in the
NX phase is two or more orders of magnitude below the length scale for the applicability of
the FOt of elasticity, thus pointing directly to a different underlying physical mechanism.
Moreover, the scale difference is reflected in the magnitude of the bend-induced polarity
in the NTB (estimated 〈P〉 ∼ 10−4) compared to the polarity of the molecular packing
(order parameter 〈P〉 ∼ 10−1) predicted by the NPT model (Figure 5a) and directly evident
from the simulations of [18] and those using more detailed molecular models [17]. Lastly,
classifying LCs according to their symmetries obviates the terminology “twist–bend”,
“splay–bend”, etc., for the simulated phases in [18] since those classifications presuppose
local D∞h symmetry. But such symmetry is not supported by their simulations, all of which
only exhibit lower local symmetry, e.g., C2.

Aside from the length-scale and symmetry discrepancies, the mix up of continuum
with microscopic concepts leads to flawed conclusions on well-established matters. For
example, what are termed in [18] as twist–splay–bend phases are subsequently argued to be
smectics. However, the only smectic phase wherein the orientational order of the molecules
can be described solely in terms of the n director is the smectic A phase, and therein the
twist deformation of n is strictly forbidden (see [21]). Another example is the presentation
in [18] of a collinearity relation, between the bend vector b of the nematic director n and
the polarity vector m, as proof that phase modulation is driven by a presumed coupling
between polar order and bend deformations. Aside from the symmetry incompatibility,
this relation reduces to a mere geometrical identity in the context of local C2 symmetry [16].
Accordingly, when supported by the data, this relation is a clear indication that the medium
does have polar order along a single director m, which precludes any possibility of D∞h
and concomitantly a nematic director n (or bend deformations thereof).

Of course, we do not adopt the view of an evolving “cluster of NTB models” nor do we
place any credibility on shrinking the models based on elastic deformations (e.g., the twist
and bend of uniaxial nematics) down to the nanoscale. The length-scale, structure, and
symmetry differences between the elasticity-based NTB and the molecular packing-based
NPT models are enormous. These are graphically summarized in Figure 7.
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Figure 7. Modulation scales and local molecular ordering in the twist–bend and polar-twisted nematic
liquid crystals. Both 1-D modulated phases are partitioned into planar “slabs” stacked perpendicular
to the modulation direction (coincident with the Z-axis) and of sufficient thickness to define the local
director(s). (a) The twist–bend nematic NTB has a 1-D elastic modulation of n twisting about Z with
pitch LTB (~µm); the varying azimuthal angle ϕ(Z) is defined by the projection of n(Z) in the X-Y
plane; within each slab n(Z) has a uniform direction and maintains a constant projection (cos θ) on
Z. (b) The “director” of the polar twisted nematic NPT is the vector m (a C2-axis); it has a uniform
polar orientation within sub-planes constituting each slab; m(Z) undergoes roto-translations about
the Z-axis on a nanoscopic scale exhibiting a 1-D modulation pitch LPT(~10 nm). In both (a) and (b)
the cuboid inset dimensions are ~5 nm on edge, large enough to enable the local identifications of n
and m; linear “monomer” and bent-core dimer molecules are indicated by idealized average shapes
in the cuboid insets.

The NTB and NPT models share two common features: (i) both phases are positionally
disordered (no density modulation, i.e., the phases are nematic) and (ii) both present a 1-D
modulation of the orientational order, and this introduces a fundamental wave number
k. However, the respective values for this wave number, kTB and kPT , differ by orders
of magnitude, reflecting the obvious fact that the corresponding modulations stem from
entirely different physical mechanisms. It is precisely for this reason that the wave numbers
show, in addition to their vastly different magnitudes, markedly different variations with
the thermodynamic parameters as depicted in Figures 3b and 5a.

The main differences between the NPT and the NTB models are summarized in Table 1. It
is apparent from Figure 7 and Table 1 that the structures of the NTB and NPT are mutually ex-
clusive, leaving no room for physical consistency in descriptions which arbitrarily combine
features from both macro- and microscopic regimes to produce hybrid interpretations.

