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Abstract: This paper proposes a novel identification method for memristive devices using Knowm
memristors as an example. The suggested identification method is presented as a generalized process
for a wide range of memristive elements. An experimental setup was created to obtain a set of
intrinsic I–V curves for Knowm memristors. Using the acquired measurements data and proposed
identification technique, we developed a new mathematical model that considers low-current effects
and cycle-to-cycle variability. The process of parametric identification for the proposed model is
described. The obtained memristor model represents the switching threshold as a function of the
state variables vector, making it possible to account for snapforward or snapback effects, frequency
properties, and switching variability. Several tools for the visual presentation of the identification
results are considered, and some limitations of the proposed model are discussed.
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1. Introduction

The fourth fundamental two-terminal passive circuit element, the memristor, was
postulated by L.O. Chua in 1971 based on the principle of symmetry between electrical
quantities [1]. Significant attention to this topic was drawn after its association with
TiO2-based resistive switching devices by HP Labs in 2008 [2]. Since then, any devices
which exhibit specific properties, named “the fingerprints” [3], are usually referred to as
memristors. Promising applications of memristive devices include non-volatile memory [4],
logic circuits [5], sensing [6], cryptography [7], chaotic generators [8], and neuromorphic
computing [9]. Development of the latter direction is performed from the standpoint of
using memristors as synaptic connections in artificial neural networks [10], mimicking
biological architectures in the nervous systems. The most recent progress in the study of
memristors in bio-inspired circuits was made in [11,12].

In the simplest case, memristive devices are represented by a metal-insulator-metal
(MIM) structure, whose conductivity varies depending on external voltage or current. Many
materials have been reported to be suitable for creating memristors [13], wherein resistive
switching mechanisms are classified according to a manifestation of different memory
effects [14]. The HP memristors with bipolar switching are oxygen-ion conducting cells
with valence change memory (VCM) effect. Significant nonlinearities in ionic transport,
responsible for the hysteresis behavior of a TiO2 memristor, arise by reaching nanoscales [2].
The creation of such devices requires high-level nanotechnology and advanced equipment.
At the same time, the study of the nonlinear properties of memristors also requires expert
knowledge in the field of dynamical systems, where researchers do not always have access
to thin-film fabrication technology. Currently, this gap is filled with commercially available
devices, among which are the memristors distributed by Knowm Inc.
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The operation principle of Knowm memristors is similar to HP memristors and is
based on the redox phenomena. However, Knowm devices make use of the electrochemical
metallization (ECM) memory effect and therefore belong to a different branch of memristive
cell taxonomy, forming a separate class of self-directed channel (SDC) memristors [15].
Since 2017, several studies on systems with SDC memristors have been published. An
attempt at modeling Knowm devices by selecting parameters of generic memristor models
was made by B. Garda and Z. Galias in 2018 [16]. The best approximation was obtained
from a voltage threshold adaptive memristor model (VTEAM [17]); however, the fitting
error was significant even in this case. An interesting paper [18] presented and evaluated
accessible experimental measurement setups for memristors on the example of the Knowm
devices, but modeling issues were not considered. Drake et al. [19] and Bunnam et al. [20]
discussed the temperature characteristics of SDC memristors. In [19], the research group
affiliated with Knowm Inc. provided some experimental results for devices that differ
in structure from commercial devices. In [20], the characteristics of Knowm devices are
shown, a model of temperature dependence is proposed suggesting similarity to the TiO2
memristors exponential dependence, but the memristivity function was not specified. In
2020, the first reports of chaotic circuits with Knowm memristors appeared. In [21,22], C.K.
Volos et al. demonstrated chaotic modes of Shinriki’s circuit [23] modified by adding an SDC
memristor. Despite studying the circuit equations, the complete memristive device model
was not presented in these works. In [24], Minati et al. adapted Sprott’s jerk circuit [25] to
exploit nonlinearities of SDC memristors for the appearance of chaotic attractors. In order
to explain the observed dynamics, the authors applied the mean metastable switch (MMS)
model of a memristor, recommended by the Knowm Inc. affiliated researchers [26,27].

In the Knowm SDC memristors datasheet [28] and the abovementioned research works,
all of the given I-V curves are shown at rather high currents in the range of 10−4–10−2

A. Meanwhile, the manufacturer strongly recommends limiting the current with a 50 kΩ
series resistor at regular device operation under 1 V (maximum allowable voltage range of
−5–3 V). Thus, the comprehensive investigation of the SDC memristors under low-current
(less than 10−5 A) operation is still in demand being a key to operational safety and energy
efficiency of memristor-based systems. In this paper, we will explicitly show that the MMS
memristor model cannot capture all of the significant switching properties of the Knowm
devices in such operating conditions. Considering also the variability of memristive devices
(see, e.g., [29]), it is of interest to create a method for constructing new memristor models.

In [30], A. Fantini et al. investigated switching characteristics of HfO2 devices in the
low current operation regime. This work paid particular attention to the voltage snapback
effect for which to describe a quantum mechanical model was proposed. In [31], the re-
search was extended to Al2O3 devices, and the conductance quantization description was
refined as a quantum point-contact model. D. Niraula and V. Karpov in [32] proposed a
comprehensive model, adopted for the low-current snapforward and snapback effects, as
well as cycle-to-cycle switching variability, which was represented as particle dynamics
in a finite number of double-well potentials. Unfortunately, operating with the descrip-
tion of processes in partial derivatives, these models are quite complex and not suitable
for use in software circuit simulation environments. A much simpler, SPICE-suitable
phenomenological model for the snapback effect in memristive devices was proposed by
E. Miranda et al. [33]. The model parameters were selected for the Ta2O5-based structure.
The disadvantages of this model follow from its discrete nature, the deviation from the
concept of analog memristor, and the lack of accounting for cycle-to-cycle variability. Thus,
we conclude that there is a strong need for compact models allowing adequate simulation
of memristors in low-current switching regimes.

