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Abstract: Molybdenum disulfide (MoS2) was grown on a laser-processed periodic-hole sapphire
substrate through chemical vapor deposition. The main purpose was to investigate the mechanism
of MoS2 growth in substrate with a periodic structure. By controlling the amount and position
of the precursor, adjusting the growth temperature and time, and setting the flow rate of argon
gas, MoS2 grew in the region of the periodic holes. A series of various growth layer analyses of
MoS2 were then confirmed by Raman spectroscopy, photoluminescence spectroscopy, and atomic
force microscopy. Finally, the growth mechanism was studied by transmission electron microscopy
(TEM). The experimental results show that in the appropriate environment, MoS2 can be successfully
grown on substrate with periodic holes, and the number of growth layers can be determined through
measurements. By observing the growth mechanism, composition analysis, and selected area electron
diffraction diagram by TEM, we comprehensively understand the growth phenomenon. The results
of this research can serve as a reference for the large-scale periodic growth of MoS2. The production
of periodic structures by laser drilling is advantageous, as it is relatively simpler than other methods.

Keywords: chemical vapor deposition; periodic growth of MoS2; growth mechanism of MoS2;
Molybdenum disulfide (MoS2)

1. Introduction

One of the most important two-dimensional (2D) transition metal chalcogenides that
is gaining increased attention is MoS2 [1–7]. Materials with nanoscale electronic and opto-
electronic components, such as field-effect transistors, prospective memory components,
light-emitting diodes, and sensors, have been manufactured by exploiting the excellent spin–
valley coupling and flexural and optoelectronic properties of MoS2 [8–20]. Two-dimensional
MoS2 is low cost and does not require complex preparation [21]. To date, MoS2-based semi-
conductor heterostructures, such as CdS/MoS2, MoO3/MoS2, and SnO2/MoS2, featuring
good photocatalytic or photoelectrochemical properties, have been successfully synthe-
sized owing to the efficient charge separation obtained by coupling two semiconductor
structures with matched energy levels [22–25]. Nevertheless, the mass production of such
devices demands a method of synthesizing large-scale, layer-controlled, high-quality MoS2.
Most studies on MoS2 films with excellent results have been obtained using a top-down
approach, such as mechanical exfoliation [26,27]. Other studies are moving from character-
izing 2D thin films to manufacturing low-cost devices, mass producing logic-integrated
circuits, and growing 2D materials on foreign substrates. They aim to replace the existing
exfoliation and liquid exfoliation methods for producing randomly distributed flakes and
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providing limited control of the number of MoS2 film layers. Chemical vapor deposition
(CVD) is the usual vapor-phase growth method used to create semiconductor thin films
and heterojunctions [28]. CVD is gaining increased attention owing to its success in the
growth of large-area, high-quality, and uniform nanofilms [29–33]. In the present work,
MoS2 was grown on a laser-processed periodic-hole sapphire substrate through the CVD
method. We aimed to analyze the growth mechanism of MoS2 with a regular structure by
controlling the amount and location of the precursor, modifying the growth temperature
and time, and setting the flow rate of argon gas (Ar) to induce MoS2 growth around the
periodic holes.

2. Materials and Methods
2.1. Preparation of Laser Drilling for Substrates Containing Periodic Structures

The most direct way to prepare many periodic patterned microstructures is to pre-
pare traces on the substrate surface and to use laser processing to drill holes with about
10 µm diameter and 300 nm depth. Laser drilling damages the substrate structure and
causes unevenness around the hole, which has a certain degree of influence on the MoS2
growth mechanism.