Table 1. Physical characteristics that differentiate the NTB model from the NTP model.

General Aspects Attributes NTB NPT

Local Symmetry
Symmetry Group D∞h C2

Symmetry Axis Nematic Director n(↔ −n) Polar Directorm(↔ −m)

Spatial Modulation
(one dimensional)

Type Twist & Bend of n Roto-translation of m

Length Scale Macroscopic LTB~µm Molecular LPT~10 nm

Physical Origin Spontaneous Elastic
Deformations of n

Polar Molecular Packing
along m
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6. Concluding Remarks

Molecular shape and local packing ultimately determine the nature of the long range
supramolecular organization found in LCs, and when new molecular shapes are explored,
unexpected phases are discovered [2]. This was the case when the NX phase of odd-n-linked
CB-n-CB dimers was discovered in 1991 [42]. Two decades later, that NX phase was branded
NTB, despite the incongruency of modulation length scales—continuum versus molecular.
One might reasonably ask, “on what length scales might continuum descriptions of soft
matter apply?” A minimal answer for fluid phases would be, “At scales larger than those
showing structure in its radial distribution function”. For simple liquids that distance
is multiple molecular dimensions. The experimental helical pitch exhibited by the NX
phase of the CB-n-CB dimers (LPT ~8 nm) [36,43–45] is only slightly larger than twice
the dimer length (~3 nm), clearly too small for a continuum description to apply. That
tight pitch is predicted, however, by the molecular theory of the polar twisted nematic
phase [16]. It remains to be confirmed how a putative conventional uniaxial nematic NU—
the high-temperature, apparently uniaxial phase above the lower temperature NX exhibited
by nonlinear mesogens—could transform directly into the nanometer-scale, modulated
structure in the NX. Interestingly, there are experimental indications [38] supporting the
idea that the low temperature NX phase of the CB-n-CB is in fact not obtained from a
NU phase on lowering the temperature but from a phase consisting of fragments of NX-
like aggregates (cybotactic groups) of opposite handedness exhibiting global uniaxial
symmetry and achirality on the NMR time-scale. The transition to the NX phase in that case
proceeds via the self-assembly of aggregates of the same handedness to form macroscopic
NX domains.

Despite the large disparity between length scales and phase symmetries, the elastic
deformations of n in the continuum approximation (macroscopic) are often mistakenly
combined in the literature [14] with polar molecular ordering and molecular-length-scale
modulations (microscopic). The continuum framework of Frank–Oseen theory is “by
construction” restricted to: (i) uniaxial and apolar symmetry of the local molecular ordering
and, (ii) modulation lengths of the local ordering that are much larger than molecular
dimensions. Molecular theory suggests, and molecular dynamics simulations prove directly,
that the modulations presented by the NX phase have nothing to do with elasticity and
are generated by molecular organization at the nanoscale, i.e., that bent-core molecules
exhibit a genuinely different nematic state and not a spontaneous elastic deformation of
the conventional NU phase.

Lastly, regarding the possibility of preparing and identifying experimentally a true NTB
state (or, for that matter, any of the 1-D elastically modulated states of the uniaxial nematic
phase, such as the NSB, NSTB, alternating, stabilized by particular boundary conditions),
consider the implications of the analysis in Section 2: Therein it is suggested that, aside
from exploring a regime of an entirely different length-scale in which such states should be
looked for, there are a number of factors that need to be combined favorably in order to
achieve thermodynamic stability. Perhaps this is, at least part of, the explanation for the
elusiveness of these elasticity-mediated states, despite a half-century-long search for these
theoretically-predicted, macroscopically-modulated phases.

Although the present discussion focused on the inappropriateness of using an elasticity-
based NTB model to account for the experimentally-established fundamental properties of
the NX phase, similar length-scale and symmetry considerations apply to other dubious
identifications [18,19,46] of nanoscale-modulated nematics, i.e., the “splay–bend” nematic,
NSB. In summary, as is generally the case in condensed matter, macroscopic physical
models break down at the nanoscale.
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