In this paper, we propose the identification method for memristive devices and a new
Knowm memristor model that considers low-current effects and cycle-to-cycle variability.
For the first time, the development principles of new chaotic memristor models, approxi-
mating the behavior of real devices, have been formalized, which determines the scientific
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novelty of the proposed identification method. The main contributions of the study are
as follows:

1. The novel identification method is presented as a generalized process for a wide range
of memristive elements.

2. The proposed memristor model outperforms the existing ones in representing the
switching threshold as a function of the state variables vector, making it possible to
account for snapforward or snapback effects, frequency properties, and switching
variability.

3. The process and results of the parametric identification for the proposed memristor
model are presented.

The rest of the paper is organized as follows. In Section 2, the identification method,
the structure of the investigated device, an experimental setup, modeling criteria, and
candidate models are presented. In Section 3, the limitations of the selected models are
considered, the modified model is proposed, and the stages of parametric identification
are demonstrated. In Section 4, some tools for visual presentation of identification results
are considered and the limitations of the proposed model are discussed. Finally, Section 5
concludes the paper.

2. Materials and Methods
2.1. Procedure for Identification of Memristive Elements

The identification procedure involves the experimental study of the object and the
comparison of its input and output. Thus, the identification problem assumes synthesizing
(or selecting from the group of available ones) an adequate mathematical model for the
object. The proposed technique for the identification of memristive elements includes the
stages of structural and parametric identification. IDEF0 diagram of the identification
process is shown in Figure 1.

Nanomaterials 2022, 12, x FOR PEER REVIEW 3 of 20 
 

 

In this paper, we propose the identification method for memristive devices and a new 
Knowm memristor model that considers low-current effects and cycle-to-cycle variability. 
For the first time, the development principles of new chaotic memristor models, approxi-
mating the behavior of real devices, have been formalized, which determines the scientific 
novelty of the proposed identification method. The main contributions of the study are as 
follows: 
1. The novel identification method is presented as a generalized process for a wide 

range of memristive elements. 
2. The proposed memristor model outperforms the existing ones in representing the 

switching threshold as a function of the state variables vector, making it possible to 
account for snapforward or snapback effects, frequency properties, and switching 
variability. 

3. The process and results of the parametric identification for the proposed memristor 
model are presented. 
The rest of the paper is organized as follows. In Section 2, the identification method, 

the structure of the investigated device, an experimental setup, modeling criteria, and can-
didate models are presented. In Section 3, the limitations of the selected models are con-
sidered, the modified model is proposed, and the stages of parametric identification are 
demonstrated. In Section 4, some tools for visual presentation of identification results are 
considered and the limitations of the proposed model are discussed. Finally, Section 5 
concludes the paper. 

2. Materials and Methods 
2.1. Procedure for Identification of Memristive Elements 

The identification procedure involves the experimental study of the object and the 
comparison of its input and output. Thus, the identification problem assumes synthesiz-
ing (or selecting from the group of available ones) an adequate mathematical model for 
the object. The proposed technique for the identification of memristive elements includes 
the stages of structural and parametric identification. IDEF0 diagram of the identification 
process is shown in Figure 1. 

 
Figure 1. Process of memristive element identification. Figure 1. Process of memristive element identification.

The input of the presented identification process is experimental data and a set of
candidate models. The choice of the general structure of a memristor model and the class
of equations describing the switching processes is carried out at A1.2, one of the stages of
structural identification (processes A1.1, A1.2, A1.4, and A1.5). In order to solve the problem
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of structural identification, it is required to use a priori information on the dynamics of
resistive switching in memristors; the development of criteria is carried out at stage A1.1
based on this knowledge. The adoption of design decisions on modifying the most suitable
model (process A1.4) is carried out after selecting the optimal model parameters concerning
the experimental data at the stage of parametric identification A1.3. If modification is not
required, then the selected model with the opted parameters is considered adequate and is
fed to the output of the identification process. Otherwise, research is required to modify the
mathematical model and add it to the set of candidate models, organizing feedback within
the identification process. In parametric identification A1.3, tasks of the experimental data
utilization are solved specific to the selected memristor model. Problems regarding the
conditions for data acquisition are carried out at the preliminary to identification stages.

2.2. Knowm Memristive Devices

Knowm Inc. produces four versions of memristors [28]: W, C, Sn, and Cr, according
to the dopant introduced into the active layer during fabrication. Each dopant changes
the dynamical switching characteristics of a device. Figure 2 presents the W memristor
device structure.
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Figure 2. Stack of W-dopant Knowm memristor. materials (left) and a graphical representation of the
switching mechanism (right). Reprinted from Ref [28].

The datasheet on Knowm memristors [28] provides the following description of
resistive switching. During the forming process, which requires the application of an
appropriate positive potential to the top electrode, Sn ions from the assist SnSe layer enter
the active Ge2Se3 layer, where they facilitate the substitute ion of Ge on the Ge-Ge bond
for Ag ions from the source layer. Areas where Ge-Ge dimers turn into Ag-Ge bonding
sites form the self-directed channel. Since Ag has a tendency to agglomerate with other
Ag atoms, the Ag-Ge sites constitute conductive clusters. By applying either a positive or
negative potential across the device, one can vary concentrations of Ag within the clusters,
establishing the mechanism for resistive switching.

2.3. Experimental Setup

The proposed identification method is based on experimental data on I-V curves of
the investigated memristive devices. The IV curves were obtained using NI ELVIS III
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data acquisition equipment. In order to limit device current, the Knowm manufacturer
recommends the utilization of a series resistor and suggests taking Rs = 50 kΩ [28]. A
voltage divider circuit with a resistor Rs = 46.25 kΩ placed in series was applied to measure
the I-V curve, which is sufficient for low-current memristor operation with the voltage
snapback effect. Figure 3 shows 10 obtained I-V curve cycles of the Knowm memristor with
W dopant under a sinusoidal control voltage at a frequency of 10 Hz with an amplitude
of 0.7 V. Figure 3a denotes the boundaries of the high resistive state (HRS) and the low
resistive state (LRS), the I-V curve direction in the Sections 1–4 the SET and RESET switching
processes, which are also indicated in subfigures (b) and (c).
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2.4. Modeling Criteria

In [34], E. Linn et al. formulated three criteria for assessing the mathematical modeling
adequacy for the redox-based bipolar resistive switching devices:

1 Correspondence of the model’s I-V curve and the switching dynamics in the time
domain to the experimental data of real devices. Therefore, in Figure 3a,b, the SET
transition process of the device from HRS to LRS demonstrates a sharp current increase
with a shift of the voltage switching boundary (snapback) at the initial stage <1>, in
case (c) the SET transition looks smooth throughout the entire section. The reverse
RESET process, which switches the device to HRS, can either be instantaneous (a),
snapforward effect, or significantly slower (b) and (c). The symmetry of the I-V curve
relative to the diagonal of the II and IV quarters is often violated. This can also be
visualized in the time domain when AC voltage is applied. In addition, there is a
visible curvature of the <1> section due to the metal-semiconductor/insulator barrier
between the electrodes and the inner layers of the devices.

