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Abstract: Replacing the petroleum-based materials in the food industry is one of the main objectives
of the scientists and decision makers worldwide. Biodegradable packaging will help diminish the
environmental impact of human activity. Improving such biodegradable packaging materials by
adding antimicrobial activity will not only extend the shelf life of foodstuff, but will also eliminate
some health hazards associated with food borne diseases, and by diminishing the food spoilage
will decrease the food waste. The objective of this research was to obtain innovative antibacterial
films based on a biodegradable polymer, namely alginate. Films were characterized by environ-
mental scanning electron microscopy (ESEM), Fourier-transform infrared spectroscopy (FTIR) and
microscopy, complex thermal analysis (TG-DSC-FTIR), UV-Vis and fluorescence spectroscopy. Water
vapor permeability and swelling behavior were also determined. As antimicrobial agents, we used
silver spherical nanoparticles (Ag NPs) and lemongrass essential oil (LGO), which were found to act
in a synergic way. The obtained films exhibited strong antibacterial activity against tested strains,
two Gram-positive (Bacillus cereus and Staphylococcus aureus) and two Gram-negative (Escherichia coli
and Salmonella Typhi). Best results were obtained against Bacillus cereus. The tests indicate that the
antimicrobial films can be used as packaging, preserving the color, surface texture, and softness of
cheese for 14 days. At the same time, the color of the films changed (darkened) as a function of
temperature and light presence, a feature that can be used to monitor the storage conditions for
sensitive food.

Keywords: biodegradable; alginate film; antibacterial packaging; lemongrass essential oil; silver
nanoparticles; edible packaging; cheese; time-temperature indicator (TTI)

1. Introduction

The majority of food packaging materials used at present are based on petrochemical
products or cellulose, due to historical factors such as low cost or mechanical and barrier
properties [1,2]. The pressure of environmental concerns will phase out the petroleum-
based materials, which will increase the need for innovative, biodegradable polymeric
packaging materials such as chitosan [3], alginate [4], cellulose [5], starch [6], pullulan [7],
polylactic acid [8], etc. The need to decrease the food waste, and the desire to increase the
food safety and to prolong the shelf life creates pressure on the food packaging industry
to develop and adopt new antimicrobial materials [9–11]. Besides chitosan, none of these
biopolymers present antimicrobial activity [12]. Therefore, various antimicrobial agents
have to be mixed with the polymeric matrix to obtain the desired antibacterial or antifungal
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activities [13]. Such innovative antimicrobial biodegradable materials can diminish the
microorganisms’ proliferation and thus will reduce the food spoilage, increase the shelf
life, and help provide a better food quality [14–18].

Sodium alginate (A) belongs to the polysaccharides class, being the salt of alginic
acid [19]. Usually, the source of alginate is the marine algae brown seaweed, which
makes it acceptable for people with religious dietary restrictions [20]. Alginate is one
of the most versatile polymers, being used in various applications from drug delivery
systems [21], to environmental depollution [22], wound healing, and tissue engineering [23].
Alginate is considered GRAS (generally recognized as safe) by the US Food and Drug
Administration, therefore is a natural choice for packaging materials [24,25]. It is water-
soluble and can be easy functionalized [26]. Mechanical properties are enhanced by adding
plasticizers, glycerol being the most common choice due to its superior compatibility with
the polymeric matrix [27,28]. Antibacterial activity can be bestowed to the alginate by
adding various nanoparticles such as ZnO [29], Ag [30], CuO [31], natural extracts [32–34],
or other substances of pharmaceutical interest [35–37].

Silver nanoparticles (Ag NPs) are one of the most potent antimicrobial agents [38–40].
The literature reports at least 650 microorganisms, including viruses, along with bacteria
and fungi, affected by Ag NPs [41–43]. The shape and size of Ag NPs are the main factors
that influence the antimicrobial activity, the smaller, triangular nanoparticles being more
potent [39].

Essential oils and other natural plant extracts present a huge potential as antioxidants,
antimicrobials, and even as insect repellants [44–47]. Lemongrass essential oil (LGO) is
considered a bio-pesticide in the US [48]. The major constituents are citronellal, geraniol,
and citronellol [49]. As a hydrophobic extract, the LGO addition to the alginate film
will also improve the water vapor permeability (WVP) performance of the polymeric
matrix [50–52].

For the LGO, there is no reported toxicity at concentrations used, but concerns are
expressed about the impact on beneficial gut microbiota [53,54]. The introduction of
nanomaterials such as Ag NPs into food packaging presents some potential drawbacks,
beside advantages such as antimicrobial activity or improved UV-barrier properties. It
is mandatory to study the toxicity related to the use of metallic nanoparticles. One way
to minimize the impact is to decrease the concentration level of Ag NPs in the packaging
films. By combining Ag NPs antimicrobial activity with that of LGO, we demonstrate that
very low concentrations of metallic nanoparticles can be used, while still maintaining a
strong antibacterial activity.

