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Abstract: Thermoelectric (TE) materials can convert waste heat into electrical energy, which has
attracted great interest in recent years. In this paper, the effect of biaxial-tensile strain on the electronic
properties, lattice thermal conductivity, and thermoelectric performance of α-phase Se2Te and SeTe2

monolayers are calculated based on density-functional theory and the semiclassical Boltzmann theory.
The calculated results show that the tensile strain reduces the bandgap because the bond length
between atoms enlarges. Moreover, the tensile strain strengthens the scatting rate while it weakens
the group velocity and softens the phonon model, leading to lower lattice thermal conductivity kl.
Simultaneously, combined with the weakened kl, the tensile strain can also effectively modulate the
electronic transport coefficients, such as the electronic conductivity, Seebeck coefficient, and electronic
thermal conductivity, to greatly enhance the ZT value. In particular, the maximum n-type doping ZT
under 1% and 3% strain increases up to six and five times higher than the corresponding ZT without
strain for the Se2Te and SeTe2 monolayers, respectively. Our calculations indicated that the tensile
strain can effectively enhance the thermoelectric efficiency of Se2Te and SeTe2 monolayers and they
have great potential as TE materials.

Keywords: biaxial-tensile strain; α-phase structure; lattice thermal conductivity; thermoelectricity

1. Introduction

Thermoelectric materials have drawn considerable attention because they can harvest
energy from waste heat by converting thermal energy directly into electrical energy [1–3].
The conversion efficiency of a TE material can be evaluated by the dimensionless figure
of merit, ZT = S2σT/(ke + kl), where S, σ, T are the Seebeck coefficient, the electrical
conductivity, and the absolute temperature, respectively. ke and kl are electronic and lattice
thermal conductivities. High thermoelectric performance requires a large thermoelectric
power factor (PF =S2σ) and low thermal conductivity. However, the intrinsic relationship
among these crucial parameters makes it difficult to improve the ZT value of a TE material.

In 2017, Zhu et al. [4] and Chen et al. [5] predicted and successfully synthesized the
tellurene on highly oriented pyrolytic graphite (HOPG) substrates by using molecular
beam epitaxy. Subsequently, a new two-dimensional (2D) materials family, the group-VI
elemental 2D materials, has attracted significant attention due to its high carrier mobility,
high photoconductivity, and thermoelectric responses [6–11]. Recent studies confirmed
that the compounds composed of Te and Se have excellent thermoelectric and electronic
transport properties [7,8,12]. In our previous work [7], we revealed that the 1T-phase
Se2Te and SeTe2 monolayers are promising medium-temperature thermoelectric materials;
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however, their room temperature conversion efficiency is inferior. Recently, numerous
studies [13–16] proved that the tensile mechanic strain can induce the reduction of the
lattice thermal conductivity and then enhancement of the thermoelectric performance of 2D
materials. Therefore, expecting to enhance the low-temperature thermoelectric efficiency,
we here investigate the effect of biaxial tensile strain on the properties of α-phase Se2Te and
SeTe2 monolayers.

In this paper, the small biaxial-tensile strain effects on electronic properties, lattice ther-
mal conductivity, and thermoelectric performance of α-phase Se2Te and SeTe2 monolayers
are calculated by first-principles calculations combined with the semiclassical Boltzmann
theory. The calculated results indicate that the tensile strain results in lower lattice thermal
conductivity by strengthening the scatting rate while at the same time weakening the group
velocity and softening the phonon model. Additionally, the ZT value is visibly enlarged
upon applied tensile strain; for example, the maximum n-type doping ZT under 1% and
3% strain increases up to six and five times higher than the corresponding ZT without
strain for the Se2Te and SeTe2 monolayers, respectively. Our calculations confirm that the
tensile strain is an effective way to enhance the thermoelectric efficiency of Se2Te and SeTe2
monolayers, which can stimulate further experimental works.