2.2. Growth of MoS2 on Sapphire Substrate by CVD

The substrate used to grow MoS2 was sapphire with silicon dioxide (SiO2) on the
surface (see Supplementary Materials Section 1 for obtaining the MoS2 layers). Periodic
holes were made by laser processing, and then CVD was performed. The precursors used
were sulfur powder (S) with a purity of 99.98% and molybdenum oxide powder (MoO3)
with a purity of 99.95%. High-purity chemical powders were used to remove impurities
remaining in the experimental cavity and affecting the CVD. It was also possible to grow
single crystals with residual impurities. The chemical solvent used to clean the remaining
chemical substances after each experiment was aqua regia. The concentrations of nitric acid
and hydrochloric acid (HCl) used to prepare aqua regia were 37 vol.% and 68–69 vol.%,
respectively. The quartz tube and ceramic crucible were cleaned inside the tubular thermal
furnace with this solution (see Supplementary Materials Section 2.6 for tube furnaces). The
quartz tube was regularly replaced according to the change in residual sulfur powder on
the tube wall. The purpose was to reduce the impact of experimental environmental factors.
The substrates, organic solvents, gases, and chemicals used are detailed in Table 1.

Table 1. List of substrates, organic solvents, gases, and chemicals used for MoS2.

S powder Weiss Enterprise

MoO3 powder Weiss Enterprise

Nitric acid CHONEYE

Hydrochloric acid FLUKA

Sapphire substrate Vertex Co., Ltd.

Before the start of the experiment, the cleanliness of the substrate was confirmed
(Supplementary Materials Section 2). First, 1 g of sulfur and 0.003 g of MoO3 were prepared
and placed in appropriate positions in the inner tube of the quartz tube. The substrate
was set inverted on molybdenum trioxide (MoO3). The inert gas used during growth was
Ar. Initially, 500 sccm of Ar was let in for 10 min to clean the internal cavity. More water
and oxygen were removed in the quartz tube, after which, the Ar flow was reduced to
200 sccm. The heating rate was set to 20 ◦C/min. The maximum temperature was set to
700 ◦C, and the heating time was set to 35 min. After reaching the maximum temperature,
the same was maintained for 50 min. Finally, once the temperature dropped to <400 ◦C, it
was further dropped to room temperature by opening the lid, and the MoS2 structure was
obtained. The experimental process is shown in Figure 1.
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Figure 1. Flow chart of MoS2 growth by CVD.

Considering that the vaporization point of MoO3 is above 650 ◦C and the vaporization
point of S is above 200 ◦C, MoO3 in the gas phase underwent two chemical reactions in
high-temperature environments to produce the intermediate molybdenum oxide (MoO3−x).
This intermediate molybdenum oxide diffused to the substrate and reacted with vaporized
sulfur to form MoS2 film. The distance between the two crucibles containing the precursor
was 46 cm. Single-layer and multilayer MoS2 can be effectively prepared by CVD, as shown
in the following equations:

MoO3(s) + H2(g)→MoO2 + H2O(g)

MoO2(s) + 2S(g)→MoS2(s) + O2(g)

2.3. Growth Mechanism of MoS2

The properties of MoS2 are useful for semiconductors and optoelectronic materials
with single or few layers. CVD is the most commonly used method for MoS2 growth.
Given that the location of CVD growth of single-layer MoS2 is relatively random, under-
standing its growth mechanism can substantially benefit research on MoS2 growth. TEM
helps elucidate the atomic structure and the chemical composition information of particle
evolution during catalysis [34–40]. The material properties of MoS2 are preferably a single
layer or very few layers. The analysis of the number of layers depended on the Raman
spectra, atomic force microscopy (AFM) images, and photoluminescence (PL) spectra (see
Supplementary Materials Section 2.1 for micro-Raman spectroscopy; see Supplementary
Materials Section 2.2 for micro-Raman micro-PL spectrometer). Raman measurements were
made using a laser with a wavelength of 532 nm as the excitation light source. TEM can
also be used to measure the number of observation layers of the substrate cross-section (see
Supplementary Materials Section 2.7 for transmission electron microscope). The multilayer
structure in the cross-section geometry was studied by TEM using lamella specimens
produced by focused ion beam (FIB) milling. The phase state of the multilayer volume
was assessed by selected area electron diffraction (SAED) pattern analyses and fast Fourier
transform (FFT) patterns generated from the corresponding regions of the HRTEM images
(see Supplementary Materials Section 3 for TEM analysis).
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3. Results
3.1. CVD Growth of Periodic MoS2

The CVD method is used to grow MoS2, and a substrate with periodic holes is prepared
by laser drilling in a high-temperature furnace tube to grow MoS2.