The objective of this research was to obtain a biodegradable, antibacterial material
that can be used as packaging for soft cheese (usually with a shelf life of 4 days at 4–8 ◦C).
The literature presents a couple of alginate-base films, with Ag NPs, used as packaging
for meat [55,56] or vegetables [57], but none for cheese. In addition, to the best of our
knowledge, here we report for the first time the obtaining of the alginate–Ag NPs–LGO
system. We used two antimicrobials, Ag NPs and LGO, in order to enhance the final an-
tibacterial activity of films, while introducing smaller amounts of antibacterial agents. The
films were characterized from physico-chemical point of view, and the antibacterial activity
was determined against two Gram-positive (Bacillus cereus and Staphylococcus aureus) and
two Gram-negative (Escherichia coli and Salmonella Typhi) bacterial strains. The performed
antibacterial test indicates that, while the film with the highest Ag NPs concentration ex-
hibited the best antibacterial activity, the rest of films, with lower concentrations of Ag NPs,
were still performing very well against tested bacterial strains. Therefore, combining the
antimicrobial agents can be a successful strategy to decrease the amount of used substances,
which limits their potential toxic activity against human organism.
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2. Materials and Methods
2.1. Materials

Silver nitrate, polyvinylpyrrolidone (PVP), and sodium citrate were obtained from
Merck. Sodium alginate (CAS 9005-38-3) was purchased from Fisher Scientific U.K. Ltd.
(Redox Lab Supplies, Bucharest, Romania). Phosphate-buffered saline (PBS), sodium
citrate, glycerol, nutrient broth, and agar were obtained from Sigma Aldrich (Redox Lab
Supplies, Bucharest, Romania). Lemongrass essential oil (LGO) was purchased from
Carl Roth (Amex-Lab, Bucharest, Romania). All the chemicals were used without any
further purification.

The soft telemea cheese (S.C. Fabrica de lapte Brasov S.A., Halchiu, BV, Romania) was
obtained from a local supermarket in Bucharest, Romania.

2.2. Synthesis of Silver Nanoparticles

AgNPs were synthetized as described in [58]. Briefly, 0.02 g AgNO3 was dissolved
in 100 mL water under vigorous stirring at 70 ◦C. Then, 20 mL solution of 0.35 g sodium
citrate was added dropwise as a reduction agent. After 30 min, a third solution (0.1 g PVP
in 5 mL) was added dropwise. The yellow solution containing AgNPs (100 ppm) was used
without further purifications.

2.3. Synthesis of Alginate/Ag/LGO Films

A certain amount of solution containing Ag NPs was mixed with 1 mL LGO and was
sonicated further for 15 min before being used to prepare AAg1–AAg4 films (Table 1).

Table 1. The alginate–Ag NPs–lemongrass essential oil (LGO) films composition.

Sample Code Alginate (g in 100 mL Water) Ag NPs (mL of 100 ppm Solution) Glycerol
(mL Solution) LGO (mL)

A 3.00 0 2 0
AAg1 3.00 5.0 2 1.0
AAg2 3.00 10.0 2 1.0
AAg3 3.00 25.0 2 1.0
AAg4 3.00 50.0 2 1.0

Alginate films were obtained by casting method. Shortly, 3 g alginate was added to a
beaker of 100 mL water and left to dissolve for 24 h under stirring. Afterwards, 2 mL of
glycerol was added to the alginate solution. A previously prepared emulsion of Ag NPs
and LGO was added to the alginate solution, under vigorous stirring.

Each solution was put in a Petri dish and was left to dry in an oven for 24 h at 40 ◦C. A
control film without Ag NPs and LGO was prepared in the same way. After drying, 200 mL
CaCl2 solution (2%) was added to each Petri dish, and the films were left submerged for
10 min. Finally, the films were removed from the Petri dish and were stored in zip lock
plastic bags at 20 ◦C and 60% relative humidity (RH) (Figure S1).

2.4. Characterization of Alginate Films

In order to investigate the films surface morphology and microstructure, scanning
electron micrographs were obtained using an environmental scanning electron microscope
VERSA 3D (ESEM, Thermo-Fisher, former FEI Company, Eindhoven, The Netherlands).

Bright Field and High Resolution a Transmission Electron Microscopy (BF-TEM,
HR-TEM) images coupled with Selected Area Electron Diffraction (SAED) pattern were
recorded using High-Resolution 80-200 TITAN THEMIS transmission microscope FEI
(Thermo Fisher Scientific, Waltham, MA, USA).

Fourier transform infrared spectra were recorded with a Nicolet iS50 FTIR spectrome-
ter (Thermo Fisher Scientific Inc., Waltham, MA, USA).
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FTIR 2D maps were recorded with a Nicolet iS50R FTIR microscope (Thermo Fisher
Scientific Inc., Waltham, MA, USA).

A Perkin Elmer (Waltham, MA, USA) LS55 spectrometer was used to measure the
photoluminescence spectrum (PL).

A JASCO V560 spectrophotometer (JASCO Inc., Easton, PA, USA) was used to measure
the UV–Vis spectra. The opacity values were calculated as A600/x = −logT600/x, where
A600 is the absorbance at 600 nm, T600 is the fractional transmittance at 600 nm and x is the
film thickness in mm. A higher opacity value indicates that the film is less transparent [59].

