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Abstract: Nanoparticle aggregation has been found to be crucial for the thermal properties of 

nanofluids and their performance as heating or cooling agents. Most relevant studies in the litera-

ture consider particles of uniform size with point contact only. A number of forces and mechanisms 

are expected to lead to deviation from this ideal description. In fact, size uniformity is difficult to 

achieve in practice; also, overlapping of particles within aggregates may occur. In the present study, 

the effects of polydispersity and sintering on the effective thermal conductivity of particle aggre-

gates are investigated. A simulation method has been developed that is capable of producing ag-

gregates made up of polydispersed particles with tailored morphological properties. Modelling of 

the sintering process is implemented in a fashion that is dictated by mass conservation and the de-

sired degree of overlapping. A noticeable decrease in the thermal conductivity is observed for ele-

vated polydispersity levels compared to that of aggregates of monodisperse particles with the same 

morphological properties. Sintered nanoaggregates offer wider conduction paths through the coa-

lescence of neighbouring particles. It was found that there exists a certain sintering degree of mon-

omers that offers the largest improvement in heat performance. 

Keywords: nanofluid; heat conduction; effective thermal conductivity; particle aggregates; polydis-

persity; sintering 

 

1. Introduction 

Numerous contemporary applications are based on the incorporation of nanoparti-

cles into convectional fluids [1,2]. The resulting nanofluids may have drastically increased 

thermal properties and reduced sedimentation. Nanofluids and nanoparticles are increas-

ingly used in a variety of fields. Heating and cooling systems using nanofluids show sig-

nificant improvement in energy consumption, while new medical techniques are devel-

oping using nanoparticles in bioliquids. [3,4]. A large number of recent publications study 

the potential use of nanofluids in multidisciplinary fields [5,6]. Although much effort has 

been placed on the correlation of the heat transfer properties of nanofluids with the un-

derlying phenomena, it appears that there is no widely accepted explanation of their be-

haviour or a reliable way to predict their heat conduction properties [7,8]. 

Many models have been developed to predict the effective conductivity of nanopar-

ticles. The effect of Brownian motion, interfacial resistance, the existence of nanolayers, 

and the aggregation mechanism have been discussed in detail in the literature [9–13]. A 

large increase in effective thermal conductivity has been detected experimentally when 

nanoparticles are organized in small aggregates [14,15]. The increased contact of the par-

ticles within the aggregate was found to facilitate heat transfer compared to fully dis-

persed particles. On the contrary, larger mass aggregates have a negative effect on the 

stability of the nanofluid and, therefore, on heat transport properties [16]. Lotfizadeh et 
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al. [11], Prasher et al. [17], Evans et al. [18], and Liao et al. [19], among others, developed 

models to predict the thermal conductivity of nanofluids based on the morphology of the 

aggregates. These works showed that the configuration of the nanoparticles and the mor-

phological parameters of the aggregates can alter the effective conductivity of the nanoflu-

ids noticeably. A typical assumption made in several studies is that the nanoparticles are 

of the same size and the neighbouring monomers are mainly at single point contact. 
In real conditions, samples always come with a certain distribution in particle size 

[20–22], which is held responsible for altering the thermal properties of nanofluids [21]. It 

has been noticed that polydispersity may occur during dispersion of the nanoparticles in 

the base fluid [23,24]. Chon et al. [21] used commercial, uniform nanoparticles for the 

preparation of nanofluids. They measured the size distribution after dispersion and found 

a significant deviation. In fact, it is technically challenging to synthesize and disperse a 

large quantity of highly monodispersed nanoparticles [25]. Zhiting et al. [26] studied the 

effect of polydispersity, among other parameters, on the heat transfer coefficient of nano-

composites with molecular dynamics simulations. They concluded that polydispersity 

negatively affects the effective conductivity. However, the nature of the used method does 

not allow the simulation of large systems, such as that of aggregated nanoparticles. 