3.1.1. Image Analysis under Optical Microscopy (OM)

Many methods are well established to identify the number of MOS2 layers, but in
this study, an optical microscope was used (Supplementary Materials Section 2.3, optical
microscope) [41–46]. OM reveals the growth pattern of MoS2. Figure 2 shows the OM and
SEM images of MoS2 grown on a sapphire substrate.
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Figure 2. (a) OM image, (b) SEM image, and (c) partial enlarged view of (b) showing the periodic
growth of MoS2 on sapphire substrate.

Figure 3a is an image of the substrate after actual growth. The red arrow indicates
the direction of Ar flow during CVD. The growth distributions of different MoS2 shapes
are shown as the marked locations b, c, d, and e. Figure 3b is the OM image at position b
in Figure 3a, where the black holes are the result of the original laser processing, and the
blue points are the areas where MoS2 grows. Figure 3c is the OM image at position c in
Figure 3a, where MoS2 grows regularly in the hole area, with a bright blue ring pattern on
the edge of the hole. This finding shows the existence of a multilayer MoS2. The light blue
irregular shape distribution on the periphery of the hole is represented by the existence
of single-layer MoS2. Figure 3d is the OM image at position d in Figure 3a, where we can
see that a single layer of MoS2 grows along the hole periphery. The periodic growth is
not as good as that at the c position, but the single-layer MoS2 covers a large area with no
high-level MoS2. Figure 3e is the OM image at position e in Figure 3a, where we can see
that the single layer of MoS2 grows in a more broken manner on the substrate and covers
a larger area, but no MoS2 exists around the hole. These results show that according to
the Ar flow direction, MoS2 grows in the order of large to small coverage area and from a
broken and to a more regular growth around the hole until it no longer exists. Thus, we
infer that the MoS2 growth is cyclical.
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Figure 3. (a) Image of sapphire substrate after MoS2 growth. (b) OM image at position b in (a). (c) OM
image at position c in (a). (d) OM image at position d in (a), and (e) is the OM image at position e in (a).

3.1.2. Raman Spectrum Analysis Results

Raman mapping, which is the best method for analyzing the number of layers, is
used to analyze the image [47–50]. The results reveal that MoS2 has two peaks at 380
and 400 cm−1, respectively. When the difference (∆k) between the two peaks is less than
20 cm−1, it is a single-layer MoS2 structure. The peak is attributed to the in-plane (E12g)
and out-of-plane (A1g) oscillation modes of MoS2.

Figure 4a shows an OM image of MoS2 periodic growth. The black, blue, green, and
red boxes indicate the areas where multilayer and one-, two-, and three-layer MoS2 growth
are measured, respectively. Figure 4b shows the Raman measurement diagram of each
area marked in Figure 5a. The black part demonstrates that the Raman shift is between
384.7 and 408.8 cm−1, and the value of the peak difference (∆k) is 24.1 cm−1. This finding
indicates more than four layers, which is unsuitable for semiconductor components and
optoelectronic components. The blue part shows that the peak difference between the
Raman shift of 386.2 and 405.3 cm−1 is 19.1 cm−1, which represents a single layer. In the
green part, we find that the peak difference between the Raman shift of 385.7 and 406.8 cm−1

is 21.1 cm−1, defined as a two-layer growth of MoS2. In the red part, we find that the peak
difference between the Raman shift of 385.2 and 407.3 cm−1 is 22.1 cm−1, defined as three
layers of MoS2. The Raman measurements prove that the periodicity of our growth has one-
to three-layer and multilayer characteristics. These findings prove that MoS2, which grows
periodically in the hole, has different distributions from single to multiple layers and, thus,
has multiple potential applications. The areas of few-layered MoS2 are sufficiently large.
Thus, it is highly applicable in semiconductor device manufacturing.