Thermal analysis, TG-DSC (thermogravimetry and differential scanning calorimetry),
was performed with a STA 449C F3 apparatus, from Netzsch (Selb, Germany). The evolved
gases were analyzed with a FTIR Tensor 27 from Bruker (Bruker Co., Ettlingen, Germany),
equipped with a thermostated gas cell.

For the determination of water vapor permeability (WVP), we used permeation cups
with a diameter of 30 mm, sealed with a sample film, as described in [60]. In each cup we
placed 1 g of dried CaCl2. The permeation cups were placed in a container at a temperature
of 25 ◦C and 100% relative humidity. Their weight was measured at fix intervals (8 h) for
four days.

The swelling capacity was determined as described in [61]. Shortly, square samples of
~3 × 3 cm were cut from the fresh films and were dried in a desiccator for 48 h. Once dried,
the samples were weighed (0.2 mg) (W0), then placed in 200 mL water or phosphate buffer
saline (PBS) to allow swelling. The samples were first weighed at 15 min intervals, then
each 30 min for three hours, and finally at 24 h intervals for the next days as the maximum
swelling capacities were attained. The Equation (1) formula for degree of swelling (D) was
used to calculate the swelling ratio:

D = (Wt −W0)/W0 (1)

The antibacterial activity was evaluated against two model Gram-positive (Bacillus cereus
ATCC 13061 and Staphylococcus aureus ATCC 25923) and two Gram-negative (Escherichia coli
ATCC 25922 and Salmonella enterica Typhi ATCC 14023) bacteria, which are relevant in food
bacterial contamination. The strains were maintained as glycerol stocks at −80 ◦C. All
experiments were designed and performed in triplicate.

To qualitatively screen the antibacterial effect of the obtained materials, we utilized an
adapted diffusion assay, respecting the general rules exposed in the CLSI 2020 and in our
recent study [62].

Cheese samples (~cubic shape with size of 2–3 cm) were packed in alginate and AAg1–
AAg4 films and placed in a refrigerator (4 ◦C ± 1 ◦C and 75% R.H.) for 14 days. Samples
were weighed again after 14 days for the mass loss test. Weight loss was monitored by
measuring the mass change of each sample, and was calculated as percentage lost from the
initial mass. The pH was measured initially and after 14 days.

The results were statistically evaluated using the analysis of variance (ANOVA) per-
formed with Microsoft Excel 2016 (Microsoft Corp., Redmond, WA, USA), having installed
the XLSTAT 2020.5.1 add-on. The Shapiro–Wilk test was used to check the normal distribu-
tion of the data; we assessed the homoscedasticity of the residuals by Levene’s test; and
the results were compared by Tukey’s (HSD) test so that the pairs of films that differed in
terms of statistical significance were revealed (p < 0.05).

More details about specific conditions for each analysis are presented in the
Supplementary Materials.

3. Results and Discussion

The samples were characterized by transmission electron microscopy (TEM) and
scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and
microscopy, UV-Vis and fluorescence spectroscopy, and thermal analysis TG-DSC. Water
vapor permeability (WVP) and swelling behavior were also determined.
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3.1. Transmision Electron Microscopy

The BF-TEM image presented in Figure 1 presents particles existing in the Ag NPs
100 ppm solution. They are round shaped, with a diameter of approximately 5 to 25 nm,
having a bimodal distribution. The Ag NPs are highly crystalline, with bigger ones
composed of 2–3 crystallites. Therefore, the large nanoparticles can be considered poly-
crystalline, while the smaller ones are monocrystalline. Similar distribution was reported
before, for both laboratory synthesized and commercially available [63,64]. Most proba-
bly during grain formation, before adding the capping agent, some crystallites become
agglomerate, thus larger nanoparticles grow along smaller ones.
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Figure 1. The TEM images for the obtained Ag NPs. Selected area electron diffraction (SAED) pattern in the inset.

The identified Miller indices in HR-TEM are the (111) corresponding to 2.36 Å distance.
From SAED pattern, the only phase identified is that of FCC (face-centered cubic) silver,
corresponding to the standard data JCPDS File No. 04-0783.

3.2. Environmental Scanning Electron Microscopy

According to the pressure–humidity–temperature diagram of the liquid–vapor phase
equilibrium for water, the expected pressure in the working chamber at a temperature
of 0.5 ◦C and humidity of ~8% is estimated at ~50 Pa [65]. Thus, the analysis chamber
was prepared by performing vacuum purge cycles, between pressures of 30–150 Pa, to
avoid contamination of samples with impurities from the atmosphere. In order to capture
the microstructure of the specimen, without the detrimental interference of high-vacuum
and high-voltage, the image acquisitions are made in low vacuum conditions (50 Pa), a
temperature of 0.5 ◦C, a relative humidity of ~8%, at a beam voltage of 2 kV, with a working
distance of about 8.3 mm. The surface of the films is presented in Figure 2.