Strong electrostatic forces between particles, collision of particles during the for-

mation of the aggregates, and high-temperature environments are some of the factors that 

contribute to a certain degree of overlapping between particles [27,28]. Two methods have 

been widely used for the preparation of nanofluids. The one-step nanoparticle production 

and blending method produces nanofluids with increased stability and offers elevated 

thermal conductivity, but has a relatively high production cost and is not yet suitable for 

large-scale production [29]. The two-step method is one that proceeds in two sequential 

steps, namely, the step of separate production of nanoparticles followed by suspension in 

a base fluid [29]. Commercial nanoparticles are usually found in powder form. The pro-

duction of nanoparticles commences with the creation of a nanoparticle suspension from 

their precursors. This suspension is dried using various methods and, eventually, a pow-

dered form of nanoparticles is obtained [23,30]. Thermal decomposition of organic pre-

cursors is a well-established process for the fabrication of solid nanoparticles [23]. It is 

temperature dependent and has been reported to result in sintered and/or polydispersed 

particles [23,24,30]. Other methods include nanoparticle production in the gas phase 

[31,32]. During the creation of these nanoparticles, formation processes, including surface 

reactions, condensation, coagulation and sintering, are some of the key mechanisms that 

take place [32–35]. The kinetics of each process determines the final structure morphology, 

which can vary among spherical particles, agglomerates, or compact aggregates [34]. The 

resulting system usually includes partially coalesced particles with sintering necks [32,35]. 

Attempts to model the aforementioned process usually start with the formation of an 

aggregate using a stochastic method. Eggersdorfer et al. [36] modelled the sintering pro-

cess in aggregates, formed by Diffusion Limited Aggregation (DLA), Diffusion Limited 

Cluster–Cluster Aggregation (DLCCA), and Ballistic Aggregation (BA). The driving force 

for sintering was the minimization of free energy. They noted that, during sintering, pri-

mary particles approach each other. Sander et al. [31] presented an analytical description 

of the underlying phenomena during the production of nanoparticles, such as coagulation 

and sintering. The primary particles were modelled having a spherical shape and a poly-

dispersed size, with each particle described by its sintering level and radius. The final 

structure has been compared with experimental data and transmission electron micros-

copy (TEM) images. An overlapping algorithm, developed by Brasil et al. [27], has studied 

the effect of sintering on the morphological properties of the aggregates, such as the fractal 

dimension and the radius of gyration. Schmid et al. [33,37] have developed a model for 

aggregates subjected to coagulation and sintering. The sintered aggregates were pre-

sented as the result of successive overlapping of spherical, primary particles. 

The previous discussion underlines two major open issues in the study of the thermal 

conductivity of aggregated nanoparticles. Even though the effect of aggregation has been 
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extensively studied, there is a dearth of research dealing with the effect of polydispersity 

of the nanoparticles within the aggregate. Moreover, sintering and the concomitant partial 

coalescence are most likely to occur in nanoparticle systems, yet the study of their effects 

on heat conduction remains a challenging, open field. These configurations complicate the 

determination of heat transfer properties and, therefore, reliable simulations of transport 

phenomena are required. 

The present work examines the effects of polydispersity and sintering of particles on 

the effective thermal conductivity of nanofluids that contain particle aggregates. To this 

end, the method developed by the authors [38] for reconstructing particle aggregates is 

extended to include particle overlapping due to sintering as well as non-uniform particle 

size as a realistic outcome of nanofluid preparation. Among the merits of this method is 

the algorithmically rapid reconstruction of agglomerated systems with predetermined 

properties, namely, the fractal dimension and the average number of particles in the ag-

gregates. As a case study, the particle size here follows the normal distribution and the 

standard deviation is expressed as a fraction of the mean size. Moreover, a technique has 

been developed to simulate sintered aggregates. The sintering process is expected to 

change the particle position and size while, naturally, preserving the mass of the working 

sample. An overlap parameter and the morphology of the primary aggregate determine 

the final morphology. The effective thermal conductivity is calculated through the tem-

perature distribution obtained from the solution of the heat transfer equation. The Mesh-

less Local Petrov–Galerkin (MLPG) method [39–41] is used here as it was shown to pro-

vide stable and fast solutions to particulate systems even with point contact. The Discreti-

sation-Corrected Particle Strength Exchange (DC PSE) method [42,43] is used to approach 

the field function and its derivatives, while the meshless nature of the method allows local 

increase of the domain discretisation at the interface between the base fluid and solid par-

ticles. 