2 Nonlinearity of the switching function. The origin of this nonlinearity in memristive
devices based on redox reactions is explained by the nonlinear movement of ion
vacancies or defects, accelerated by Joule heating. This property is characterized in
that the resistance switching time of the SET and RESET processes decreases by orders
of magnitude if the applied voltage pulse increases only several times. Thus, this
criterion tests the model for a nonlinear dependence of the switching time on the
input voltage.

3 Suitability for modeling the complementary serial connection of two elements. One
of the distinguishing features of such a connection is the presence of a common LRS
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when AC voltage is applied. This criterion serves as a check for the consistency of the
memristive device model.

Later in [35], S. Menzel et al. expanded the list of criteria to six, including dynamical
properties of VCM devices:

4 Ability to set several states of resistance. The criterion is to identify more than two
states of resistance of the memristive device between the LRS and HRS, providing
multi-bit data storage.

5 Dependence of SET (or RESET) switching from the current state of the resistance.
According to this criterion, the voltage required to set the device to a lower resistance
state should depend on the high resistance value in the current cycle and vice versa.
Thus, the switching kinetics should be power-dependent.

6 Reliable simulation of the memory fading effect. This dynamical phenomenon is
well known in the theory of nonlinear systems. With suitable periodic exposure, the
previous “history” of the memristive device is gradually erased.

Let us include the above criteria in the method for the identification of memristive
elements, supplementing the list with a requirement targeted on the compliance of models
of memristive devices with the technical limitations of computer simulation and hardware
execution within the framework of the research-based design methodology:

7 Compact representation of a continuous mathematical model, which determines the
suitability of using its discrete version in the processes of large-system simulation, in-
cluding neural networks, as well as digital hardware emulators of memristive circuits.

2.5. Candidate Memristor Models
2.5.1. Mean Metastable Switch Memristor Model

Knowm researchers adhere to the concept of AhaH computing [36], in which M.
Nugent and T. Molter presented a semi-empirical model of metastable memristor switching
to describe the transition from stochastic binary to incremental analog properties.

Metastable switching is an idealized element with two states corresponding to high
and low resistance, between which it switches with different probabilities depending on
the applied voltage and temperature. The probability of such an element moving from LRS
to HRS is defined as POFF, and the probability that a switch will change from HRS to LRS is
defined as PON. A metastable switch memristor can be represented as a set of N switching
elements with dynamical evolution over discrete time intervals. The mean metastable
switch memristor (MMS, [27]) model implements the limiting case when N → ∞ .

The change in the number of switches X, scaled from 0 to 1, is defined as:

dX = NON − NOFF, (1)

where the number of switches is represented as:

NON = PON(1− X)
NOFF = POFFX.

(2)

Switching probabilities when voltage V is applied are given as:

PON = α 1
1+e−β(V−VON )

POFF = α
(

1− 1
1+e−β(V+VOFF)

)
,

(3)

where VON is the threshold voltage for switching to the low resistance state, VOFF is the
threshold voltage for switching to the high resistance state, β = q/kT = V−1

T is the
temperature parameter, q is the elementary charge, k is the Boltzmann constant, T is
the absolute temperature, α = dt/τ is the time parameter, and τ is the time constant of
the memristor.
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Then, the equation of the state variable of the memristor takes the form of:

dX
dt

=
1
τ

(
1

1 + e−β(V−VON)
(1− X)−

(
1− 1

1 + e−β(V+VOFF)

)
X
)

, (4)

furthermore, the conductivity of the memristor is as follows:

G =
X

RON
+

1− X
ROFF

. (5)

This model was used by Minati et al. in [24] to describe the dynamics of a memristor
switching as part of a chaotic circuit.

2.5.2. Generalized Mean Metastable Switch Memristor Model

In the generalized mean metastable switch memristor (GMMS, [27]) model, the total
current through the device is represented by the sum of the currents of the resistive memory
element IM(V, t) (MMS model) and the Schottky diode IS(V):

I = φIM(V, t) + (1− φ)IS(V), (6)

where φ ∈ [0, 1]. A value of φ = 1 implies that there is no Schottky diode current.
The IS(V) current is required to represent the Schottky barrier over the metal-semiconductor

junction, and in turn, can be decomposed into forward and reverse bias components
as follows:

IS = α f eβ f V − αreβrV , (7)

where αf,r and βf,r are positive parameters that specify the exponential behavior of the
forward and reverse current flowing through the Schottky barrier.

3. Results
3.1. Criterial Analysis of Candidate Models

As a part of structural identification of the memristive element, it is necessary to
establish the static and dynamic components of the model. Using static (algebraic and/or
transcendental) equations, the relationship between the electron and ion currents, as well
as the resistance/conductivity function of the element, are determined. The dynamic
component in the form of an ODE system must determine the internal state variables and
their corresponding right-hand side functions. The key process in structural identification,
as is shown in Figure 1, is process A1.4 which defines the stages of modification for the most
suitable model from the set of candidates, and process A1.5 performs the modification to
achieve the unmet criteria of the candidate model. These processes are preceded by choice
of criteria (given at the beginning of the article) and the initial model, as well as the process
of parametric identification to determine the characteristics of the model under conditions
approximate to the experiment. When the stages of modification are not determined during
structural identification due to the satisfaction of all the criteria, the model is considered
adequate to the design object in the operating mode of interest.