2. Theoretical Methods and Computational Details

All calculations are based on the first-principles calculations implemented in the
Vienna ab initio Simulation Package (VASP) code [17,18] in the framework of the density
functional theory (DFT). To solve the Kohn–Sham equations, the generalized gradient
approximation (GGA) within the Perdew–Burke–Ernzerhof (PBE) formulation [19] or the
B3LYP(B3PW) [20,21] is widely used to describe exchange-correlation potential. In this
study, we used the former method to describe the exchange-correlation potential. A plane
wave cutoff was set to 500 eV, and dense k-meshes of 14× 14× 1 and 22× 22× 1 were used
to sample the Brillouin zone for structure optimizations and electronic property calculations,
respectively. A vacuum space larger than 15 Å was used to avoid interactions of the nearest
layers. The structures were fully optimized until the convergence threshold for electronic
and ionic relaxations reached 10−8 eV and 10−3 eV/Å, respectively. The spin-orbit coupling
(SOC) was taken into account in all calculations of the electronic properties.

Recently, Yang’s group developed a new TransOpt code [22] for calculating the electron
transport properties based on semi-empirical Boltzmann equation with a constant electron–
phonon coupling approximation. The advantage of TransOpt is not only more accurate
than the constant relaxation time approximation (CRTA) but also can effectively avoid band
crossing problems. Numerous studies [22–26] demonstrated that TransOpt is reasonable
for calculating the transport properties and can be used in high-throughput calculations. In
general, the Seebeck coefficient S and electrical conductivity σ are evaluated by the formula
as followed [27–30]

S(µ, T) =
ekB

σ

∫
dε

(
−

∂ fµ(T, ε)

∂ε

)
Ξ(ε)

ε− µ

kBT
(1)

σ(µ, T) = e2
∫

dε

(
−

∂ fµ(T, ε)

∂ε

)
Ξ(ε) (2)

where fµ(T, ε), kB, e, and ε are the Fermi–Dirac distribution function, Boltzmann constant,
electric charge, and band energy, respectively. The transport distribution is derived as
Ξ(ε) = ∑

k
vk ⊗ vkτk, where vk and τk are the group velocity and relaxation time at state

k, respectively. τk is a vital parameter to accurately calculate σ under the CRTA, which
depends on the scattering mechanisms including phonon, impurity, and defect scatterings.
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If only the intrinsic electron–phonon scatterings are considered, the relaxation time can be
defined as [22,31,32]

1
τnk

=
2π

} ∑
mk′λ
|gλmk′ ,nk|

2{[ fmk′ + nqλ
]
δ
(
εmk,−εnk − }ωqλ

)
δk+q,k,

+
[
1 + nqλ − fmk

]
δ
(
εmk,−εnk + }ωqλ

)
δ′k−q,k

}
,

(3)

where
∣∣∣gλ

mk′ ,nk

∣∣∣ describes the electron–phonon coupling matrix; f mk’ (fmk) is the Fermi–Dirac

distribution for band-index m and wave-vector K; δ
(
εmk,−εnk − hωqλ

)
and

δ
(
εmk,−εnk + hωqλ

)
expresses the absorption and emission of a phonon ωqλ, respectively;

nqλ denotes the phonon number under the Bose–Einstein distribution.
The harmonic interatomic force constants (IFCs) were obtained by the PHONOPY

code [33] based on the density functional perturbation theory (DFPT) using a 5 × 5 × 1
(3 × 3 × 1) supercell and a 6 × 6 × 1 (3 × 3 × 1) k-mesh for both strained and unstrained
Se2Te (SeTe2) monolayers. We then obtained the phonon frequencies by diagonalized
dynamic matrix. The finite displacement approach [33,34] was performed to calculate the
IFCs with a 4× 4× 1 and a 3× 3× 1 supercell for Se2Te and SeTe2 monolayers, respectively,
considering the third nearest neighbors. Combining with the above calculated harmonic
and anharmonic IFCs, the lattice thermal conductivity was evaluated using the ShengBTE
code [35] by iterative solution of the phonon Boltzmann transport equation. After the
lattice thermal conductivity convergence test, very dense q-meshes of 160 × 160 × 1 and a
scalebroad of 0.7 were employed in all calculations.