The effect of the overlap parameter and the polydispersity level of particle aggregates 

on the thermal conductivity is studied by changing the number of particles in the aggre-

gate, the fractal dimension of the aggregates, and the volume fraction of the particles. The 

effective conductivity of the polydispersed nanoaggregates, as predicted by the present 

method, is compared to the effective conductivity of the corresponding systems, as these 

result from the Diffusion Limited Aggregation (DLA) method. Moreover, the effective 

conductivity of aggregates consisting of polydispersed particles is compared with that of 

aggregates of monodispersed particles, keeping all other morphological parameters con-

stant. Notable deviations between monodispersed and polydispersed cases are observed 

and discussed. In addition, the effect of sintering is examined by varying the overlap pa-

rameter. The results are compared with predictions of analytic expressions from the liter-

ature. 

2. Modelling Polydispersed and Sintered Aggregates 

Modelling of fractal aggregates is the first stage in the process of correlating numeri-

cally their physical properties with their morphological parameters. In reality, aggrega-

tion is a very complex process, being sensitive to parameters such as the temperature, the 

physical properties of the particles and the solvent, the polydispersity extent, the primary 

particle shapes, etc. [11,12]. A well-established approach to generate fractal structures nu-

merically is the usage of various stochastic methods, such as Diffusion Limited Aggrega-

tion (DLA), Diffusion Limited Cluster–Cluster Aggregation (DLCCA), and Reaction Lim-

ited Aggregation (RLA) [43,44]. The validity of these methods has been verified through 

comparison of the resulting structures with experimental data [45,46]. Different physical 

processes are engaged in different aggregation models. A very common description of 

such clustering relies on the fractal dimension, ��, using the relation between the number 

of particles in the aggregate, �, and basic cluster-size characteristics [45,46]: 

� = ��(��/��)��, (1)
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where �� is the mean radius of the primary particles, �� is the structure factor, and �� 

is the radius of gyration of the aggregate [12,32,47]: 

�� = �
∑ ��(�� − ��)��

�

∑ ���
, (2)

where �� is the position vector of the centre of mass of particle �, �� is its mass, and �� 

is the position vector of the centre of mass of the aggregate. 

In order to study the effect of polydispersity on thermal conductivity, the work de-

veloped in [38] has been extended to include polydispersed particles. This technique of-

fered fast convergence of the algorithm for the representation of agglomerated systems 

with predetermined properties. For the sake of completeness, the major steps of the algo-

rithm are mentioned below. The primary input of the algorithm consists of the volume 

fraction of the particles, the fractal dimension or a range of values around it, and the av-

erage number of particles per aggregate or a range of values around it. A random deposi-

tion of a particle initiates the process. A new particle stochastically appears on the surface 

of the particle, and the process is repeated, with the restriction of no overlapping between 

any pair of particles. During the process, certain restrictions are imposed as described in 

[38], aiming at the convergence of the fractal dimension to the target value or range of 

values. It has been shown that the desired fractal dimension can be achieved with only a 

few particles. The process ends when the aggregate acquires a predefined number of par-

ticles. Then, another particle appears at a random place in the computational domain, and 

the aforementioned process is repeated for the formation of a second cluster. The whole 

algorithm is repeated as many times as needed to satisfy the desired number of aggregates 

in the working domain. Further analytical descriptions of the method are presented in 

[38]. 

In the present study, all simulations take place in a cubic box of length �. All spatial 

parameters and variables are normalized with this quantity. Thus, the particle radius is 

related with the volume fraction (��), the number of particles in the aggregate (�), and the 

number of aggregates (��), as follows: 

�� = �
3��

4� ∑ ��
��
�

�

 

, (3)

For monodispersed particles, the definition of ��  is straightforward. For polydis-

persed particles, in the present extended approach, this value is set as the mean radius of 

the particles, ��. The exact radius of each particle is randomly sampled from a prescribed 

normal distribution. The deviation of the particle size distribution is expressed as a frac-

tion of the particle radius. The probability density function (�) for the particle radius is 

shown in Figure 1 for two different standard deviations. In order to avoid negative values, 

a threshold was imposed at zero radius. For symmetry reasons, another threshold is set at 

the value ��,��� = 2��. The maximum deviation of the particle radius, in this study, is � =

0.5��. For higher polydispersity levels a lognormal distribution can be used instead, in 

order to avoid a large number of negative values and adhere to more realistic particle size 

distributions. 