3.1.3. PL Spectrum Analysis Results

Figure 5a shows the result of the PL analysis of the MOS2 sample. Obvious lumines-
cence peaks exist at about 625 and 667 nm, indicating that MoS2 is in a single layer and a
few layers, respectively. Each layer corresponds with the valence band spin–orbit coupling
splitting of MoS2 direct exciton transition luminescence (B exciton) and direct energy gap
recombination luminescence (A exciton). The converted energy is about 1.98 and 1.86 eV,
respectively. We infer that this structure is single-layer MoS2. Figure 5b shows the OM
image of the selected PL mapping range. The greenish color is due to the light source of
the instrument. Figure 5c shows the PL mapping diagram of the selected PL mapping
range OM image with a wavelength of 625 nm in Figure 5b. The blue part is the sapphire
substrate, and the yellow to red is the distribution from single layer to multilayer. The blue
part is the sapphire substrate, and the yellow-orange to red is the distribution from single
layer to multilayer. The dashed parts A and F correspond with the grid points of the X-axis
position of the different color curves in Figure 5d. The color line segments A–F in the upper
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right corner represent the number of grids selected in the X-axis direction of the mapping
grid number 37 × 37 in Figure 5d. The positions of the line segments with higher strength
are A, B, and C. A higher number of layers of growing MoS2 corresponds with decreased
strength, as shown in positions D, E, and F. From the results of the PL spectrum analysis,
we infer from the mapping image presented by the excitation light peaks at 625 and 667 nm
that the periodic growth of MoS2 has good uniformity in the distribution of monolayer
to multilayer.
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3.1.4. Selected Area Electron Diffraction

From the composition analysis, we can infer the mechanism of the periodic growth of
MoS2. We use the additional function of the TEM system to convert the diffraction image of
the selected area into a lattice arrangement through FFT. The red line in Figure 6a indicates
the FIB sampling position (see Supplementary Materials Section 2.5 for dual-beam FIB).
Figure 6g is the SAED image of Figure 6d, with a miller index of [001]. In this direction,
we can see the multilayer-structured MoS2 lattice array. The distance between the layers
reveals the hexagonal crystal structure of MoS2 with lattice constants a = 0.318 nm and
c = 1.299 nm. Moreover, the crystal plane distance between the multilayer MoS2 layer is
6.2 A, which is close to the 2-H MoS2 crystal plane distance of about 6.5 A. Figure 6h
is the SAED image of Figure 6e. The miller index is [001], which shows that the lattice
arrangement is chaotic, but the faint lattice points in the four directions may be MoO3.
Figure 6i is the SAED image of Figure 6f. The miller index is still [001], and the selected
area is the junction of the mixed area and the sapphire substrate at the obvious double layer
of HRTEM. Given that the boundary may diffract from the lattice of the upper and lower
components of the boundary, it is more mixed. However, from the center point, the miller
index [001] can be found, and the distance between the crystal planes is calculated to be
about 6.4 Å.
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Figure 7e. The miller index is [001], and the main composition seen is MoO3. Figure 7i is 
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Figure 6. Panel (a) is the OM image after growing MoS2, (b) is the cross-sectional TEM image of the
selected area in (a), (c) is the enlarged TEM image of the red arrow in (b). Panels (d–f) represent the
HRTEM images of the red, orange, and yellow boxes in (c), respectively, and (g–i) represent the SAED
diagrams in (d–f), respectively.