3. Results and Discussion
3.1. Stability and Electronic Properties

The top and side views of the α-phase Se2Te and SeTe2 monolayers are shown in
Figure 1. The same structure as 1T phase MoS2, Se2Te and SeTe2 monolayers belong to
the P-3m1 space group and C3v point group symmetry. After full relaxation, the lattice
parameters are a = b = 3.98 Å, and a = b = 4.02 Å for Se2Te and SeTe2 monolayers, respec-
tively, agreeing well with the previous report [36]. To investigate the influence of tensile
strain on materials properties, the in-plane biaxial tensile strain raised from biaxial tensile
stress was considered, as depicted in Figure 1. The biaxial tensile strain is defined as,
ε = (a− a0)/a0 × 100%, where a and a0 are the in-plane lattice parameter of the strained
and unstrained monolayers, respectively.

Generally speaking, it is vital to check the stability of materials before calculating the
properties. Thus, the phonon spectrums of Se2Te and SeTe2 monolayers under unstrained
and strained structures were investigated by PHONOPY code, as shown in Figure 2. It is
found that there is no imaginary frequency in the Brillouin zone at the range of given tensile
strain, such as 0–3% strain for SeTe2 and 0–1% strain for Se2Te, suggesting that they are
dynamic stability within a small tensile strain. Furthermore, tensile strain softens phonon
mode, which may enhance the thermoelectric performance [13]. Overall, the longitudinal
acoustic (LA) and transverse acoustic (TA) branches are linear near the Γ point, while the
out-of-plane acoustic (ZA) branch is quadratic near the Γ point, and all of them shift to
lower frequency upon the tensile strain.
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Figure 1. (Color online) Structure diagrams of α-phase Se2Te and SeTe2 monolayers. The (a) top and
(b) side view of the Se2Te monolayers, and (c) top and (d) side view of the SeTe2 monolayers. The
blue arrow indicates the direction of tensile stress. The solid red diamond-shaped box represents the
primitive cell. The red arrow demonstrates the direction of the ELF profile.
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Figure 2. (Color online) Phonon dispersion curves under different tensile strains for (a) Se2Te and
(b) SeTe2 monolayers.

It is vital to correctly calculate the electronic band structure and total density of states
(TDOS) related to the thermoelectric properties of a semiconductor [37,38]. It is well known
that the SOC effect [39] plays a crucial role in the electronic band structure of materials
containing heavy elements such as Te, thus the SOC effect is taken into account in the
calculations. As depicted in Figure 3, the electric band structures and TDOS of unstrained
and strained structures are calculated at the PBE + SOC level. For both Se2Te and SeTe2
monolayers, it is found that the HOMO energy reduces with the tensile strains, while
the LUMO energy enhances, leading to narrowing of the bandgap. Moreover, in Table 1,
the influence of tensile strain on the bandgap of Se2Te is significantly greater than that
of SeTe2. For example, the bandgap of Se2Te is reduced by 11.11% under the effect of 1%
tensile strain, while the bandgap of SeTe2 is reduced slightly by 3.79% under 3% tensile
strain. This reduction of bandgap induced by strain results from the well-known rule that
tensile strain increases the bond length between atoms, which leads to a decrease in the
bandgap [14,40,41]. Furthermore, it is found that the TDOS of Se2Te and SeTe2 monolayer
under the Fermi level increases and shifts up as tensile strain increases, while the TDOS
above the Fermi level remains almost the same in Se2Te monolayer and decreases in the
SeTe2 monolayer.
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tensile strains.

