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Abstract: Exactly 50 years ago, the first article on electrochromism was published. Today elec-
trochromic materials are highly popular in various devices. Interest in nanostructured electrochromic
and nanocomposite organic/inorganic nanostructured electrochromic materials has increased in
the last decade. These materials can enhance the electrochemical and electrochromic properties of
devices related to them. This article describes electrochromic materials, proposes their classification
and systematization for organic inorganic and nanostructured electrochromic materials, identifies
their advantages and shortcomings, analyzes current tendencies in the development of nanomaterials
used in electrochromic coatings (films) and their practical use in various optical devices for protection
from light radiation, in particular, their use as light filters and light modulators for optoelectronic
devices, as well as methods for their preparation. The modern technologies of “Smart Windows”,
which are based on chromogenic materials and liquid crystals, are analyzed, and their advantages
and disadvantages are also given. Various types of chromogenic materials are presented, examples
of which include photochromic, thermochromic and gasochromic materials, as well as the main
physical effects affecting changes in their optical properties. Additionally, this study describes elec-
trochromic technologies based on WO3 films prepared by different methods, such as electrochemical
deposition, magnetron sputtering, spray pyrolysis, sol–gel, etc. An example of an electrochromic
“Smart Window” based on WO3 is shown in the article. A modern analysis of electrochromic devices
based on nanostructured materials used in various applications is presented. The paper discusses
the causes of internal and external size effects in the process of modifying WO3 electrochromic films
using nanomaterials, in particular, GO/rGO nanomaterials.

Keywords: electrochromic materials; nanostructured electrochromic materials; electrochromism;
color; “Smart Windows”; transition metal oxides (TMO); nanomaterials; graphene oxide (GO);
reduced graphene oxide (rGO)

1. Introduction

Modern technology has a number of negative effects, such as atmospheric pollution,
global warming, the reduction of fossil resources, etc. Therefore, one of the most important
tasks in the world is to improve energy efficiency and energy savings. To this end, it
is necessary to create new materials in a variety of sectors, including engineering, agro-
industry, building construction, electronics manufacturing, etc., primarily with the aim of
using new technologies and “smart” materials.
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Functional materials are dependent on their initial state and properties, as well as on
the energy and external effects applied to the material. “Smart” materials have more than
one functional state, depending on the impacting impulse, which can change over time [1].

Electrochromic materials (EC) are materials that are able to change color under the
influence of an electric field. EC are of great interest, both from the scientific point of view
and with respect to their application in various technical systems, including as the basis for
the creation of electrochromic devices (ECD) with low power requirements, such as [2–4]:

- “Smart Windows”;
- Displays;
- Reflective blinds;
- Variable reflection mirrors;
- Sensors.

The main purpose of ECD is protection against light in the visible wavelength range
(380–780 nm). ECD include an electrochromic coating in the form of the EC film and a
counter electrode placed in an electrolyte (ionic conductor), which is located between
transparent conductive electrodes—ITO (In2O3-SnO2) or FTO (SnO2-SnF). The principle
of ECD operation is the transformation of optical light flux and the modulation of the
coefficient of light reflection/transmission, resulting in an electrochemical reaction, i.e., the
“Smart Window” effect.

Thus, “Smart Window” technology allows savings due to use of smaller amounts of
energy for air conditioning in summer, as well as for heating in winter; an average of more
than 30% compared to conventional windows.

The purpose of this review is to systematize and summarize the data on organic,
inorganic and nanostructured electrochromic materials and related devices over the past
50 years.

2. “Smart Windows”

