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Abstract: GaN-on-Si resonant-cavity light-emitting diodes (RCLEDs) have been successfully fab-
ricated through wafer bonding and Si substrate removal. By combining the chemical mechanical
polishing technique, we obtained a roughness of about 0.24 nm for a scan area of 5 µm × 5 µm.
The double-sided dielectric distributed Bragg reflectors could form a high-quality optical resonant
cavity, and the cavity modes exhibited a linewidth of 1 nm at the peak wavelength of around 405 nm,
corresponding to a quality factor of 405. High data transmission in free space with an opening in
the eye diagram was exhibited at 150 Mbps, which is limited by the detection system. These results
showed that GaN-based RCLEDs grown on Si are promising as a low-cost emitter for visible light
communications in future.

Keywords: GaN-on-Si; resonant-cavity light-emitting diode; chemical-mechanical polishing; visible
light communications

1. Introduction

GaN-based resonant-cavity light-emitting diodes (RCLEDs) with narrow spectral
width, stable peak wavelength, superior directionality, and high output-coupling effi-
ciency [1–4] have shown great potential applications in various fields, such as line-of-sight
visible light communications (VLCs), plastic optical fiber-based networks, optical scanners,
speckle-free illumination, printers, and displays [5–8].

Up to now, there have been no GaN-based RCLED products. The main bottleneck is
that most GaN-based RCLEDs are grown on sapphire substrates, resulting in several issues.
For GaN-based RCLEDs with hybrid distributed Bragg reflectors (DBRs), about 40 pairs
of GaN/AlGaN or GaN/InAlN DBRs are usually grown underneath the quantum wells
(QWs) [9–12], which may not only induce high tensile stress and even micro-cracks, but
also increase the dislocation density, seriously reducing the internal quantum efficiency [13].
For GaN-based RCLEDs with double-sided dielectric DBRs, the laser lift-off process is
usually used to remove the sapphire substrates [14,15], which often causes high stress
and even cracks, greatly affecting the device performance and yield. Compared with
sapphire substrates, Si substrates can be easily removed by wet chemical etching without
any damage. Si substrates also have unique advantages in wafer size and material cost,
as well as the use of depreciated automation processing lines [16]. Lastly, Si substrates
match with the conductive Si submount in the coefficient of thermal expansion, which can
greatly reduce the stress in the bonding process and hence improve the device performance
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and yield. Therefore, replacing the small-sized (≤6 inches) sapphire substrates with large-
diameter (up to 20 inches) cost-effective Si substrates is expected to greatly slash the device
fabrication cost, and increase the device performance and yield, ultimately realizing the
mass production of GaN-based RCLEDs.

For this paper, we fabricated GaN-based RCLEDs grown on Si substrate through
wafer bonding and Si substrate removal. In order to improve the quality of the optical
resonant cavity and reduce the optical loss, a chemical mechanical polishing (CMP) process
was developed to reduce the roughness of the N-face n-GaN surface for the n-side DBR
deposition. With these technologies, a high-quality optical resonant cavity could be formed
by double-sided DBRs. Afterwards, the optical and electrical performance of the as-
fabricated GaN-based RCLED was characterized.

2. Materials and Methods

The GaN-based RCLED material was epitaxially grown on Si(111) substrate by metal-
organic chemical vapor deposition. A 1-µm-thick Al-composition graded AlN/AlGaN
multilayer buffer was firstly grown to establish the compression strain to not only compen-
sate for the tensile stress due to the difference in thermal expansion coefficient, but also to
effectively filter out the threading dislocations induced by the lattice mismatch between
GaN and Si [17–19]. By using this technology, a crack-free high-quality GaN-on-Si template
was grown. Upon this template, the RCLED epitaxial structure was grown, including a
1.3-µm-thick n-type GaN contact layer, a 1.3-µm-thick n-type AlGaN layer, an 80-nm-thick
n-type GaN waveguide, three pairs of InGaN (2.5 nm)/GaN (10 nm) QWs, a 60-nm-thick
undoped GaN waveguide, a 20-nm-thick p-type AlGaN electron blocking layer, a 600-nm-
thick p-type AlGaN layer, and a 30-nm-thick p-type heavily doped GaN contact layer. The
RCLED device was processed in a vertical structure, and the p- and n-contact pads were
distributed at the two opposite sides, as shown in Figure 1.
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Figure 1. Schematic diagram of the GaN-based RCLED.