The resulting system may have a volume fraction different from the desired one. This 

is an important issue in polydispersed particle systems since large sizes may be sampled 

as the tail additions to a cluster. Depending on whether the desired volume fraction is 

smaller or greater than expected, particles will be added or removed. To remove a particle, 

an aggregate is randomly selected and the last-added particle is removed. To add a parti-

cle, an aggregate is randomly selected and a new particle with a size that is sampled from 

the prescribed distribution is added at a random location on the surface of a randomly 

selected particle of the aggregate, with restrictions in order to satisfy the fractal dimension 

and the non-overlapping condition, as described in [38] for uniformly sized particles. The 
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process is repeated until the predetermined volume fraction is achieved. With this meth-

odology, critical quantities such as the volume fraction, the mean radius of the particles, 

and the fractal dimension remain within their prescribed bounds while a small deviation 

is maintained in the number of particles per aggregate. 

The structure factor, ��, is strongly dependent on the polydispersity levels and the 

degree of overlapping of the particles [48,49]. Eggersdorfer et al. [49] and Tomchuk et al. 

[48] studied the effect of polydispersity on the fractal dimension and the structure factor, 

considering a wide range in the number of particles in each aggregate, the prescribed de-

viation of the particle size, and the aggregation model that is used. They noted a reduction 

in the structure factor for increased polydispersity for aggregates formed by the DLCCA 

algorithm and the Ballistic Aggregation model. Independently of the agglomeration 

mechanism, in the limiting case of infinitely polydispersed particles, the structure factor 

tends to unity [49]. For monodispersed particles with fractal dimension ranging between 

1.7 and 2.5, the structure factor can be considered constant, ��  = 1.5 [38,50]. In the pre-

sent case, for polydispersed particles, the structure factor changes linearly with the devi-

ation of the particle radius, taking values between 1.2 and 1.5 [49]. 

 

Figure 1. The probability density function, p, of the particle radius distribution for different standard 

deviation values (red � = 0.2��, blue � = 0.5��) and a representative visualization of the resulting 

aggregates. 

During sintering, particles are expected to increase their radius and come closer to 

each other [37]. Typical simulations of coagulation and sintering of nanoaggregates in-

clude an overlapping step, where neighbouring particles penetrate each other, and a 

growth step, during which particle size increases to maintain mass and volume. This pro-

cess captures the redistribution of mass in the free surface of the aggregate and offers a 

realistic representation of the final morphology [33]. Assuming aggregates consisting of 

monodispersed particles and following this methodology, an overlapping coefficient is 

defined as [27]: 
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� = 1 −
�

2��

 

, (4)

where � is the final distance of the centres of the neighbour particles, and �� is the final 

radius of the particles. The initial radius of the particles can be calculated from Equation 

(3). 

At initial stages of the sintering algorithm, aggregates are forced to collapse to their 

centre of mass by the penetration coefficient, ��, while the sizes of the particles remain 

constant. The penetration coefficient relates the final distance of the neighbouring parti-

cles to the initial radius (�� = 1 −
�

���

 
). Obviously, this process causes a mass loss. In a 

second step, the particle sizes are increased, in order to reproduce the volume fraction at 

its prescribed value. The growth coefficient relates the initial and the final particle radius 

to the final distance of the neighbouring particles (�� = (
�����

����
)�/2). Combining these def-

initions, the final radius of the particles can be related to the initial radius, the overlapping 

coefficient, and the penetration coefficient, as follows: 

�� =
��

1 − �
(1 − ��), (5)

The overlapping coefficient, δ, is the sum of the penetration (��) and the growth (��) 

coefficients: � = �� + ��. If � = 1, the aggregates are totally sintered (i.e., every aggre-

gate merged into a single particle), whereas � = 0 indicates that particles are in point 

contact. The permissible values for the penetration (��) and growth (��) coefficients range 

from zero to �. 

The generation of sintered aggregates initiate with the determination of the volume 

fraction, the number of particles in the aggregate, the fractal dimension, and the overlap-

ping coefficient. After the formation of each aggregate, a series of trial simulation scenar-

ios are used to evaluate the values of �� and ��. Evidently, each combination results in 

a different volume fraction (��,�). In order to determine the appropriate combination, for 

each aggregate the value of the penetration coefficient varies from zero to �. For each �� 

value, the final radius (Equation (5)) is calculated. Finally, the volume fraction of the re-

sulting system is compared with the initial volume fraction (��), (� = 100 ∙ ���,� − ���/��,�) 

and its dependence on ��, as shown in Figure 2. The �� value with the smallest accepta-

ble error is selected. Following the aforementioned technique, mass conservation is se-

cured for each aggregate of the system, for the entire range of the overlapping coefficient. 