In this study, we use the MMS model as the initial candidate model for Knowm
devices. This model belongs to the class of models with voltage thresholds VON and VOFF.
Like the similar mem-diode model [37] (whose equations are much more complicated
to analyze), the MMS model uses the sigmoid switching function of the internal state
variable X. Figure 4 shows the surface corresponding to the function of the right-hand side
dX/dt(X, V). The β parameter in Equation (4) is responsible for the width of the sigmoid,
1/τ determines the maximum rise height along the sigmoid, the VON and VOFF parameters
set the coordinate of the center point of the sigmoid along the voltage axis V.
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memristor under conditions similar to the experiment in Figure 3.
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two elements.

According to criterion 2, the nonlinearity of the switching function is implemented by
Equation (4) in the form of a sigmoid, as shown in Figure 4, and contains a temperature
dependence in the parameter β = q/kT. The compliance with criterion 3 is illustrated in
Figure 5b, where one can see the appearance of a threshold value for switching from LRS
to HRS with increasing voltage, which is typical for a complementary series connection of
two elements. The atypical loops between (−0.8, −0.4) and (0.4, 0.8) voltage intervals in
Figure 5b are caused by the inequality of the parameters VON 6= VOFF.



Nanomaterials 2022, 12, 63 9 of 20

Criterion 4 is also met due to the possibility of setting the state variable X, which is
responsible for the conductivity of the element, intermediate values between 0 and 1, as
shown in Figure 6. In order to demonstrate the fulfillment of criterion 6, the process of two
identical memristors simulation was launched with the boundary initial conditions of the
internal state variable X(0) = 0 and X(0) = 1, a sinusoidal control voltage with an amplitude
of 0.1 V and a frequency of 10 Hz was applied. As shown in Figure 6, the coincidence of
the time series is achieved already in the first switching cycle, which indicates the effect of
memory fading in the MMS model.

Nanomaterials 2022, 12, x FOR PEER REVIEW 9 of 20 
 

 

  
(a) (b) 

Figure 5. I-V curve of the MMS model: (a) a single element; (b) a complementary series connection 
of two elements. 

Criterion 4 is also met due to the possibility of setting the state variable X, which is 
responsible for the conductivity of the element, intermediate values between 0 and 1, as 
shown in Figure 6. In order to demonstrate the fulfillment of criterion 6, the process of 
two identical memristors simulation was launched with the boundary initial conditions 
of the internal state variable X(0) = 0 and X(0) = 1, a sinusoidal control voltage with an 
amplitude of 0.1 V and a frequency of 10 Hz was applied. As shown in Figure 6, the coin-
cidence of the time series is achieved already in the first switching cycle, which indicates 
the effect of memory fading in the MMS model. 

 
Figure 6. Effect of memory fading and intermediate states of the MMS model. 

Finally, it is worth noting the simplicity of Equations (4) and (5) of the MMS model, 
compared to the universal models VTEAM [17] and Stanford [38], belonging to the class 
of compact ones, which states that criterion 7 is satisfied. 

Now, we will consider criteria 1 and 5, which the MMS model does not meet. The 
differences between the experimental and simulated I-V curves can be seen by comparing 
Figures 3a and 5a. One can see that criterion 5 cannot be met because of the fixed switching 
thresholds VON and VOFF. 

Additional equations of the GMMS model make it possible to bring the simulated I-
V curve closer to the experimental data by adding bends in the sections <1> and <3>, 
marked in Figure 3a. The closest fit (Figure 7) was obtained when choosing the parame-
ters: RON = 13,000 Ω, ROFF = 4,6·105 Ω, VON = 0.17 V, VOFF = 0.1 V, τ = 6·10−5, T = 28.5 K, φ = 
0.88, αf = αr = 10−7, and βf = βr = 8. In this case, for an expressed acceleration of switching 
processes, it was necessary to reduce the memristor time constant τ by order of magnitude 
and the temperature parameter T to a value with no physical meaning, which may be 
associated with the observation of quantum effects. 

Figure 6. Effect of memory fading and intermediate states of the MMS model.

Finally, it is worth noting the simplicity of Equations (4) and (5) of the MMS model,
compared to the universal models VTEAM [17] and Stanford [38], belonging to the class of
compact ones, which states that criterion 7 is satisfied.

Now, we will consider criteria 1 and 5, which the MMS model does not meet. The
differences between the experimental and simulated I-V curves can be seen by comparing
Figures 3a and 5a. One can see that criterion 5 cannot be met because of the fixed switching
thresholds VON and VOFF.

Additional equations of the GMMS model make it possible to bring the simulated
I-V curve closer to the experimental data by adding bends in the Sections 1 and 3, marked
in Figure 3a. The closest fit (Figure 7) was obtained when choosing the parameters:
RON = 13,000 Ω, ROFF = 4.6·105 Ω, VON = 0.17 V, VOFF = 0.1 V, τ = 6·10−5, T = 28.5 K,
φ = 0.88, αf = αr = 10−7, and βf = βr = 8. In this case, for an expressed acceleration of
switching processes, it was necessary to reduce the memristor time constant τ by order of
magnitude and the temperature parameter T to a value with no physical meaning, which
may be associated with the observation of quantum effects.
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3.2. The Modification of Memristor Model