The ESEM images show that with the increasing content of Ag from AAg1 to AAg4, the
surface of the alginate films does not change in either morphology nor pore size distribution.
The only noticeable difference resides in the fact that Ag aggregates are more disperse in
the specimens that contain a higher amount of nanoparticles, without significantly affecting
their size. This observation leads to the idea that during the nucleation and crystal growth
of silver nanoparticles, the PVP surfactant is limiting the crystal growth and stabilizing
the aggregate size. The alginate polymer in which the Ag NPs were dispersed does not
contribute towards further noteworthy agglomeration of nanoparticles due to sterically
stabilization of Ag NPs from the synthesis stage [66].



Nanomaterials 2021, 11, 2377 6 of 22

Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 21 
 

 

dispersed does not contribute towards further noteworthy agglomeration of nanoparticles 
due to sterically stabilization of Ag NPs from the synthesis stage [66]. 

  

  

  

  
Figure 2. The ESEM micrographs for AAg1 (a1,a2); AAg2 (b1,b2); AAg3 (c1,c2); and AAg4 (d1,d2) 
films. 

More insightful information was extracted from a film fracture, presented in Figure 
3. The interior of the polymeric film shows spherical micropores of variable sizes. Most 
probably, their formation is related to the presence of LGO microdroplets dispersion into 
the alginate matrix. Moreover, inside the polymer pores, Ag NPs agglomerates are found 
at the surface, suggesting that there is a positioning preference of the agglomerates at the 
pore-material interface, rather than a homogenous distribution of the latter throughout 
the material volume. 

Figure 2. The ESEM micrographs for AAg1 (a1,a2); AAg2 (b1,b2); AAg3 (c1,c2); and AAg4 (d1,d2) films.

More insightful information was extracted from a film fracture, presented in Figure 3.
The interior of the polymeric film shows spherical micropores of variable sizes. Most
probably, their formation is related to the presence of LGO microdroplets dispersion into
the alginate matrix. Moreover, inside the polymer pores, Ag NPs agglomerates are found
at the surface, suggesting that there is a positioning preference of the agglomerates at the
pore-material interface, rather than a homogenous distribution of the latter throughout the
material volume.
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The presence of such micropores will most probably have an impact on mechanical
and barrier properties of the films. Although the extent at which the overall mechanical
and barrier properties of the film are affected by the preferred positioning of Ag NPs
agglomerates on the pore-material interface is questionable, pores themselves act as points
of minimal resistance for the film.

3.3. FTIR Spectroscopy and Microscopy
3.3.1. FTIR Spectroscopy

The effects induced by the Ag NPs and LGO addition to the alginate matrix were
investigated by FTIR spectroscopy. The peaks corresponding to the main absorption peaks
and the associated vibration modes are presented in Table 2. The broad band from the
3270–3287 cm−1 corresponds to the presence of -O-H moiety from alginate and moisture
as well.

Table 2. Assignment of relevant IR absorption bands of alginate (A) and AAg1–AAg4 films.

Sample/Assignment A AAg1 AAg2 AAg3 AAg4

υasC-O-C 1031 1028 1027 1026 1027
υsCOO- 1416 1408 1407 1409 1410
υasCOO- 1596 1602 1600 1602 1604

C = O group of LGO [67] 1740 1738 1738 1739
υC-H (sat) 2921 2930 2925 2921 2921

υO-H 3278 3277 3270 3284 3287

The intense 2921–2930 cm−1 peaks are attributed to the Csp3-H symmetric vibrations
of the alginate, while small 3075 cm−1 peak belongs to Csp2-H symmetric vibration from
LGO components. The 1027–1031 cm−1 peaks were attributed to the glycosidic bond in
the polysaccharide chain. The observed small shifts could indicate interactions between
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alginate negative charged -COO- groups and uncoated zones of Ag NPs surface or the
interaction of Ag NPs with -C = O moiety of the pyrrolidone cycle from the PVP coating [68].

3.3.2. FTIR Microscopy

With the help of FTIR microscopy, we looked at spatial distribution of Ag NPs and
LGO into the alginate matrix. The maps corresponding to the 1740 cm−1 and 1030 cm−1

are presented for the AAg1–AAg4 films in Figure 4, together with the microscopic view of
the analyzed region.
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The FTIR maps at those two wavenumbers for AAg1 and AAg2 are quite similar,
indicating a uniform distribution of the components in the analyzed area. The increase in
Ag NPs quantity in AAg3 and AAg4 films generated some local accumulations, clusters, or
defects such as pores, which induce a less homogeneous structure for these two samples, at
a level of tens of µm, maximum. Nevertheless, even for these two samples, the FTIR maps
are not so different, therefore the samples can be considered as having a good homogeneity.
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3.4. UV-Vis and Fluorescence Spectroscopy
UV-Vis Spectroscopy

The UV-Vis spectroscopy is widely used for the Ag NPs characterization and synthesis
monitoring as it is sensible to the presence of nanoparticles and gives information about
their morphology and size uniformity. The absorption peak generated by the localized
surface plasmon resonance is the main characteristic of the UV-Vis spectrum for Ag NPs [69].
It can be observed at wavelengths starting from 400 nm up to 600 nm depending on Ag
NPs shape and size [70–72]. In addition, UV-Vis spectra can be used to monitor the stability
of the Ag NPs suspension.