There are chromogenic materials [3], better known as “smart” materials, that are
currently experiencing great popularity. These materials modulate reflected or diffused
light by means of physical effects of different types. The “Smart Window” based on
chromogenic materials is widely used in architecture, cars (rear-view mirrors and intelligent
window tinting), and aircraft illuminators (Boeing 787 Dreamliner) [3–5], while translucent
structure technology [6] must also be mentioned. Chromogenic materials change color
and transparency. The following types of chromogenic materials can be distinguished:
electrochromic materials (EC) (external conditions—electric field); photochromic materials
(PhC) (external conditions—light); thermochromic materials (ThC) (external conditions—
heat); gasochromic materials (GhC) (external conditions—gas); polymer-dispersed liquid
crystals (PDLC) and liquid crystal dispersions (LCD); SPD—suspended particles device are
placed between the two electroconductive coatings. These materials can serve as a basis for
“Smart Window” technologies [7–11], which are shown in Figure 1.
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The structures of SPD and PDLC windows [6,10–12] are shown in Figure 2. SPD
technology (Figure 2a) uses suspended particles to modulate light transmission, arranging
themselves in an alternating current field, and the film becomes transparent. In the absence
of the electric field, the SPD window acquires color and absorbs light. The SPD window is
similar in structure to the PDLC window (Figure 2b), apart from the fact that in the absence
of an electric field, the film becomes semi-transparent.

1 
 

 

 

(а) (b) 
 

 

Figure 2. “Smart Windows” SPD and PDLC technology sandwich structures and operating principles: (a) SPD: off—light
modulation mode, on—transparent mode; (b) PDLC: off—semi-transparent mode, on—transparent mode; 1—retaining
film; 2—suspended particle; 3—adhesive layer; 4—glass; 5—conductor; 6—liquid crystal layer; 7—interlayer film; 8—liquid
crystal.

Electrochromic windows (ECW) control the transmission of light in the visible spec-
trum and switches between tinted and transparent/semi-transparent states in response to
low voltage signal (Figure 3). ECW create a comfortable indoor environment; moreover,
they have lower power consumption in comparison with other chromogenic devices [13]:
the ECW modulates reflected light under the control voltage, and in the absence of the
control voltage, modulation of the transmitted light occurs [2–4,7].

The advantages of electrochromic technologies are as follows [14]:

- electric energy is required only during mode switching;
- low activation voltage (1–5 V);
- a wide variety of “Smart Window” tints (blue, grey, brown, etc.);
- in the bleached state, electrochromic devices have a transparency level of 50–70%, in

the colored state—10–25%.

Table 1 shows the basic advantages and shortcomings of chromogenic materials used
in “Smart Windows”.
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(a) 

 

(b) 
 Figure 3. “Smart Window” electrochromic technology: (a) sandwich structure and operating principle

(bleached state): transmitted and reflected light modulation: 1—electrochromic layer; 2—ion storage
layer; 3—glass; 4—conductive layer; 5—ion conductor/electrolyte; (b) total view.

Table 1. Comparison of “Smart Window” technologies.

Technology
Energy

Efficiency,
W/m2

Energy Saving,
W/m2 (Energy

Saving in
Building)

Transparency,
%

Modulation
Time, s

Cost,
(c.u./m2)

ECW + + + – –

SPD – – + + +

PDLC – – + + +

LCD – – + + +
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Electronic devices emit high levels of electromagnetic radiation (EMR) in a wide fre-
quency range, leading to electromagnetic pollution, which negatively influences biological
objects and causing electronic device dysfunction [15]. Considering the fact that electro-
magnetic radiation basically penetrates through glass surfaces, the problem of creating a
universal electrochromic film capable of absorbing or reflecting electromagnetic radiation
is becoming relevant.

3. Electrochromism and Electrochromic Materials: Classification and Applications

Chromism (from ancient Greek χρ
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µα (“color”)) is a phenomenon of material color
change under the influence of physical factors, such as electric field, heat, light or pres-
sure [16].

At the end of the 1960s, scientist S. K. Deb discovered the phenomenon called elec-
trochromism [17]. This newly discovered phenomenon belongs to the sphere of elec-
trochemistry and physics [18]. S. K. Deb described a new electrophotographic system
consisting of WO3 thin film and a thin-film photoconductive layer placed between two
electrodes. When this composite structure was subjected to an electric field, an optical
projection appeared. After subsequent modulation in the photoconductive layer, the oxide
layer acquires the same color, and a visible image appears [17–19].