Further modification of the GMMS model targets achieving criteria 1 and 5 and can be
performed as follows. At the first stage, it is necessary to introduce a functional dependence
of the threshold parameters VON and VOFF on the internal state variable X, which is
associated with the appearance of a section of negative differential resistance of the I-V
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curve in the first quarter when using a measuring circuit with a voltage divider. An array
of experimental data of voltage depending on the variable X when switching SET is shown
in Figure 8a, where one can see the snapbacks, i.e., abrupt current jumps with a slope
inversely proportional to the load RS = 46.25 kΩ. A series-connected resistor RS allows
stabilizing the LRS and the switching process of the SET device (the effects were studied
in [30,39,40]), as well as revealing the fact that the VON switching boundary has shifted
from 0.22 V (VON,th) to values less than 0.12 V in average (VON,tr) close to VOFF~0.1 V (see
Figure 8b).
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Abrupt jumps in the I-V curves in switching processes can be explained by a discrete
change in the quantum states of the system (see a quantum mechanical switching model
described in [41]) with a change in the ion concentration in the active layer of the device,
when the motion of the atoms of the conducting channel has a significant effect on small
currents. In Figure 8a, the states ω 1–5 are marked for the SET process; note that their
approximation by a piecewise-specified function on the entire interval [0, 1] has no practical
meaning, since at low currents (under experimental conditions <12 µA), only the first state
ω1 is stable, as can be seen in Figure 3a,b. This observation necessitates modeling only the
first jump, which can be performed using a continuous function, which in the conditions of
this experiment (Figure 8a) takes the form:

VON(X) =
0.1 cos

((
4π
√

X
)

/(1.7− X)
)

1 + 10
√

X
+ 0.14. (8)

The I-V curves of the GMMS model with the VON(X) function are shown in Figure 9.
Depending on RS, the slope of the SET switching line changes correctly.
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The proposed modification of the GMMS model makes it possible to fulfill the con-
ditions of criterion 5 for the experimentally observed operating mode of the investigated
device. When considering a single switching cycle, the model also satisfies criterion 1.

The second stage of structural identification is aimed at frequency modification of the
memristor model. Figure 10 shows the experimentally obtained I-V curve of the device
under study at frequencies 1, 10, and 100 Hz. As the frequency increases, the average
switching threshold values VON and VOFF, as well as the deviation of the angles of the
breaking lines α from the load value RS, increase.
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Figure 10. Experimental I-V curve of the device at different frequencies of the sinusoidal
control voltage.

The increase in the angle α is correctly predicted by the GMMS model with the
correct selection of the time constant τ. An estimate of the control signal frequency may
be necessary to represent the offset of the VON and VOFF boundaries adequately. The
frequency f of the triangular voltage control signal is determined by the first derivative
dV/dt, sinusoidal—the second derivative (from the equation d2V/dt2 + f 2V = 0). In a
measuring circuit based on a voltage divider, the memristor voltage is cut off in the SET
process with the appearance of a negative differential voltage section, which complicates
the static calculation of the frequency. In this case, one can use the dynamic estimation of
the frequency F:

dF
dt

= aF

(√∣∣∣∣d2V
dt2 /V

∣∣∣∣− bFF

)
, (9)

where aF is the time coefficient of the state variable F, bF is the feedback coefficient, V is the
voltage across the memristor.

When considering typical electrical circuits with memristive elements, the function
d2V/dt2 can often be derived analytically. However, in the general case, it requires numeri-
cal differentiation using finite difference methods.

Figure 11 shows an example of the operation of the proposed modified memristor
model with the addition of additive terms in VON and VOFF from the state variable F at
aF = 10 and bF = 0.9. As the signal frequency increases, one can see an increase in the angle
α and the voltage thresholds VON and VOFF.
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Figure 11. Modification of the GMMS model: (a) the values of the state variable F and (b) the I-V
curve of the memristive element at different frequencies of the sinusoidal control voltage.

The third stage of structural identification involves the final modification of the model,
taking into account the variability of the SET and RESET switching processes, as shown in
Figures 3 and 10.

The most common approach is considering the variability of switching as a manifesta-
tion of stochastic processes. Stochastic models of memristive elements, created by adding,
e.g., white Gaussian noise, are proposed by N.V. Agudov [42,43]. Some other methods
for synthesizing stochastic models of threshold-type memristors are also well described
in [44,45].

An alternative approach to reproducing fluctuations in switching processes is chaotic
dynamics. The key advantage of this approach is that the model remains deterministic,
which simplifies the stages of verification and testing of memristive circuits during their
design. In their recent paper [46], Driscoll et al. considered the chaotic Duffing oscillator as
a memristive model, while the physical substantiation is the connection of the equations of
the oscillator with the dynamics of particles in potential wells of nanoscale devices [32]. We
will use the technique of embedding a chaotic generator into a regular memristor model
to introduce variability into the threshold voltage values VON and VOFF. The Duffing
oscillator equations are as follows:

dY
dt = aYZ
dZ
dt = aZ

(
cZS− bZZ + Y−Y3), (10)

where Y and Z are state variables, S is an external signal, aY and aZ are time coefficients of
the system, bZ is a feedback coefficient, and cZ is a signal coefficient.

Thus, the final system of equations for the modified model of the GMMS memristor at
a harmonic input voltage takes the form of:

I = φIM(V, t) + (1− φ)IS(V)

IS = α f eβ f V − αreβrV

IM =
(

X
RON

+ 1−X
ROFF

)
V

dX
dt = 1

τ

(
1

1+e−β(V−VON (X,F,Y,Z)) (1− X)−
(

1− 1
1+e−β(V+VOFF(X,F,Y,Z))

)
X
)

dF
dt = f

(
F, V, dV

dt , d2V
dt2

)
dY
dt = aYZ
dZ
dt = aZ

(
cZS− bZZ + Y−Y3).

(11)



Nanomaterials 2022, 12, 63 13 of 20

The voltage across the memristor V can be used as S; however, from a practical point
of view, chaotic modes are better expressed at S = cos(Ft). Figure 12 shows an example of
the chaotic model of the GMMS of a memristive element.
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Next, let us consider the procedure for selecting the parameters of the modified model
according to the experimental data of the Knowm memristor operation in the mode shown
in Figure 3a.

3.3. Parametric Identification

The process of parametric identification of the memristor model is presented in the
IDEF0 diagram in Figure 13. The execution of stages that involve only the use of applied
software can be performed automatically by existing methods. At the same time, the
participation of designers is required at two final stages of the parametric identification
process: in A.1.3.6 for solving the problem of adapting a chaotic generator, in A1.3.7 for
evaluating the technical characteristics of a discrete model.
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In the cycle of stages A1.3.1 and A1.3.3 of parametric identification, the values of the
parameters of the Schottky barrier αf,r, βf,r, and φ from Equations (6) and (7) are determined
based on the experimental data by reducing the value of the derivative calculated from
the current IM of conductivity dG/dt to a minimum in the HRS section, which is much
less noisy in comparison with the LRS (Figure 14b). The selection of optimal parameters
leads to the rectification of the HRS and LRS sections on the I-V curve (Figure 14a) when
displaying the current IM.
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parameters of the Schottky barrier and (b) processing the conductivity data.