Table 1. Deformation potential constants (El) of α-phase SeTe2 and Se2Te based on PBE + SOC band
structures under various tensile strains, together with the Young’s modulus Y, elastic modulus C2D,
and bandgap Eg, respectively.

Strain El
VBM (eV) El

CBM (eV) Y (GPa) C2D (N/m) Eg (eV)

Se2Te
0%

−5.086 −6.744 126.545 44.016 0.395
−4.196 a −6.676 a 43.64 a 0.38 a

0.5% −4.834 −6.552 123.247 42.547 0.373
1% −5.011 −6.512 120.317 41.178 0.351

SeTe2

0%
−6.316 −6.446 103.340 37.538 0.363
6.590 a 6.620 a 36.19 a 0.33 a

1% −6.098 −6.272 97.101 34.847 0.359
2% −5.782 −5.956 91.257 31.590 0.354
3% −5.568 −5.716 85.594 30.380 0.350

a Ref. [36]. C2D was calculated using the finite-difference method by Liu et al. [36].

Generally, the electron localization function (ELF) [42] can be used to determine the
interaction type (chemical bonding type or physical binding type) between two atoms by
measuring electron localization in the atomic and molecular systems [42,43]. The ELF is a
relative measurement of the electron localization, and it takes values between 0 and 1 [44],
where 1 corresponds to perfect localization, 0.5 means electron-gas-like pair probability, and
0 represents the absence of electrons. In other words, due to the lack of electrons sharing in
the region between the two atoms, the value of ELF is very low, which represents the ionic
binding; on the contrary, due to the abundant of electrons sharing in the region between the
two atoms, the value of ELF is large, and it characterizes a covalent bond. To gain further
insight into the effect of tensile strain on the character of the bond, we calculated ELF of
Se2Te and SeTe2 monolayers, as shown in Figure 4. Overall, it is found that all ELF are
larger than 0.5 at tensile-strained circumstances, indicating that they are covalent bond
compounds. Furthermore, the values of ELF decrease with the increasing strain, due to the
increase in the length of chemical bonds between two atoms.
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3.2. Electronic Transport Property

We then evaluated the electrical conductivity σ, Seebeck coefficient S, electronic ther-
mal conductivity ke, and thermoelectric power factor PF using the TransOpt package [22].
Deformation potential (DP) El, Young’s modulus Y, and Fermi energy are the main input
parameters for electronic transport performances, as shown in Table 1. The finite-difference
method [45–49] was used to calculate the Young’s modulus Y. El

VBM and El
CBM are the de-

formation potential of the VBM and CBM in the transport direction, respectively, which can

be calculated by the formula: El =
∂Eedge

∂(∆l/l0)
. Eedge is the energy of the VBM or CBM under

slight uniaxial strain, ranging from −2% to 2% in steps of 0.5%. The elastic modulus C2D is
evaluated by the formula: C2D = 1

S0
∂2E

∂(∆l/l0)
2 , where E is the total energy of materials under

slight strain. The calculated C2D agrees well with the results of Reference [36], indicating
that the calculated results are reliable. As shown in Figure S1 (Supplemental Materials), the
DP coefficient El is obtained by fitting the values of the band energies of the VBM and the
CBM concerning the vacuum energy as a function of uniaxial strain. To reach convergence
and obtain accurate calculation results, we used dense k-meshes of 60 × 60 × 1.

From Figure 5, at given carrier concentration range, such as 1019 to 1020 cm−3 and
1019 to 1021 cm−3 for n- and p-type doping, respectively, all types of S approximately linear
decreases with increasing carrier concentration, while σ increases with carrier concentration.
This can also be found in many other 2D materials that S and σ have a different relationship
to carrier concentration since they have an opposite dependency with the DOS near the
Fermi surface [7,37,50]. Thus, we can obtain the optimized PF shown in Figure 6 by the
relationship of PF =S2σ, which is a vital parameter for the figure of merit and is discussed
in the following. Moreover, except for p-type doped S of Se2Te, strain enhances the S as
the increasing strain. Loosely speaking, the strain induces an enhancement of σ for Se2Te,
while it works oppositely for that of SeTe2.