In Figure 2, the percentage error in volume fraction (�) is represented as a function of the 

penetration coefficient (��), for different values of the overlapping coefficient and the mor-

phological characteristics of the initial aggregate. It is shown that a unique combination 

of �� and �� results in a system with the same volume fraction. This methodology, in 

addition to achieving the desired overlapping coefficient and volume fraction, has the ad-

vantage of being straightforward and fast during calculations. Needless to say, in real 

conditions the final structure during sintering may be different from that of the overlap-

ping spheres, due to the appearance of neck effects and redistribution of mass that will 

eventually differentiate the structure from the one that is simulated here. 
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Figure 2. The percentage error in volume fraction (�) varying with the penetration coefficient for 

different values of the fractal dimension, the number of particles in the aggregate, and the overlap-

ping coefficient. A representative visualization of each aggregate structure is also shown. 

3. Effective Conductivity Calculation  

The reconstructed aggregates that are obtained following the algorithm of the previ-

ous section are used as input to heat transport modelling. A constant temperature differ-

ence is imposed along the vertical axis of the nanofluid, whereas the rest of the boundaries 

are considered periodic. For the numerical solution of the heat transport equation, the 

Meshless Local Petrov–Galerkin (MLPG) method is used [41]. It has been shown to offer 

concrete advantages to more conventional methods in particulate systems with several 

contact areas, as is the case here. Differential equations are integrated into local subdo-

mains, a fact that facilitates the increase of discretisation in regions of the geometries 

where steep gradients are developed. In the nanofluid case, the effective conductivity 

changes drastically at the interface of nanoparticles and the base fluid. The shape of the 

subdomains alters the performance of the method, with cubic sectors having been proved 

to increase the stability of the method [40]. The DC PSE approach is chosen as the trial 

function, while a step function is used as test function for the integration [42,43]. A set of 

cubic grids digitizes the domain and the integrals are calculated with the Gauss quadra-

ture method [43]. In each ��  subdomain, the dimensionless weak form of the energy 

equation is given by the relation [43]: 

����
− 1� � �∇����(���)

 

���

+ � ∇����(���)
 

���

= 0, (6)

where � is a spatial step function defined as unit in the particle phase and zero else-

where, and ���
=

��

��
 is the ratio of the conductivity of the particles to that of the base 

fluid. The solution of the heat transfer equation determines the temperature throughout 

the computational domain. Then, the calculation of the dimensionless effective conduc-

tivity is straightforward from ���� = ∫ �
��

��
��

 

�
, where the surface � is vertical to the heat 

flow. A detailed description of the approach, the respective variables and integrals, the 
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mesh construction, and the conductivity calculation can be found in a previous work by 

the authors [43]. 

This method is capable of calculating the effective conductivity of large particle sys-

tems. The aggregates are considered stationary and the heat conduction equation is solved 

within the computational domain. A typical simulation contains about 500–1000 particles 

organized into aggregates. Modelling of aggregates in heat transfer processes is per-

formed with in-house meshless CFD methods implemented in Matlab kernels, as de-

scribed in [38]. The computational time for the reconstruction of the aggregates is also 

provided in [38], along with comparison with other aggregation models. The effective 

conductivity calculations used herein have been shown in [43] to reduce the computa-

tional cost, compared with other numerical models and commercial software. A typical 

run for 1000 particles requires ~5 mil. nodes and ~1.5 ks on an Intel(R) Xeon(R) Silver 

4116 CPU at 2.10 GHz using 12 cores. 

Moreover, the present method can be extended to include calculations of the effective 

conductivity of different nanoparticle shapes. If the equation of the external surface of the 

particles is simple, the application is straightforward; otherwise the aggregation algo-

rithm should be modified rather drastically, especially for non-convex surfaces. 