The processing of the conductivity data assumes filtering, as well as the elimination of
the singularity regions caused by dividing by close to zero voltage values V. To determine
the switching dynamics, which is associated with the operation of numerical differentiation,
it is essential to preserve the actual conductivity values from the experiment, which imposes
additional restrictions on the filter being used. In the example shown in Figure 14b, data
filtering was applied on the HRS and LRS sections.

At stage A1.3.4, the parameters RON and ROFF are determined using the Formula (5).
The state variable X is calculated by normalizing the processed conductivity data at a
frequency of 1 Hz, at which achieving the maximum and minimum memristor resistance
is guaranteed. When calculating the state variable X from experimental data at high
frequencies, it is necessary to use the values of the RON and ROFF parameters determined
at a frequency of 1 Hz.

At step A1.3.5, numerical differentiation of the state variable X is performed to subse-
quently estimate the time characteristics of the memristor. Figure 15 shows the time series
of the state variable X and the derivative dX/dt obtained in steps A1.3.4 and A1.3.5.

Nanomaterials 2022, 12, x FOR PEER REVIEW 15 of 20 
 

 

At stage A1.3.4, the parameters RON and ROFF are determined using the formula (5). 
The state variable X is calculated by normalizing the processed conductivity data at a fre-
quency of 1 Hz, at which achieving the maximum and minimum memristor resistance is 
guaranteed. When calculating the state variable X from experimental data at high frequen-
cies, it is necessary to use the values of the RON and ROFF parameters determined at a fre-
quency of 1 Hz. 

At step A1.3.5, numerical differentiation of the state variable X is performed to sub-
sequently estimate the time characteristics of the memristor. Figure 15 shows the time 
series of the state variable X and the derivative dX/dt obtained in steps A1.3.4 and A1.3.5. 

 
Figure 15. Experimental values of the state variable X and its derivative. 

Stage A1.3.2 can be performed in parallel to the previously described stages. At this 
stage, the I-V curve is filtered and averaged (Figure 16). The averaged I-V curves are then 
used to determine the functions of the threshold voltages VON,OFF(X, F) of process A1.3.6. 

When choosing a chaotic representation of the switching variability, the dependence 
of the VON,OFF functions from the generator state variables Y and Z is determined based on 
the statistical characteristics of the experimental sample (data at a frequency of 1 Hz are 
shown in Figures 16a and 17a). If one wants to achieve greater model accuracy, it is nec-
essary to transform the distributions of the pseudo-random values Y and Z of the chaotic 
generator into an experiment-specific distribution. The solution of this problem by the 
example of the Zaslavsky web map is given in [47]. 

 
(a) (b) 

Figure 16. Averaging of experimental I-V curves: (a) average cycle and data of a sample of cycles at 
a frequency of 1 Hz; (b) average cycles at different frequencies. 

Figure 15. Experimental values of the state variable X and its derivative.



Nanomaterials 2022, 12, 63 15 of 20

Stage A1.3.2 can be performed in parallel to the previously described stages. At this
stage, the I-V curve is filtered and averaged (Figure 16). The averaged I-V curves are then
used to determine the functions of the threshold voltages VON,OFF(X, F) of process A1.3.6.
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Figure 16. Averaging of experimental I-V curves: (a) average cycle and data of a sample of cycles at a
frequency of 1 Hz; (b) average cycles at different frequencies.

When choosing a chaotic representation of the switching variability, the dependence
of the VON,OFF functions from the generator state variables Y and Z is determined based
on the statistical characteristics of the experimental sample (data at a frequency of 1 Hz
are shown in Figures 16a and 17a). If one wants to achieve greater model accuracy, it
is necessary to transform the distributions of the pseudo-random values Y and Z of the
chaotic generator into an experiment-specific distribution. The solution of this problem by
the example of the Zaslavsky web map is given in [47].
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In the case of choosing a stochastic representation of the variability in the model, the
problem is reduced to simulating the experimental distribution through the application of
noise generators.

The final stage of parametric identification is the determination of the time parameters
of the model τ and β in the process A1.3.7, which can be performed by the optimization
method of combining one cycle of the experimental and simulated I-V curve (presented in
the work of B. Garda and Z. Galias [16] at relative threshold switching voltage values, as
shown in Figure 17b. In the same way, but at different frequencies of the control voltage,
parameter τ must be refined, taking into account the angle α of deviation of the current
jump-lines from the load RS (see Figure 10).
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4. Discussion

The obtained model can be evaluated by representing one switching cycle in the
V-X-dX/dt space (Figures 18–20).
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Figure 20. Visualization of the model (11) and experimental data of the device at a frequency of
100 Hz.

Figures 18–20 show the good correspondence between the model dynamics and the
experimental data in the processes of switching SET and RESET of the memristor, which
indicates the correct selection of the parameters τ and β. Due to taking into account only
the first current jump in the SET process, when using the VON function in the form of (8)
under conditions of variable switching, one can see the deviations of the LRS values of
variable X at frequencies of 10 and 100 Hz. In addition, the deviation of the experimental
data points along the X-axis from the constant value of the model’s trajectory at negative
voltage before the RESET switching is noticeable, which can also be seen in the third
quarter of the I-V curve in Figure 17b. This observation can be explained by an error
in describing the relationship between the ionic and electronic currents of the device by
Equations (6) and (7).

The visible disadvantages in the accuracy of the proposed modified model represented
by the system of Equation (11) can be eliminated by complicating the mathematical de-
scription of the SET switching process, which takes into account the set of current jumps
and their variability, as well as the transcendental Equation (7), taking into account the
observed LRS deviation. However, these improvements can lead to a violation of criterion
7-compact representation of a continuous mathematical model, which in turn may mean
the impossibility of executing a discrete model on an emulator’s target hardware platform
due to its technical limitations.