3.3. Lattice Thermal Conductivity

By comparison, the kl of SeTe2 monolayers is much lower than that of Se2Te mono-
layers, as shown in Figure 7, which is benefited from the large weight of the constituent
elements [10] and weak bonding [51,52] (see Figure 4). Notably, it can be seen from Figure 7
that both the kl of Se2Te and SeTe2 decrease with the biaxial tensile strain. This may result
from phonon softening [13].
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To further understand this reduction in kl subjected to strain, we analyzed the effect
of strain on phonon group velocities and phonon scattering rates as plotted in Figure 8.
According to the calculated cumulative lattice thermal conductivity shown in Figure S2, we
confirm that both Se2Te and SeTe2 follow the conventional criteria that the lattice thermal
conductivity is primarily carried by a low-frequency phonon, thus the phonon group
velocity in the low-frequency range (0~2 THz) is plotted. Compared to Se2Te, the scattering
rate is superior in SeTe2 monolayers under unstrained and strained structures, while the
opposite pattern appears in the low-frequency phonon group velocity, particularly at the
long-wavelength limit. Thus, the SeTe2 monolayers possess lower kl compared to that
of the Se2Te monolayers [53]. Loosely speaking, for both Se2Te and SeTe2 monolayers,
the tensile strain has opposite effects on the scattering rates and phonon group velocity,
that is, the tensile strains generally increase the scatting rate while the group velocity is
weakened by the tensile strain. As a result, the tensile strain distinctly reduces the value of kl.
Furthermore, at room temperature, the kl of Se2Te and SeTe2 monolayers reduced by 35.5%
and 77.7% under 1% and 3% tensile strain, as summarized in Table 2, respectively. Hence,
suitable tensile strain is favorable for thermoelectric performance by the reduction of the kl,
which is a very effective method to achieve enhanced ZT. Finally, by fitting the temperature-
dependent kl, it is found that kl fulfills T−1 behavior in all circumstances, indicating a
dominant Umklapp process of phonon scattering that causes thermal resistivity [11,50].

Table 2. Contributions of phonon modes (ZA, TA, LA, and all-optical) to total lattice thermal
conductivity at 300 K, together with the lattice thermal conductivity kl.

Compounds Strain ZA TA LA Optical kl (W m−1 K−1)

Se2Te
0% 17.73%

19.28% [8]
51.32%
43.12% [8]

23.65%
28% [8]

7.30%
9.29% [8]

5.236
4.88 [8]

0.5% 18.28% 36.63% 35.50% 9.59% 3.744
1% 21.90% 56.45% 14.14% 7.52% 3.636

SeTe2

0% 11.49% 6.33% 65.42% 16.76% 0.574
1% 14.98% 10.59% 48.23% 26.20% 0.235
2% 12.96% 17.96% 37.62% 31.46% 0.171
3% 14.74% 20.54% 32.85% 31.86% 0.128
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3.4. Figure of Merit

To evaluate the size effect on the ballistic or diffusive phonon transport, we calculated
the maximum phonon mean free path (MFP) distribution as plotted in Figure 9, which
is important for thermal design with nanostructuring. In particular, by referring to the
relationship between MFP and kl, we can get better thermoelectric performance in the
application of thermoelectric materials by effectively modulating kl. To this end, at room
temperature, the cumulative thermal conductivities kl of the Se2Te and SeTe2 monolayers
as a function of the MFP under various biaxial strains are fitted to a single parametric
function [35]:

kl(Λ ≤ Λmax) =
kl,max

1 + Λ0
Λmax

(4)