The corresponding predictions of analytical models for the effective thermal conduc-

tivity are presented next. A well-known model for the conductivity of dispersed particles 

is Maxwell’s effective medium theory. Maxwell developed an expression for the effective 

conductivity, ����, of a suspension of solid spheres in liquid [51]: 

���� =
�� + 2�� + 2��� − �����

�� + 2�� − 2��� − �����

��, (7)

where �� is the conductivity of the base fluid, �� is the volume fraction of the particles, 

and �� is the conductivity of the particles. According to this equation, the process is ap-

parently not sensitive to the size or the arrangement of the dispersed phase. However, this 

relation is not symmetric. By replacing ��  with ��  and ��  with (1 − ��), the effective 

conductivity calculation changes drastically [11]: 

���� =
�� + 2�� + 2��� − ���(1 − ��)

�� + 2�� − 2��� − ���(1 − ��)
��, (8)

Equation (7) accurately predicts well-dispersed particles at low volume fraction, 

while Equation (8) has been used to describe the conductivity of aggregate structures. In 

this perspective, the particles are considered as a solid network, with the base fluid en-

closed in some regions. In any case, Equations (7) and (8) estimate the lower and upper 

bounds of the conductivity of an inhomogeneous medium, respectively [52,53]. 

The majority of the attempts to develop a model for the conductivity of colloidal clus-

ters include a two-step approximation. The clusters are considered as spheres, with an 

effective conductivity (��) and an effective volume fraction (��). For the calculation of ��, 

many relations from the effective medium theory have been applied [11,52–54]. The size 

of these effective particles is usually set equal to the radius of gyration of the aggregates 

[11,55]. In this case, the effective volume fraction (��), can be expressed as: 

 �� =
��

�
∑ ���

���
�

 
, (9)

where �� is the number of aggregates in the solution and ���
 is the (dimensionless) ra-

dius of gyration of each aggregate. The volume fraction of the solid phase inside the ag-

gregates is �� = ��/�� [17]. In this work, �� is calculated from the upper limit (Equation 

(8)) by swapping �� with ��, while the Maxwell relation is used (Equation (7)) in a second 

step, by replacing �� with �� and �� with ��. 
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4. Results and Discussion 

4.1. Comparison with Other Aggregation Models 

Figure 3 shows the comparison between the effective conductivity of aggregates con-

taining polydispersed particles, as extracted with the use of the method developed here, 

and the results of the DLA method. The volume fraction of particles is �� = 0.1 and the 

standard deviation of the particle size is � = 0.5��, where �� is the mean radius of the 

particles. The aggregates consist of � = 42 particles and the thermal conductivity of the 

particles is considered ���
=

��

��
 larger than that that of the base fluid by a factor of 100. 

The simulation points are the averages of 10 realizations with the same morphological 

characteristics. In an earlier work by the authors, it was indicated that the mechanism of 

aggregation does not affect the effective conductivity for monodispersed particles. The 

same conclusion is drawn here for the case of polydispersed particles. However, the mor-

phological characteristics of the aggregates appear to be significant for the effective ther-

mal conductivity. Similar to the behaviour of aggregates of monodispersed particles, the 

thermal conductivity decreases with an increase in the fractal dimension. 

 

Figure 3. Effective thermal conductivity as a function of the fractal dimension of aggregates consist-

ing of polydispersed particles by the present method (open, blue symbols) and by simulations from 

the DLA method (filled, red symbols). 

4.2. Dependence of Conductivity on the Fractal Dimension, the Number of Particles in the Ag-

gregate, and the Polydispersity of the Particles 

In an earlier work by the authors [38], the effect of aggregation on the thermal con-

ductivity of monodispersed particles was studied by varying the fractal dimension and 

the number of particles in the aggregate. A considerable increase in the thermal conduc-

tivity has been shown, even for aggregates consisting of a small number of particles. How-

ever, in the present work, a different behaviour is noticed upon the introduction of poly-

dispersity in the particle size. The results are presented next. 

Figure 4 shows the dimensionless effective thermal conductivity of a nanofluid as a 

function of the fractal dimension, for two volume fractions, namely �� = 0.03 (Figures 4a 
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and 4b) and for �� = 0.1 (Figure 4c). Two different values of the number of particles per 

aggregate are also investigated, namely � = 42 (Figures 4a and 4c) and � = 9 (Figures 

4b and 4c). To enable a comparison, the mean radius of the particles for the polydispersed 

cases was set equal to the ones in corresponding cases of monodispersed particles. The 

standard deviation of the particle size varies from � = 0.1�� to � = 0.5�� in Figures 4a 

and 4b, whereas in Figure 4c it is kept at � = 0.5��. Figure 4 also shows the thermal con-

ductivity predictions of two analytical models, namely, the two-step Maxwell (Equations 

(7) and (8)) and the single-step Maxwell model (Equation (7)). Every simulation point is 

the average of 10 realizations with the same parameters. The conductivity ratio of the na-

noparticles and the base fluid is chosen to be 130 (���
= 130), which is a representative 

value for several practical nanofluids, such as water–Fe, engine oil–Al2O3, and water–

CuO. 