Sample 2 is analyzed using the TEM image defined in Figure 7. The sampling position
does not pass through the hole. The growth of MoS2 on the surface is analyzed, as shown
in Figure 7. Figure 7a shows the TEM image of the Sample 2 sampling location A, and the
red box is the sampling location mark. Figure 7b shows the TEM image of the Sample 2
sampling location B, and the orange box is the sampling location mark. Figure 7c shows
the TEM image of the Sample 2 sampling location C, and the yellow box is the sampling
location mark. Figure 7d shows the HRTEM image of the red box in Figure 7a. The
multilayer growth of MoS2 is stacked layer by layer. Figure 7e shows the HRTEM image,
where the orange box in Figure 7b is a mixed area, and no MoS2 is observed. Figure 7f
is the yellow box in Figure 7c. In the HRTEM image, the mixed zone is shown in the
image. Figure 7g is the SAED diagram of Figure 7d, and the miller index is [001]. Here,
the lattice arrangement can be seen as multilayer MoS2. Figure 7h is the SAED diagram of
Figure 7e. The miller index is [001], and the main composition seen is MoO3. Figure 7i is
the SAED diagram of Figure 7f, and the miller index is [001]. The image diffracted from the
single-layer MoS2 viewed from this miller index is a lattice point, which may be interpreted
as a single-layer MoS2 lattice. Based on the results of the SAED diagram analysis, we
can determine from the lattice array that the grown MoS2 material is consistent with the
compound calculated using the element ratio. We can interpret that 2-H MoS2 forms under
the growth mechanism.
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Figure 7. Panels (a–c) represent the TEM images of Sample 2 in sampling locations A, B, and C,
respectively; (d–f) represent the HRTEM images of the red, orange, and yellow boxes in (a–c),
respectively; and (g–i) represent the SAED diagram in (d–f), respectively.

4. Discussion

Figure 8 is a flow chart of the MoS2 growth process with periodic holes. Figure 8a
shows the surface undulation curve of the substrate with periodic holes on ungrown MoS2.
The blue line at the top of Figure 8b is the initial stage of growth. A single layer of MoS2
forms when S is dominant, and the purple arrow above represents the direction of Ar. The
light brown area in Figure 8c is the mixed region generated when MoO3 is dominated. The
composition contains Al2O3, MoO3, and MoS2. Figure 8d shows that when S becomes
dominant during the growth period, a single layer or multiple layers of MoS2 are deposited.
Although MoS2 grows and overlaps in a curved sheet shape, on the steeper edge of the
hole, the sheet-shaped MoS2 grows with the growth side facing upward. In Figure 8e, the
brown dashed line indicates the mixed area covered by MoO3 once again during the growth
period. Figure 8f is the schematic at the end of the growth. The line segment overlapping
on the top represents multiple layers. MoS2 particles overlap with one another in a flake
shape. The air flow is thicker after the hole in the direction than before the hole, as seen
from the MoS2 on the top. Finally, MoO3 is nearly depleted, and S eventually dominates
the final stage of CVD growth. This phenomenon is related to the experimental setting of
0.003 and 1 g of S.
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Figure 8. Schematic of the growth process of MoS2. The purple arrow in the figure is the direction
of argon ventilation, the blue line segment represents a single layer of MoS2, the light yellow area
represents the mixed zone dominated by MoO3, the dark yellow dot is amorphous Al2O3 mixed in
the reflection, and the blue line segment is superimposed to represent multilayer MoS2.

Figure 9 is a schematic of the growth process of MoS2, and Figure 9a is a schematic
before growth. The upper layer of the lower sapphire substrate is an amorphous state
damaged by laser processing. In Figure 9b, the blue arrow indicates the single layer of MoS2
grown on the substrate surface at the initial stage of growth. In Figure 9c, the blue arrow
indicates the coverage of MoO3 at the middle stage of growth, and the green arrow indicates
the Al2O3 surface layer at the same time, showing that it mixed at a high temperature to
form a mixture zone. The blue arrow in Figure 9d indicates the formation of multiple layers
of MoS2, indicating that S gas is greater than MoO3 gas during this growth period. Figure 9e
is the schematic of the growth end, and the blue arrow indicates that multiple layers of
MoS2 grow to be stacked in sheets. Although in this study, MoS2 is grown on a laser-
processed periodic-hole sapphire substrate through CVD, to integrate the developed MoS2
films into practical tools and nanostructures, various patterning and interfacing approaches
have been developed. Post-patterning approaches have been successful, indicating wide-
ranging applications in current microelectronic techniques, such as FIB milling, photo- and
electron-beam lithography, and combinations of metal sputtering processes with selective
etching after photolithographically defined masking [51–54].
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Figure 9. Schematic of the MoS2 growth process. The purple arrow in the figure is the direction of
argon ventilation, and the blue line segment represents a single layer of MoS2. The light yellow area
represents the mixed zone dominated by MoO3, the dark yellow dot is amorphous Al2O3 mixed in
the reflection, and the blue line segment is superimposed to represent multilayer MoS2.