Our Ag NPs solution was proven stable over 3 months’ storage, at room temperature,
under dark conditions, the spectrum being virtually unchanged, with the band exhibiting
the maximum absorption peak at 422 nm (Figure 5). This indicates that the Ag NPs are
well capped by the PVP and do not agglomerate [73]. The peak broadness indicates that,
although small, the size of nanoparticles varies, as seen also from TEM images, from 5 to
25 nm.
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The UV-Vis spectra for the alginate and AAg1–AAg4 films, presented in Figure 5,
indicates the existence of a darkening effect in correlation with the increase in Ag NPs
content. The AAg1 film has a marginally higher absorbance in UV region and is virtually
identical with alginate film in the visible domain. For the AAg2–AAg4, the increased
absorbance can be observed in the violet-blue region, which starts as a shoulder in the
AAg2 sample, and develops into a separate broad band with the peak at 402 nm for AAg4.
The presence of the 402 nm band can be assigned to the increasing concentration of Ag NPs
(ten times higher in AAg4 than in AAg1).

The UV absorbance is also increasing with the Ag NPs content. Both UV and Vis light
barriers are important features for food packaging, as a high absorbance will protect the
critical nutrients (vitamins, lipids, or proteins) from photo-oxidation reactions promoted
by high-energy photons. Different superscripts (a, b) in the last column are significantly
different (p < 0.05). Values are given as the mean ± SD from triplicate determination.

The incorporation of Ag NPs into the alginate film is increasing the opacity, but only
marginally (Table 3), from 0.48 ± 0.02 to a maximum of 0.67 ± 0.04, and therefore the
alginate films can be considered transparent [74].
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Table 3. Thickness and opacity for alginate (A) and alginate/Ag NPs/LGO (AAg1–AAg4) films.

Sample Alginate AAg1 AAg2 AAg3 AAg4

Thickness
(mm) 0.22 ± 0.01 0.21 ± 0.02 0.27 ± 0.02 0.30 ± 0.03 0.35 ± 0.02

Opacity 0.48 ± 0.02 a 0.51 ± 0.05 a 0.54 ± 0.04 a 0.55 ± 0.06 a 0.67 ± 0.04 b

Different superscript letters indicate statistically significant differences between films (p < 0.05).

The AAg1–AAg4 films can become less transparent over time, depending on the
storage conditions, e.g., temperature or light presence. As expected, a higher Ag NPs
content will promote a large absorbance change (Figure 6a). Temperature change (4 ◦C vs.
30 ◦C) will also increase the absorbance change, but the presence of light has the highest
impact on the film darkening (Figure 6b). The main reason for the changing of color is
the oxidation of Ag NPs [75]. As the reaction rate will increase with the temperature, the
samples stored at 30 ◦C will darken quicker than those stored at 4 ◦C. Similar reports
are found in the literature [76,77]. This indicates that such films can be used as a time-
temperature indicator (TTI) for storage conditions of food. Cumulative higher temperature
and light (which for shelf food translate into exposure time) lead to a change of transparency,
and therefore can indicate the freshness of packed food.
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The Ag NPs are well known for their fluorescent properties. The literature reports
different emission peaks in dependence on the excitation wavelength and Ag NPs mor-
phology [78]. Usually, it is reported that the surface plasmon extinction peak is around
400 nm, while the fluorescent emissions at higher wavelengths are attributed to ultra-small
Ag NPs (~5 nm) [79]. Here, we report Ag NPs that present the surface plasmon extinction
peak at 368 nm, with a second emission band at 446 nm (Figure 7a). Surface plasmon
related emission peaks under 400 nm have been reported in the previous literature, e.g.,
384 nm [80], 375 nm [81], or 330 nm [78]. The broad visible emission band from 446 nm
can be attributed to sp→ d radiative transitions due to Ag–Ag interactions. Similar shaped
spectra, with surface plasmon emission placed in UV region accompanied by a broad
visible emission peak in blue region are reported [78,82].



Nanomaterials 2021, 11, 2377 11 of 22

Nanomaterials 2021, 11, x FOR PEER REVIEW 11 of 21 
 

 

shaped spectra, with surface plasmon emission placed in UV region accompanied by a 
broad visible emission peak in blue region are reported [78,82]. 

The fluorescence spectra for the alginate and AAg1–AAg4 films presented in Figure 
7b, indicates the existence of Ag NPs–alginate interactions. The addition of a small quan-
tity of Ag NPs in AAg1 sample leads to an emission band centered on 400 nm, much 
weaker than those corresponding to the Ag NPs or alginate. The interactions between Ag 
NPs and alginate polymeric chains are probably responsible for blocking the surface plas-
mon emission, but also for quenching the alginate fluorescence. Increasing the Ag NPs 
content of the composite films is generating a stronger and broader visible emission band, 
while the peaks are red-shifted towards 459 nm, with a shoulder at 512 nm. 

  

(a) (b) 

Figure 7. The fluorescence spectra for Ag NPs (a) alginate and AAg1–AAg4 films (b). 