Figure 2 shows the detailed fabrication process flow of the GaN-based RCLEDs. The
process included the following: (1) dry etching of the p++-GaN layers to form a mesa with a
diameter of 20 µm and a depth of 30 nm by using Cl-based inductively coupled plasma (ICP)
etching; (2) depositing a 30-nm-thick SiO2 layer by using ICP chemical vapor deposition
as a current confinement layer to form the current aperture region; (3) evaporating a
30-nm-thick indium tin oxide (ITO) film to form good ohmic contact with the p++-GaN and
also work as the current spreading layer; (4) depositing a 12.5-pair TiO2/SiO2 multilayer
dielectric DBR on the ITO film; (5) bonding the as-fabricated GaN-on-Si RCLED wafer to
a conductive Si wafer with a AuSn solder; (6) utilizing wet chemical etching and ICP dry
etching to remove the Si(111) substrate and AlN/AlGaN multilayer buffer; (7) developing a
CMP technique to smooth the rough N-face n-GaN surface with the silica solution in order
to reduce the scattering loss of the optical cavity; (8) ICP etching to form the N-face n-type
GaN mesa; (9) using fluorine ion implantation to implement the insulation between the
RCLED devices; (10) depositing a 11.5-pair TiO2/SiO2 patterned multilayer dielectric DBR
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on the n-GaN surface, followed by the patterned Ti/Pt/Au metal stack with thicknesses of
50/50/100 nm as the n-type ohmic contact electrode.
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The surface roughness of these samples was characterized by atomic force microscopy
(Veeco, Plainview, NY, USA). The current–voltage characteristics of the RCLEDs were
measured using the Keithley 4200-SCS/F parameter analyzer. The electroluminescence
(EL) spectra and output power were collected by a spectrometer (FX 4000, Ideaoptics,
Shanghai, China) and a Si photodetector, respectively. The emission images of the RCLEDs
were obtained by optical microscope (Optiphot 200, Nikon, Tokyo, Japan).The scanning
electron microscopy (SEM) image was obtained by cold-field emission scanning electron
microscope (S-4800, HITACHI, Tokyo, Japan). The cross-sectional scanning transmission
electron microscopy (STEM) image was obtained by focused ion beam (FEI Scios, FEI,
Hillsboro, OR, USA) and field emission transmission electron microscope (FEI Talos F200X,
FEI, Hillsboro, OR, USA). The high-speed data transmission feasibility was examined
using an arbitrary waveform generator (Agilent 33522A, Agilent, Santa Clara, CA, USA)
to generate a pseudo-random binary sequence (PRBS) data stream, and the PRBS was
processed in a bias-tee circuit and fed to the RCLED. The light signals were converted
into electrical signals by a photodiode module (Hamamatsu C12702-11, Hamamatsu Inc.,
Hamamatsu, Japan), and the amplified electrical signals were displayed by a digital storage
oscilloscope (Agilent DSO9254A, Agilent, Santa Clara, CA, USA).