5. Conclusions

We used a femtosecond laser to prepare a periodic array of holes with a diameter
of about 10 µm on a single-sided polished sapphire substrate. The substrate is grown by
CVD of MoS2, and the layer is successfully grown. This technique can be used for growth
multiple times, and the results reveal that the size, shape, and number of layers of MoS2
grown each time are different. The possible reason is that the experiment proceeds under
atmospheric pressure. Creating a system completely isolated from external interference
is impossible, and the influence of external environmental factors on the growth results
cannot be predicted. However, other possible causes can be minimized by cleaning the
experimental cavity, as well as ensuring minimal differences in parameters and the distance
between each substrate installation. The growth mechanism is observed and analyzed using
Raman, PL, and AFM analyses to confirm the distribution of the number of generated layers.
They are found to possess single- and few-layer positions with excellent photoelectric and
semiconductor properties. TEM is used to observe and analyze the cross-sectional image,
and the extended function of the TEM is adopted to analyze and convert the SAED image.
Subsequently, the growth mechanism is comprehensively analyzed. From the results, we
can infer that in a large area of the substrate, MoS2 growth increases and breaks with
the direction of Ar until it is concentrated and periodically attaches around the holes,
but not at the very end. For the same periodic hole in a small area, MoS2 growth occurs
by overlapping pieces, and the number of layers is distributed from the thickest ring
around the hole to the single layer at the corner of MoS2. After understanding this growth
mechanism, we can select the part of the substrate to be used and the number of layers of
MoS2 according to the requirements of the components to be manufactured.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12010135/s1, Figure S1. (a) An image of a sapphire substrate
with periodically growing MoS2. (b) Partially enlarged image of (a). (c) Enlarged OM image of the
red box in (b). Figure S2. (a) OM image of MoS2 periodic growth. (b) SEM image of the cross-section
of (a) marked by the red line, defined as Sample 1. (c) SEM image of the cross-section at Sample 2,
where the red line marks the sampling defined as Sample 2 in (a). Figure S3. (a) A cross-sectional SEM
image of Sample 1. (b) Schematic of the nomenclature of the section in (a). Figure S4. (a) Schematic
of the cross-section of Sample 1. (b) HRTEM image of the red arrow in (a). (c) HRTEM image of
the green arrow in (a). (d) HRTEM image of the blue arrow in (a). Figure S5. (a) Schematic of the
cross-section of Sample 1. (b) HRTEM image of the red arrow in (a). (c) HRTEM image of the green
arrow in (a). (d) HRTEM image of the blue arrow in (a). Figure S6. (a) Schematic of the cross-section
of Sample 1. (b) HRTEM image of the red arrow in (a). (c) HRTEM image of the green arrow in (a).
(d) HRTEM image of the blue arrow in (a). Figure S7. (a) Schematic of the cross-section of Sample 1.
(b) HRTEM image of the red arrow in (a). (c) HRTEM image of the green arrow in (a). (d) HRTEM
image of the blue arrow in (a). Figure S8. (a) Schematic of the cross-section of Sample 1. (b) HRTEM
image of the red arrow in (a). (c) HRTEM image of the blue arrow in (a). Figure S9. (a) TEM image of
the cross-section of the substrate without periodic MoS2 holes. (b) TEM image of the cross-section
of the substrate with MoS2 periodic holes. Figure S10. (a) HRTEM image of the cross-section of the
substrate with periodic holes in MoS2. The boxed area is where EDS analysis was performed. (b) EDS
analysis image and data of the red boxed area in (a). (c) EDS analysis graph and data of the orange
box in (a). (d) EDS analysis graph and data of the yellow box in (a). (e) EDS analysis diagram and
data of the green box in (a). (f) EDS analysis and data of the blue box in (a).
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