where kl,max is the maximum lattice thermal conductivity and Λmax is the cutoff MFP.
By fitting the cumulative thermal conductivity kl, the phonon MFPs Λ0 of the Se2Te and
SeTe2 monolayers under different strains are obtained. The corresponding values are 39.70,
24.18, and 34.83 nm for Se2Te monolayers and 12.35, 1.29, 0.70, and 0.53 nm for SeTe2
monolayers, respectively, which are much smaller than those of other 2D materials [54,55].
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This indicates that kl will significantly decrease when the size of the sample for Se2Te
and SeTe2 monolayers is below forty and twenty nanometers, respectively. Thus, our
calculations provide an important reference for the subsequent material design. Notably, it
found that the phonon MFPs decrease with increasing strains due to the integral decrease
of MFP and higher contributions to kl coming from the optical phonon branches [56], as
summarized in Table 2.
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We then thoroughly studied the phonon mode contributions toward the kl at 300 K
from the acoustic phonon branches (ZA, TA, and LA) and optical branches (OP), as ex-
pressed in Table 2. By comparison, the phonon mode contributions to the kl of unstrained
Se2Te monolayers are consistent with the report [8], and the value of kl is also in agreement
with that of the report. Moreover, it can be noticed that the kl is mainly dominated by
acoustic branches in all cases. One can easily see that the optical branches’ contributions to
the kl increase with increasing biaxial strain, and at the same time the contributions of the
acoustic phonon branches decrease.

To uncover the influence of biaxial strain on the thermoelectric conversion efficiency,
we calculated the strain-dependent figure of merit ZT at T = 300 K as a function of con-
centration, as shown in Figure 10. For unstrained structure, the p-type doping ZT of
Se2Te monolayers is superior to that of n-type doping, which is the opposite of that of
SeTe2 monolayers. The reason for this discrepancy is interpreted in detail in our previous
work [7]. For strained structures, overall, the value of n-type and p-type ZT was visibly en-
hanced for both Se2Te and SeTe2 monolayers compared to that of the unstrained structures.
Particularly, the maximum n-type doping ZT increases up to 1.38 (8.41) under 1% (3%)
strain for the Se2Te (SeTe2) monolayers, and this value is six (five) times higher than the
corresponding ZT without strain. The corresponding maximum p-type doping ZT reaches
up to 0.64 (1.67), which is 1.6 (2.5) times higher than that of unstrained structures. Such a
high value of ZT of strained structures is larger than those of most reported 2D materials,
such as α-Te [57], SiTe2 [58], SnTe2 [58], and XSe (X = Ge, Sn, and Pb) [50], and even larger
than typically single and polycrystalline crystal SnSe [59,60], indicating tensile strain is an
effective category to enhance the thermoelectric effect.



Nanomaterials 2022, 12, 40 11 of 14

Nanomaterials 2022, 12, x FOR PEER REVIEW 11 of 14 
 

 

materials, such as α-Te [57], SiTe2 [58], SnTe2 [58], and XSe (X = Ge, Sn, and Pb) [50], and 

even larger than typically single and polycrystalline crystal SnSe [59,60], indicating tensile 

strain is an effective category to enhance the thermoelectric effect. 

 

Figure 10. (Color online) The strain-dependent figure of merit ZT of (a,b) Se2Te and (c,d) SeTe2 mon-

olayers at room temperature as a function of concentration, respectively. 

Moreover, it is also found that, except for n-type doped Se2Te and p-type doped 

SeTe2, the value of ZT does not increase monotonously as strain increases. Unlike the SeTe2 

monolayers, the type of relatively large ZT value of the Se2Te monolayers has changed 

with applied strain, i.e., for the strained structure, the n-type ZT is greater than the p-type 

ZT, which is exactly the opposite of the unstrained structure. To reveal those phenomena 

and the reason how strain greatly enhanced thermoelectric performance, we calculated 

the PF and ke, as plotted in Figure 6 and Figure S3, respectively, due to PF and ke being 

vital parameters according to the formula / ( )e lZT PF T k k= + . Combining with the previ-

ously calculated kl, except for the p-type doped SeTe2 monolayers, the enhancement of 

thermoelectric performance induced by the strain is attributed to the simultaneous in-

crease of the PF and decrease of the kl, which has also been found in other reports [13,61]. 