 

Figure 4. Effective thermal conductivity as a function of fractal dimension for: (a) volume frac-

tion �� = 0.03 and number of particles per aggregate � = 42; (b) �� = 0.03, � = 9; (c) �� = 0.1, 
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� = 9 (solid lines, solid symbols), � = 42 (dashed lines, open symbols). Black lines: monodis-

persed cases. Blue lines: two-step Maxwell model. Green line: Maxwell model. Symbols: polydis-

persed cases. 

The effective conductivity decreased as the fractal dimension increased in all cases 

studied here. The level of reduction was affected by the polydispersity degree, the volume 

fraction, and the number of particles per aggregate. For cohesive aggregates, correspond-

ing to relatively high fractal dimension (�� = 2.5), polydispersity did not affect the effec-

tive conductivity, whereas for smaller values of the fractal dimension and high polydis-

persity level, a notable variation was observed. More specifically, the thermal conductiv-

ity decreased with the increase of the deviation of the particle radius compared with mon-

odisperse particle cases. However, a small deviation (� = 0.1�� , � = 0.2��) affected the 

thermal conductivity only slightly (Figures 4a and 4b). A 10% reduction was observed for 

polydispersity degree � = 0.5�� and volume fraction �� = 0.1 (Figure 4c), whereas the 

reduction was only about 5% for volume fraction �� = 0.03 (Figures 4a and 4b). 

The previous results are in contrast to the increase of the projected area of an aggre-

gate as the polydispersity level is increased [32]. Particle size distribution affects heat 

transfer in two distinct ways. Large particles accelerate heat transfer, while small particles 

hinder it. According to the present results, the smaller particles act as regulators of heat 

transport; therefore, the effective conductivity is reduced. Experimental works have ob-

served that polydispersity of the nanoparticles has a significant impact on the thermal 

properties of the nanofluid [56]. Specifically, the largest enhancement has been found for 

highly monodisperse particles [57]. 

The single-step Maxwell relation (Equation (7)) remains insensitive to the fractal di-

mension. However, the two-step Maxwell model, although affected by the fractal dimen-

sion and the number of particles in the aggregate, cannot predict the effective conductivity 

of such systems. It is worth noting that aggregation increased the effective conductivity 

of the nanofluid significantly in all cases studied. For highly polydispersed particles, when 

organized into aggregates consisting of, say, � = 9 particles per aggregate, a 10% volume 

fraction (shown in Figure 4c) resulted in a 70% increase of the thermal conductivity. The 

higher the particles per aggregate, the higher the conductivity increase. 

4.3. Effect of Sintering 

Figures 5a and 5b portray the dependence of the thermal conductivity on the over-

lapping coefficient (δ) for nanoparticles that are organised into aggregates containing � =

9 and � = 50 particles, with volume fraction �� = 0.03 (Figure 5a) and �� = 0.1 (Figure 

5b). The overlapping coefficient ranges from � = 0, which indicates particles at single-

point contact, to � = 1, which corresponds to degeneration of the aggregate to a single 

particle. The corresponding thermal conductivity predictions of analytical models are also 

presented. 
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Figure 5. Effective thermal conductivity as a function of overlapping coefficient: (a) volume frac-

tion �� = 0.03; (b) volume fraction �� = 0.1. Solid, black circles: N = 50, �� = 2.1. Open, red circles: 

(a) N = 9, �� = 2.1; (b) N = 50, �� = 2.5. Blue lines: two-step Maxwell model. Green lines: Maxwell 

model. 

Upon the introduction of sintering, the effective conductivity is found to increase 

with the sintering level, up to a maximum value. Further sintering beyond that point has 

a negative effect on conduction until the value of Maxwell’s model is obtained, for � = 1. 

The value of the overlapping coefficient that offers the highest conductivity increase 

changes with the volume fraction and the number of particles per aggregate. A 15% max-

imum increase is shown for �� = 0.1, � = 42, and � = 0.25 (Figure 5b). On the other 

hand, the conductivity calculated by the two-step Maxwell model decreases monoton-

ically upon increase of the overlapping coefficient, due to the monotonic decrease of the 

radius of gyration (��). 