When discussing potential applications of memristive elements, the focus was made
on artificial neural networks. In addition to modeling synaptic connections between
neurons, memristors can also be used as intrinsic elements of a spiking neuron modeling
ionic conductive channels. A representative example of such a study is [48], where a
memcapacitor-based circuit is used to emulate neuronal functionalities. Another necessary
element of the presented circuit is a negative differential resistor implemented by VO2
device separate from Ag-doped TiO2-x-based memcapacitive device. Accounting for the
snapback effect in our memristor model allows us to combine the features of negative
differential resistance and resistive-switching in a single device, which can improve the
scalability and reduce the power consumption of an artificial neuron. Consideration of
variability between switching cycles as a chaotic process may also allow us to achieve
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greater similarity of simulations with the irregular firing of biological neurons. Note that
in the case of artificial neural network development, during the memristor identification
process one is required to use an extended set of criteria [49], which also includes the
learning properties of memristive elements.

5. Conclusions

In this paper, we presented a new memristor identification technique in the form of
a research-based design process. The steps of the proposed method are demonstrated
by the example of modifying the metastable switching memristor models to satisfy the
selected set of criteria. In the general case, the process of structural identification is aimed
at achieving the temporal, frequential, and statistical characteristics of memristive elements
at a qualitative level. The result of the application of the technique was the creation of
a new improved mathematical model of the Knowm memristor, using the adaptation of
voltage threshold values for the snapback effect, dynamical estimation of the control signal
frequency, and the chaotic generator to implement cycle-to-cycle variation. The process of
determining the parameters of this model is described inside the framework of parametric
identification.

As further research, we plan to apply the proposed chaotic memristor model to
develop FPGA-based hardware memristor emulators. Due to this, identification approaches
following the adaptive synchronization of the emulator and a real memristive device will
be studied.

Author Contributions: Conceptualization, V.O. and D.B.; data curation, Y.B. and D.B.; formal analysis,
Y.B.; investigation, V.O. and P.F.; methodology, V.O. and D.B.; project administration, D.B.; software,
V.O. and P.F.; supervision, D.B.; validation, V.O.; visualization, P.F. and Y.B.; writing—original draft,
V.O. and D.B.; writing—review and editing, P.F. and Y.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Russian Foundation for Basic Research (RFBR), grant
number 19-07-00496.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuits Syst. 1971, 18, 507–519. [CrossRef]
2. Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [CrossRef] [PubMed]
3. Chua, L. If it’s pinched it’s a memristor. Semicond. Sci. Technol. 2014, 29, 104001. [CrossRef]
4. Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials, switching

mechanisms, and performance. Mater. Sci. Eng. R Rep. 2014, 83, 1–59. [CrossRef]
5. Vourkas, I.; Sirakoulis, G.C. Emerging memristor-based logic circuit design approaches: A review. IEEE Circuits Syst. Mag. 2016,

16, 15–30. [CrossRef]
6. Puppo, F.; Doucey, M.A.; Di Ventra, M.; De Micheli, G.; Carrara, S. Memristor-based devices for sensing. In Proceedings of the

2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, VIC, Australia, 1–5 June 2014; pp. 2257–2260.
7. James, A.P. An overview of memristive cryptography. Eur. Phys. J. Spec. Top. 2019, 228, 2301–2312. [CrossRef]
8. Sun, J.; Zhao, X.; Fang, J.; Wang, Y. Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization.

Nonlinear Dyn. 2018, 94, 2879–2887. [CrossRef]
9. Ziegler, M.; Wenger, C.; Chicca, E.; Kohlstedt, H. Tutorial: Concepts for closely mimicking biological learning with memristive

devices: Principles to emulate cellular forms of learning. J. Appl. Phys. 2018, 124, 152003. [CrossRef]
10. Thomas, A. Memristor-based neural networks. J. Phys. D Appl. Phys. 2013, 46, 093001. [CrossRef]
11. Sun, J.; Han, G.; Zeng, Z.; Wang, Y. Memristor-based neural network circuit of full-function Pavlov associative memory with time

delay and variable learning rate. IEEE Trans. Cybern. 2020, 50, 2935–2945. [CrossRef]
12. Sun, J.; Han, J.; Wang, Y.; Liu, P. Memristor-based neural network circuit of emotion congruent memory with mental fatigue and

emotion inhibition. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 606–616. [CrossRef] [PubMed]
13. Menzel, S.; Böttger, U.; Wimmer, M.; Salinga, M. Physics of the switching kinetics in resistive memories. Adv. Funct. Mater. 2015,

25, 6306–6325. [CrossRef]

http://doi.org/10.1109/TCT.1971.1083337
http://doi.org/10.1038/nature06932
http://www.ncbi.nlm.nih.gov/pubmed/18451858
http://doi.org/10.1088/0268-1242/29/10/104001
http://doi.org/10.1016/j.mser.2014.06.002
http://doi.org/10.1109/MCAS.2016.2583673
http://doi.org/10.1140/epjst/e2019-900044-x
http://doi.org/10.1007/s11071-018-4531-4
http://doi.org/10.1063/1.5042040
http://doi.org/10.1088/0022-3727/46/9/093001
http://doi.org/10.1109/TCYB.2019.2951520
http://doi.org/10.1109/TBCAS.2021.3090786
http://www.ncbi.nlm.nih.gov/pubmed/34156947
http://doi.org/10.1002/adfm.201500825


Nanomaterials 2022, 12, 63 19 of 20

14. Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories–nanoionic mechanisms, prospects, and
challenges. Adv. Mater. 2009, 21, 2632–2663. [CrossRef]

15. Campbell, K.A. Self-directed channel memristor for high temperature operation. Microelectron. J. 2017, 59, 10–14. [CrossRef]
16. Garda, B.; Galias, Z. Modeling Sinusoidally Driven Self-Directed Channel Memristors. In Proceedings of the 2018 International