This can be attributed to the existence of local Ag NPs agglomerations (as seen in 
ESEM images), which promotes Ag–Ag interactions, either directly or mediated by moie-
ties of alginate. A similar effect of nanoparticles on alginate fluorescence was reported in 
[4]. 

3.5. Thermal Analysis TG/DSC–FTIR 
The thermal analysis of alginate and AAg1–AAg4 samples indicates that the compo-

site films have a lower thermal stability than the simple alginate one, the mass loss starting 
at low temperatures, i.e., under 100 °C (Figure 8). 

 
Figure 8. TG/DSC curves for alginate and AAg1–AAg4 films. 

Figure 7. The fluorescence spectra for Ag NPs (a) alginate and AAg1–AAg4 films (b).

The fluorescence spectra for the alginate and AAg1–AAg4 films presented in Figure 7b,
indicates the existence of Ag NPs–alginate interactions. The addition of a small quantity
of Ag NPs in AAg1 sample leads to an emission band centered on 400 nm, much weaker
than those corresponding to the Ag NPs or alginate. The interactions between Ag NPs
and alginate polymeric chains are probably responsible for blocking the surface plasmon
emission, but also for quenching the alginate fluorescence. Increasing the Ag NPs content
of the composite films is generating a stronger and broader visible emission band, while
the peaks are red-shifted towards 459 nm, with a shoulder at 512 nm.

This can be attributed to the existence of local Ag NPs agglomerations (as seen in
ESEM images), which promotes Ag–Ag interactions, either directly or mediated by moieties
of alginate. A similar effect of nanoparticles on alginate fluorescence was reported in [4].

3.5. Thermal Analysis TG/DSC–FTIR

The thermal analysis of alginate and AAg1–AAg4 samples indicates that the composite
films have a lower thermal stability than the simple alginate one, the mass loss starting at
low temperatures, i.e., under 100 ◦C (Figure 8).
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The alginate film starts losing mass at about 70 ◦C, most probably water, the process
being accompanied on DSC curve by a weak endothermic effect with minimum at 93.2 ◦C.
Up to 200 ◦C the sample is losing 12.14% of its initial mass.
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The samples AAg1–AAg4 present a larger mass loss up to 200 ◦C (22–25%), the corre-
sponding endothermic effect being more intense and shifted towards higher temperatures
(105–110 ◦C). This can be attributed to the elimination of various volatile compounds
belonging to LGO incorporated into the alginate films, which means that approximatively
10% of the sample mass is consisting of LGO. The hypothesis is sustained by the FTIR
analysis of evolved gases. Figure 9, FTIR 3D plot vs. T (◦C), reveals at low temperatures the
presence of absorption bands around 3000 cm−1 which are attributed to C-H vibration in
various hydrocarbons, which can be attributed to elimination of LGO volatile components
(Figure 9).
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The oxidation process of alginate matrix starts after 200 ◦C, when multiple exothermic
effects, with low intensity, can be observed on DSC curve (inset of Figure 8). The FTIR
profile for the absorption band from 2355 cm−1, corresponding to CO2 elimination from
sample (Figure 9), presents multiple peaks after 200 ◦C. Each peak corresponds to an
oxidation process, the most intense being attributed to the burning of residual carbonaceous
mass around 500 ◦C.

3.6. Water Vapor Permeability (WVP)

The barrier properties of alginate films are very important, as they must prevent the
loss of flavor, water, or other volatile substances from the packed food [83]. The water
vapor permeability (WVP) values best describe the moisture capacity to migrate between
environment and food, through the packaging film. Microbial spoilage can be related to
good moisture permeability. Therefore, it is important to determine the values for WVP
(Table 4).
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Table 4. Water vapor permeability for simple alginate and AAg1–AAg4 films.

Film Code WVP (10−10 g/Pa·m·s)

A 5.718 ± 0.011 a

AAg1 2.753 ± 0.042 b

AAg2 2.706 ± 0.035 b

AAg3 2.696 ± 0.024 b

AAg4 2.691 ± 0.054 b

Different superscript letters indicate statistically significant differences between films (p < 0.05).

The simple alginate film presented an average value for WVP when compared to
similar reports [30,83]. The higher value can be explained by the glycerol addition, which
generates hydrogen bonds with alginate and therefore increases the inter-chains distance,
allowing moisture to penetrate easier [84].

Smaller values for WVP are obtained for the AAg1–AAg4 films, but they are not
statistically different among them. This can indicate that the main cause for this decrease is
the presence of LGO rather than the addition of Ag NPs. The clear hydrophobic nature of
LGO generates micron and sub-micron drops inside the alginate films.

As thermal analysis data indicates, a large proportion of LGO is trapped inside the
polymeric matrix (~10% w/w).

As such, the water molecules pathway becomes longer and obstructed by hydrophobic
zones represented by LGO [85], which act as physical barriers [13,83] (Figure 10).
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3.7. Swelling Study

The swelling behavior was assessed in PBS (pH = 7.4) and in distilled water. An
increase in the swelling capacity with the increase in Ag NPs content can be observed in
both cases (Table 5).