The results showed that controlled aggregation and sintering can offer significantly 

improved thermal properties to nanofluids. From a physical point of view, higher values 

of the overlapping coefficient create an increased number of conduction pathways, which 

are also wider and longer, thus facilitating conduction along the macroscopic direction of 

heat transport. At the same time, the size of the aggregates decreases. For low sintering 

levels, the former factor prevails, whereas for high values of the overlapping coefficient, 

the aggregate tends to degenerate to an isolated body, thus reducing the thermal conduc-

tivity drastically. 

5. Conclusions 

The effect of particle size polydispersity and the sintering level on the thermal con-

ductivity of aggregated nanoparticles was studied in the present paper. It was shown that 

both parameters examined here have the potential to change the heat performance of 

nanofluids drastically. 

A method for reconstructing aggregates with the desired polydispersity degree was 

developed, satisfying simultaneously the requirements for certain morphological charac-

teristics of the aggregate, namely, the fractal dimension and the number of particles in the 

aggregate. Particle sintering in aggregates was simulated for monodispersed cases and 

encoded as an overlapping mechanism in two steps: a penetration step and a growth step. 

In order to ensure mass conservation, the progression of each step was controlled through 

the minimisation of the error in the volume fraction of the sintered aggregate compared 
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with the volume fraction of the initial aggregate. A meshless method with local refinement 

was used for the solution of the heat transfer equation and was found to be stable for the 

complex systems that were studied here. This is of key importance in the present problem 

as it allows using relatively large working domains that contain overlapping particles or 

particles at point contact with others and being able to extract statistically meaningful 

conclusions. 

The effective thermal conductivity was calculated for aggregates that resulted from 

the present method of aggregation of polydispersed particles, then compared with the 

thermal conductivity of aggregates that were constructed with the Diffusion Limited Ag-

gregation (DLA) method. The dependence of the effective thermal conductivity on the 

fractal dimension was found to be in good agreement with that in DLA method aggre-

gates, which indicates that the proposed method produces aggregates that are thermally 

equivalent to those resulting from methods that describe the physical process of particle 

aggregation. Consequently, one can employ the present method for the investigation of 

the behaviour of nanofluids in heat transport problems, taking advantage of the increased 

simplicity of the aggregation algorithm and its rapid convergence to the final configura-

tion. 

The variation of the effective thermal conductivity was investigated over a wide 

range of fractal dimension values, number of particles per aggregate, and standard devi-

ation of the particle size. Compared to fully dispersed particles, aggregation was shown 

to increase the thermal conductivity in all cases studied here. Small radius deviation does 

not substantially change the thermal conductance compared to monodispersed cases; 

however, a further increase of polydispersity leads to a clear reduction of the effective 

conductivity. On the contrary, strong polydispersity leads to an increase in the projected 

area, which implies an increase of heat transfer. A possible explanation for our result 

could be the existence of small particles within the aggregate that hinder heat transfer. 

This result is qualitatively confirmed by experimental measurements [56,57] according to 

which nanofluids consisting of particles with low polydispersity levels have higher heat 

performance compared to particles with high polydispersity. 

The two-step Maxwell model predicts a monotonic decrease of the effective conduc-

tivity with increasing fractal dimension; however, large deviations from the numerical 

results were found for most of the cases examined here. 

The effect of sintering of the aggregates was investigated and quantified as a function 

of the overlapping coefficient. Sintered aggregates have a lower effective size than the 

original aggregates, so a reduction in the effective conductivity should be expected. At the 

same time, sintering increases the heat conduction by forming larger heat pathways. This 

interplay yields a maximum in the thermal conductivity as a function of the degree of 

coalescence. The precise value of the overlapping coefficient that provides the highest 

conductivity increase depends on the morphological properties and the volume fraction 

of the initial aggregates. The present study indicates that the conditions of the production 

and dispersion of nanoparticles have a major impact on the thermal properties of the 

nanofluids. This is a possible explanation for the large deviations that have been observed 

between experimental works. Nanofluids with monodispersed particles, which are orga-

nized into aggregates with small overlapping, offer the highest heat transfer coefficient 

over the range of parameter values that were examined here. The results and conclusions 

of this work are also relevant to nanocomposite materials that contain polydispersed par-

ticle inclusions, which are organized in aggregates either at simple contact or in sintered 

form. 
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