Conference on Signals and Electronic Systems (ICSES), Krakow, Poland, 10–12 September 2018; pp. 19–22.
17. Kvatinsky, S.; Ramadan, M.; Friedman, E.G.; Kolodny, A. VTEAM: A General Model for Voltage-Controlled Memristors. IEEE

Trans. Circuits Syst. II Express Briefs 2015, 62, 786–790. [CrossRef]
18. Gomez, J.; Vourkas, I.; Abusleme, A. Exploring memristor multi-level tuning dependencies on the applied pulse properties via a

low cost instrumentation setup. IEEE Access 2019, 7, 59413–59421. [CrossRef]
19. Drake, K.; Lu, T.; Majumdar, M.; Kamrul, H.; Campbell, K.A. Comparison of the electrical response of Cu and Ag ion-conducting

SDC memristors over the temperature range 6 K to 300 K. Micromachines 2019, 10, 663. [CrossRef]
20. Bunnam, T.; Soltan, A.; Sokolov, D.; Maevsky, O.; Degenaar, P.; Yakovlev, A. Empirical Temperature Model of Self-Directed

Channel Memristor. In Proceedings of the 2020 IEEE Sensors, Rotterdam, The Netherlands, 25–28 October 2020; pp. 1–4.
21. Volos, C.; Nistazakis, H.; Pham, V.T.; Stouboulos, I. The first experimental evidence of chaos from a nonlinear circuit with a real

memristor. In Proceedings of the 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST),
Bremen, Germany, 7–9 September 2020; pp. 1–4.

22. Volos, C.K.; Pham, V.T.; Nistazakis, H.E.; Stouboulos, I.N. A dream that has come true: Chaos from a nonlinear circuit with a real
memristor. Int. J. Bifurc. Chaos 2020, 30, 2030036. [CrossRef]

23. Shinriki, M.; Yamamoto, M.; Mori, S. Multimode oscillations in a modified van der Pol oscillator containing a positive nonlinear
conductance. Proc. IEEE 1981, 69, 394–395. [CrossRef]

24. Minati, L.; Gambuzza, L.V.; Thio, W.J.; Sprott, J.C.; Frasca, M. A chaotic circuit based on a physical memristor. Chaos Solitons
Fractals 2020, 138, 109990. [CrossRef]

25. Sprott, J.C. A new chaotic jerk circuit. IEEE Trans. Circuits Syst. II Express Briefs 2011, 58, 240–243. [CrossRef]
26. Molter, T.W.; Nugent, M.A. The generalized metastable switch memristor model. In Proceedings of the 2016 15th International

Workshop on Cellular Nanoscale Networks and their Applications (CNNA), Dresden, Germany, 23–25 August 2016; pp. 1–2.
27. The Mean Metastable Switch Memristor Model in Xyce. Available online: https://knowm.org/the-mean-metastable-switch-

memristor-model-in-xyce/ (accessed on 26 December 2021).
28. Knowm SDC Memristors. Available online: https://knowm.org/downloads/Knowm_Memristors.pdf (accessed on

26 December 2021).
29. Lee, J.H.; Lim, D.H.; Jeong, H.; Ma, H.; Shi, L. Exploring cycle-to-cycle and device-to-device variation tolerance in MLC

storage-based neural network training. IEEE Trans. Electron. Devices 2019, 66, 2172–2178. [CrossRef]
30. Fantini, A.; Wouters, D.J.; Degraeve, R.; Goux, L.; Pantisano, L.; Kar, G.; Chen, Y.-Y.; Govoreanu, B.; Kittl, J.A.; Altimime, L.; et al.

Intrinsic Switching Behavior in HfO2 RRAM by Fast Electrical Measurements on Novel 2R Test Structures. In Proceedings of the
2012 4th IEEE International Memory Workshop, Milan, Italy, 20–23 May 2012; pp. 1–4. [CrossRef]

31. Goux, L.; Raghavan, N.; Fantini, A.; Nigon, R.; Strangio, S.; Degraeve, R.; Kar, G.; Chen, Y.Y.; De Stefano, F.; Afanas’ev, V.V.; et al.
On the bipolar resistive-switching characteristics of Al2O3-and HfO2-based memory cells operated in the soft-breakdown regime.
J. Appl. Phys. 2014, 116, 134502. [CrossRef]

32. Niraula, D.; Karpov, V. Comprehensive numerical modeling of filamentary RRAM devices including voltage ramp-rate and
cycle-to-cycle variations. J. Appl. Phys. 2018, 124, 174502. [CrossRef]

33. Miranda, E.; Muñoz-Gorriz, J.; Suñé, J.; Fröhlich, K. SPICE model for the current-voltage characteristic of resistive switching
devices including the snapback effect. Microelectron. Eng. 2019, 215, 110998. [CrossRef]

34. Linn, E.; Siemon, A.; Waser, R.; Menzel, S. Applicability of Well-Established Memristive Models for Simulations of Resistive
Switching Devices. IEEE Trans. Circuits Syst. 2014, 61, 2402–2410. [CrossRef]

35. Menzel, S.; Siemon, A.; Ascoli, A.; Tetzlaff, R. Requirements and Challenges for Modelling Redox-based Memristive Devices. In
Proceedings of the 2018 IEEE ISCAS, Florence, Italy, 27–30 May 2018; pp. 1–5. [CrossRef]

36. Nugent, M.A.; Molter, T.W. AHaH Computing–From Metastable Switches to Attractors to Machine Learning. PLoS ONE 2014,
9, e85175. [CrossRef]

37. Patterson, G.A.; Suñé, J.; Miranda, E. SPICE simulation of memristive circuits based on memdiodes with sigmoidal threshold
functions. Int. J. Circuit Theory Appl. 2018, 1, 39–49. [CrossRef]

38. Jiang, Z.; Wu, Y.; Yu, S.; Yang, L.; Song, K.; Karim, Z.; Philip Wong, H.-S. A Compact Model for Metal–Oxide Resistive Random
Access Memory With Experiment Verification. IEEE Trans. Electron. Devices 2016, 63, 1884–1892. [CrossRef]
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