3. Results and Discussion

A rough surface will cause a large optical scattering loss, and hence ultimately affect
the quality of the resonant cavity. Therefore, it is necessary to obtain a flat morphology to
deposit dielectric DBRs. However, the Cl-based plasmas in the ICP etching often cause
an uneven etching, especially for high-Al-composition AlGaN materials, which increases
the surface roughness [20]. After removing the AlN/AlGaN multilayer buffer by ICP
etching, the surface roughness of the N-face n-GaN was about 3.56 nm for a scan area of
5 µm × 5 µm, as shown in Figure 3a. To smooth the surface morphology, a CMP technology
with silica solution was developed. The alkaline silica solution could preliminarily corrode
and soften the N-face n-GaN surface, and then the silica nanoparticles in the solution could
polish and smooth the N-face n-GaN surface [21]. Figure 3b shows the surface morphology
of N-face n-GaN after polishing 1200 nm with the silica solution for 30 min. The roughness
of a scan area of 5 µm × 5 µm was greatly reduced from 3.56 to 0.24 nm, which was
further evidenced by the cross-sectional STEM image of the as-fabricated device as shown
in Figure 3c. This surface smoothness was comparable to that of the as-grown Ga-face GaN,
and paved the way for the deposition of high-quality n-side dielectric DBRs [22]. As a
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result, the 11.5-pair TiO2/SiO2 n-DBRs showed a peak reflectivity of 99% at 405 nm with a
large stop-band of about 80 nm, as shown in Figure 3d, which is almost equal to that of the
12.5-pair p-DBRs (99.5%).
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Figure 4a presents the measured light–current–voltage (L–I–V) plots. The I-V curve
of the as-fabricated RCLED exhibited a turn-on voltage of approximately 3 V. Above the
turn-on voltage, the current density gradually increased with voltage. The inset of Figure 4a
presents the leakage current under a reverse bias. At −5 V, the reverse leakage current was
as low as 0.34 nA, which indicates that the fluoride ion implantation effectively insulated
the devices. The fluoride ion with a very strong electronegativity could not only trap free
electrons, but also reduce the carrier density by host-type defects at ultra-deep energy levels,
ultimately leading to the insulation of the devices [23]. Figure 4b shows the EL spectrum
of the as-fabricated RCLED at an injection current of 7 mA. Compared with conventional
LEDs, the FWHM of the EL spectrum was reduced from about 15.5 to 10.6 nm due to the
resonant cavity effect [24]. On the other hand, as shown in Figure 4b, the EL spectrum
of the RCLED was periodically modulated by the Fabry–Pérot (F–P) cavity formed by
the double-sided dielectric DBRs [25], and showed several narrow resonant peaks with
a spacing of about 4 nm. This was mainly due to the interference effect as light bounced
back and forth between the double-sided DBRs until the constructive conditions achieved
allowed the cavity modes to escape from the LEDs [26]. Based on the analysis method
described in [7], the inset of Figure 4b shows a dominant resonant peak at a wavelength of
about 405 nm with a FWHM of approximately 1 nm, corresponding to a quality factor of 405.
For the as-fabricated GaN-based RCLED, with a mode spacing of 4 nm, the cavity length of
the RCLED was calculated as 5.05 µm at the peak wavelength of λ0 = 405 nm [27,28]. This
value was larger than the total thickness of the GaN-based epilayers (4.2 µm) measured
by STEM, which was mainly because the effective resonant cavity was composed of not
only the remaining GaN-based epilayers but also the double-sided DBR mirrors. For
the as-fabricated GaN-based RCLED, part of the optical field would penetrate into the
double-sided dielectric DBRs, which contributed to the increased effective cavity length [26].
Figure 4c presents the peak wavelength of the device under various injection currents. For
the GaN-based emitter with similar epitaxial structure [29], the peak wavelength of the
EL spectrum was blue-shifted from 416.2 to 412.7 nm as the injection current density was
increased from 1.5 to 4.7 kA/cm2, which was mainly due to the screened quantum-confined
Stark effect. In contrast, for the as-fabricated GaN-based RCLED, the peak wavelength only
decreased from 405.2 to 404.7 nm while the injection current density increased from 1.45 to
4.36 kA/cm2. Thanks to the short cavity formed by the double-sided DBRs, the GaN-based
RCLED showed a much more stable peak wavelength.
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Figure 5a,b shows the top-view SEM and the light-up images of the as-fabricated
GaN-based RCLED, respectively. It can be clearly seen that the circular shape of the 20-µm-
diameter device was well preserved, and uniform luminescence was achieved by using a
30-nm-thick ITO current spreading layer. In Figure 5b, the peripheral blue luminescence
was mainly due to the light scattering by the peripheral of the n-side DBRs.
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well, showing a good transmission feasibility. It should be clearly noted that the transmis-
sion rate of 150 Mbps was the maximum value of the detection system, and we believe 
that the actual maximum transmission rate could be even higher. 

Figure 5. (a) Top-view SEM and (b) light-up images of the as-fabricated GaN-based RCLED with
a diameter of 20 µm. In (b), the injection current was 2 mA, and the red and blue circles show the
sizes of the current aperture and the n-side DBR, respectively. The inset shows the optical microscopy
image of the RCLED.

The high-speed data transmission feasibility of the as-fabricated GaN-based RCLED
was examined by a free space visible light communication (VLC) measurement system.
Figure 6a shows the open eye diagram of the as-fabricated GaN-based RCLED measured at
150 Mbps, and Figure 6b shows the waveform diagram of optical signal and electrical signal.
It can be clearly seen that the optical signal matches with the electrical signal very well,
showing a good transmission feasibility. It should be clearly noted that the transmission
rate of 150 Mbps was the maximum value of the detection system, and we believe that the
actual maximum transmission rate could be even higher.
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4. Conclusions

In summary, we have grown GaN-based RCLED materials on Si substrate and then
fabricated the GaN-on-Si RCLEDs through wafer bonding and Si substrate removal. By
adopting a CMP technique, the surface roughness of the N-face n-GaN was greatly reduced
to 0.24 nm for a scan area of 5 µm × 5 µm, which laid down a great foundation for the
deposition of dielectric DBRs. The flat surface together with the double-sided dielectric
DBRs formed a high-quality optical resonator, which narrowed and periodically modulated
the EL spectra, while stabilizing the peak wavelength. In addition, the as-fabricated GaN-
based RCLED experimentally showed a PRBS transmission rate of 150 Mbps, which was
limited by the detecting system and could be even higher. These experimental results
show that GaN-based RCLEDs grown on Si are promising as a low-cost emitter for POF
communication, solid-state lighting, and VLC applications in future.
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