Although p-type PF decrease compared to the unstrained SeTe2 monolayers, the thermal 

conductivity decreases and it dominates, resulting in an enhancement of ZT. An interest-

ing observation in our calculations shows that, for p-type Se2Te and n-type SeTe2, the 

value of ZT does not increase monotonously with strain, which is a result of the compli-

cated change of PF, ke, and kl. 

4. Conclusions 

We evaluated the influence of biaxial-tensile strain on the stability, electronic prop-

erties, lattice thermal conductivity, and thermoelectric performance of α-phase Se2Te and 

SeTe2 monolayers by first-principle calculations combined with the semiclassical 

Figure 10. (Color online) The strain-dependent figure of merit ZT of (a,b) Se2Te and (c,d) SeTe2

monolayers at room temperature as a function of concentration, respectively.

Moreover, it is also found that, except for n-type doped Se2Te and p-type doped SeTe2,
the value of ZT does not increase monotonously as strain increases. Unlike the SeTe2
monolayers, the type of relatively large ZT value of the Se2Te monolayers has changed
with applied strain, i.e., for the strained structure, the n-type ZT is greater than the p-type
ZT, which is exactly the opposite of the unstrained structure. To reveal those phenomena
and the reason how strain greatly enhanced thermoelectric performance, we calculated
the PF and ke, as plotted in Figure 6 and Figure S3, respectively, due to PF and ke being
vital parameters according to the formula ZT = PF • T/(ke + kl). Combining with the
previously calculated kl, except for the p-type doped SeTe2 monolayers, the enhancement
of thermoelectric performance induced by the strain is attributed to the simultaneous
increase of the PF and decrease of the kl, which has also been found in other reports [13,61].
Although p-type PF decrease compared to the unstrained SeTe2 monolayers, the thermal
conductivity decreases and it dominates, resulting in an enhancement of ZT. An interesting
observation in our calculations shows that, for p-type Se2Te and n-type SeTe2, the value of
ZT does not increase monotonously with strain, which is a result of the complicated change
of PF, ke, and kl.

4. Conclusions

We evaluated the influence of biaxial-tensile strain on the stability, electronic properties,
lattice thermal conductivity, and thermoelectric performance of α-phase Se2Te and SeTe2
monolayers by first-principle calculations combined with the semiclassical Boltzmann
theory. It is found that small tensile strain softens the phonon model and reduces the
phonon frequency, at the same time, the tensile strain strengthens the scatting rate and
weakens the group velocity, resulting in a reduction of the lattice thermal conductivity
kl. The tensile strain increases the bond length, which leads to a decrease in the bandgap.
Furthermore, simultaneously combined with the weakened kl, the tensile strain can also
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effectively modulate the electronic transport coefficients, such as electronic conductivity,
Seebeck coefficient, and electronic thermal conductivity, to greatly enhance the value of
ZT. Our calculations indicated tensile strain can effectively enhance the thermoelectric
performance of Se2Te and SeTe2 monolayers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano12010040/s1, Figure S1: The strain-dependent deformation potential constants El of
α-phase (a-f) Se2Te and (g-n) SeTe2 monolayer based on PBE + SOC band structures, respectively.
The red straight line is the linear fitting curve; Figure S2: The strain-dependent cumulative kl of (a)
Se2Te and (b) SeTe2 monolayer at 300 K as a function of frequency; Figure S3: The strain-dependent
electronic thermal conductivity ke of (a, b) Se2Te and (c, d) SeTe2 monolayer at 300 K as a function of
concentration for n-type and p-type doping, respectively.
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