As the Ag NPs amount increased, the AAg1–Aag4 films have a higher capacity of
water uptake. This increasing capacity can be related to the pores’ dimensions at the
microscopic level, and with the space between alginate chains at molecular level. The Ag
NPs are stabilized with PVP. The presence of more silver nanoparticles and PVP can induce
a wider gap between alginate chains, and therefore a higher water retention capacity. The
pores can act as traps for water molecules. A higher pore density therefore can trap a larger
water quantity (e.g., for AAg4 film).
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Table 5. Swelling capacity (as mass increase in %) for the alginate and AAg1–AAg4 films.

Sample
Water
PBS

0.25 h 0.5 h 1 h 2 h 3 h 24 h

A
42.54% 61.22% 86.14% 101.83% 104.69% 102.76%
81.99% 182.05% 374.36% 595.63% 659.28% 741.75%

AAg1 61.12% 84.92% 103.67% 108.38% 105.53% 100.43%
113.94% 276.24% 451.33% 556.02% 596.58% 564.89%

AAg2 82.97% 95.59% 108.65% 114.35% 119.33% 121.06%
167.42% 347.91% 489.04% 589.77% 623.66% 704.31%

AAg3 110.13% 123.90% 130.79% 126.41% 128.91% 128.53%
231.88% 454.65% 580.89% 647.52% 691.74% 675.24%

AAg4 136.47% 151.97% 162.99% 167.90% 169.77% 168.81%
295.55% 549.36% 696.36% 719.23% 857.85% 799.79%

In water, the films were swelling close to maximum capacity in 2 h, with more than
half of the water quantity being retained in first 15 min. The swelling increased slowly up
to 3 h, further measurements indicating a weight stabilization (the measurement at 24 h is
presented in Table 5, but the films were stable for 30 days).

The swelling study in PBS produced larger values for water retention capacity (up to
six times higher than those obtained for water study).

This can be explained by the slow replacement of Ca2+ ions with Na+ ones, which
leads to the destruction of the Ca-alginate “egg-box” structure. This leads to an increasing
gap between polymeric chains and, as such, larger amounts of water can be retained. As
the replacement of Ca2+ ions proceeds, the resulting sodium alginate will start to dissolve,
therefore the sample will start to lose mass. At 72 h the films are completely disintegrated
in PBS solution.

3.8. Antibacterial Activity

The results obtained for the AAg1–AAg4 films against four relevant food born in-
fections bacterial strains, two Gram-positive (S. aureus; B. cereus) and two Gram-negative
(S. Typhi; E. coli), indicate a strong antibacterial activity (Figure 11).
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This suggests a large spectrum of antibacterial activity for the alginate films that
contains both Ag NPs and LGO. As the simple alginate film exhibited no antibacterial
activity, it is safe to assume that the strong antibacterial effect of AAg1–AAg4 films comes
from Ag NPs combined with substances from the essential oil.

The results obtained suggest that growth inhibition is dependent of Ag NPs concen-
tration in case of E. coli and S. aureus, the largest inhibition zones being observed for AAg3
and AAg4 samples, followed by AAg2 and AAg1 (Figure 11). In the case of S. Typhi and
B. cereus the diameter of inhibition zone does not differ significantly among AAg1–AAg4
samples, but it has a consistently constant high value. This indicates that both Ag NPs and
LGO act synergically, conferring a strong antibacterial activity.

LGO alone has a lower antibacterial effect, but in combination with Ag NPs the
values for growth inhibition diameters are higher. The Ag NPs solution also presented
a modest, constant value for the growth inhibition zone among all four tested strains.
Therefore, the high values obtained for the antibacterial activity of AAg1–AAg4 suggest
the existence of synergism between Ag NPs and LGO. The probable mechanism is related
to the LGO changing the adenosine triphosphate concentration and hyperpolarization of
the cell wall, and decreasing of the cytoplasmic pH [86,87], which in turn makes it easier
for the silver ions released by the Ag NPs to damage the membrane and bind the proteins
and enzymes [88], disrupting vital processes inside the cell.

Strong planktonic growth inhibition was observed in cases of E. coli and B. cereus (for
AAg2–AAg4 films especially) indicating that the antibacterial compounds from LGO and
Ag NPs could be released from the alginate polymeric matrix and affect the evolution
of free bacterial cells (Figure 12). In cases of S. Typhi and S. aureus strains, the develop-
ment of individual cells was also inhibited mostly by AAg3–AAg4 samples, suggesting a
susceptibility to the presence of larger amounts of Ag NPs.
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Similar results were also obtained for the bacterial biofilm development and its at-
tachment in the presence of AAg1–AAg4 films (Figure 13). The obtained data indicate
that biofilm development is significantly reduced in the cases of E. coli and B. cereus. The
B. cereus was again the most susceptible strain, as we saw in the case of planktonic growth.
In the case of E. coli and S. aureus, a clear dependence of Ag NPs is evidenced, consistent
with the results from growth inhibition diameter measurements.
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Biofilm growth inhibition results, presented in Figure 13, indicate that the films are
highly efficient towards Gram-positive B. cereus strain. A good antibacterial activity can
also be observed for the other strains, especially for AAg4 sample. The samples with
higher Ag NPs content exhibited best antibacterial activity, so we can state that biofilm
growth inhibition is dependent of Ag NPs concentration. The results suggest that these
films can be tailored to combat specific pathogens, depending on the desired application
and susceptibility of microbial strains.

The literature indicates that Ag NPs present a stronger antibacterial activity against
S. aureus than E. coli [89,90]. For the LGO, as well as the antifungal activity, a strong antibac-
terial activity against Gram-positive bacterial strains such as B. cereus is reported [16,91].

Our study has revealed that combining the two antibacterial agents, Ag NPs and LGO,
a strong synergic antibacterial activity is obtained. The AAg1–AAg4 films are efficient
against both types of pathogens, Gram-positive and Gram-negative, despite the former
being usually more resistant due to its complex cellular wall [91,92].

3.9. Evaluation of Potential Use of AAg1–AAg4 Films as Food Packaging

Cheese is an important food made from casein, fat, and water. When it is not salted,
uncontrolled and extensive development of microorganisms is contributing to cheese’s
short shelf life. Different cheese varieties need some bacterial cultures to be produced,
and this creates an infection hazard from the cheese-borne species such as Escherichia coli,
Salmonella enterica, or Staphylococcus aureus [4]. Samples of soft cheese of approximatively
10.00–13.00 g were weighed and packed in alginate or AAg1–Aag4 films. The samples were
stored for 14 days at 4 ◦C ± 1 ◦C and 75% RH. After 14 days, the samples were visually
checked, weighed, and the pH was measured. The cheese bits appearances (Figure 14),
mass loss (Table 6), and pH data suggest that AAg1–AAg4 films can preserve cheese for up
to 2 weeks.

The obtained results indicate that the cheese samples stored in AAg1–AAg4 films
were better preserved comparatively with the control sample. The white, soft texture was
maintained for samples packed in AAg1–AAg4 films, while the control sample changed
its color and became harder. The control sample turned dark yellow due to spoilage
microorganisms’ growth. The sample packed in AAg1 film also presented some minor
spoilage coloration on the edge, but the samples packed in AAg2–AAg4 films retained the
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initial aspect, color, surface texture, and softness. This indicates that these antimicrobial
films are capable of preserving the soft cheese and extending the shelf life.
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Table 6. Weight loss for cheese bits coated with alginate control and AAg1–AAg4 films during storage.

Sample/
Weight Loss (%) A AAg1 AAg2 AAg3 AAg4

14 days 39.32 ± 0.51 a 2.39 ± 0.21 b 2.31 ± 0.17 b 2.61 ± 0.26 b 2.55 ± 0.24 b

Different superscript letters in the same column indicate statistically significant differences between films (p < 0.05).

The weight of the cheese samples was measured at the start and after 14 days of
storage (Table 6). The samples packed in AAg1–AAg4 films presented a small mass loss,
around 2.50% value, while the control sample lost 39.32%. This can be explained by the
better barrier properties of the composite films, as seen in Section 3.6. The cheese eliminates
water vapors, and with less hindrance from the simple alginate film, they are lost in
surrounding environment.

Modification of the pH value for the cheese can indicate the presence of spoilage
microorganisms. Therefore, the pH value was measured initially and after 14 days. For
the samples packed in AAg1–AAg4 films, the value remained constant at 4.5. Similar
constant values are reported in the literature when spoilage is absent [93]. For the control
sample, the pH value dropped to 4.3, most probably due to growth and fermentation
activity of microorganisms.

Nevertheless, a full study on the migration magnitude of Ag NPs to the food surface
to assess the possible toxic effects is mandatory.

4. Conclusions

Novel innovative biodegradable alginate films were obtained and characterized. A
strong antibacterial activity was conferred by the addition of Ag NPs and lemongrass
essential oil. The antimicrobial agents are shown to act in a synergic fashion, the AAg1–
AAg4 samples presenting a large antibacterial activity spectrum, against both Gram-
positive and Gram-negative strains, best results being obtained against B. cereus. The
antibacterial films were tested as packaging for soft cheese, the preliminary test indicating
a good capacity to preserve it up to 14 days. The light and water barrier properties
of the alginate films were enhanced by the addition of LGO and Ag NPs. The films
are transparent, but at 30 ◦C and in the presence of light they tend to darken, with the



Nanomaterials 2021, 11, 2377 18 of 22

absorbance increasing by up to 78% compared with those stored at 4 ◦C in the absence
of light, where the absorbance increased only with max 32%, in a six day interval. This
process can be used to monitor the storage conditions for sensitive food.

Supplementary Materials: The following are available online at https://www.mdpi.com/xxx/s1,
Materials and Methods. Figure S1: Preparation scheme for the alginate films with Ag NPs and LGO.
Figure S2: XRD of obtained Ag NPs (JCPDS 04-0783) (a) and of AAg4 film (b). Figure S3: TG / DSC
curves for alginate (a); AAg1 (b); AAg2 (c); AAg3 (d) and AAg4 (e) films.
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