Since the middle of the 1970s, electrochromism has been considered to be a physi-
cal phenomenon associated with a reversible change in transparency or color under the
influence of an electric field or electric current [19,20]. Electrochromism is traditionally
defined as a reversible change in optical properties (transparency and/or reflectivity)
during the oxidation–reduction reaction [21–23]. In some cases, there are more than two
degrees of oxidation, and the material is capable of showing several colors depending on
the current degree of oxidation (polyelectrochromic materials) [21]. Modern science uses a
broad definition of electrochromism, including materials and devices used for the optical
modulation of radiation in the visible and microwave ranges. Ref. [24] focuses on the
problem of developing electrochromic displays that should replace LED and liquid crystal
displays. In 1985, Svensson and Granqvist proposed using electrochromic materials in
“Smart Windows” [14], and thus the term “Smart Window” appeared. The electrochromic
reaction can be described by the electrochemical equation in oxidized form:

O + xe− + Cation↔ Reduced form, R (1)

Applications of electrochromism include:

- Control of energy transfer in different environments, for example, filtering solar radia-
tion using “Smart Window” devices [25–27]. Fast mode switching (colored/bleached)
is not required, but the device should be capable of filtering both visible and near-
infrared radiation. Moreover, the transparency of the window packages must be at
least 70%.

- Color displays [22,24], for example, advertising boards. The requirements are as
follows: fast mode switching, color scheme varies only in the visible area. Moreover,
color contrast should be high enough, transparent mode is not required.

- Mirror light modulators [7], for example, antiglare mirrors for cars. Fast mode switch-
ing and high transparency are not required.

3.1. Classification of Electrochromic Materials

There are several inorganic and organic EC that change their optical properties (trans-
parency, color) during oxidation–reduction [28–32]. Switching between oxidation and
reduction states leads to color formation, i.e., formation of new spectral peaks in the visible
area. Inorganic EC include transition metal oxides (TMO) from groups IV-VI [32], and
hexacyanometallates (Prussian blue). Organic EC include viologens, conjugated conductive
polymers (polypyrrole, polythiophene, polyaniline and their derivatives, metal polymers,
metal phthalocyanines) [33,34]. The viologen family (4,4′-dipyridinium compounds) has
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a general chemical formula as shown in Figure 4, where R may be an alkyl, cyclo-alkyl
or other substitute, and X corresponds to halogen 4,4′-dipyridium compounds, because
they turn a deep blue-purple on reduction [30]. The viologen ion as shown in Figure 4a
can have a two-step reduction, i.e., a one-electron or a two-electron reduction. The general
structure for viologens modifying the titania surface is shown in Figure 4c. Table 2 presents
a list of the most popular EC.

Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 32 
 

 

3.1. Classification of Electrochromic Materials 

There are several inorganic and organic EC that change their optical properties 

(transparency, color) during oxidation–reduction [28–32]. Switching between oxidation 

and reduction states leads to color formation, i.e., formation of new spectral peaks in the 

visible area. Inorganic EC include transition metal oxides (TMO) from groups IV-VI [32], 

and hexacyanometallates (Prussian blue). Organic EC include viologens, conjugated con-

ductive polymers (polypyrrole, polythiophene, polyaniline and their derivatives, metal 

polymers, metal phthalocyanines) [33,34]. The viologen family (4,4′-dipyridinium com-

pounds) has a general chemical formula as shown in Figure 4, where R may be an alkyl, 

cyclo-alkyl or other substitute, and X corresponds to halogen 4,4′-dipyridium compounds, 

because they turn a deep blue-purple on reduction [30]. The viologen ion as shown in 

Figure 4a can have a two-step reduction, i.e., a one-electron or a two-electron reduction. 

The general structure for viologens modifying the titania surface is shown in Figure 4c. 

Table 2 presents a list of the most popular EC. 

 

 

 

(a) (b) (c) 

Figure 4. Viologen: (a) general chemical formulae of viologen; (b) viologen ion; (c) general structure 

for viologens modifying the titania surface. 

Table 2 shows a general classification of EC. 

Table 2. General classification of EC. 

EC Class Chemical Name Application Ref. 

Organic   

Conductive 

polymers  

PEDOT (where EDOT = C6H6O2S), 

PPy (where Py = Pyrrole = C4H5N), 

PT (where T = thiophene = C4H4S), 

PANI (where ANI = aniline = C6H4S) 

“Smart 

Windows”, 

displays  

[13,33] 

Viologens 3-aryl-4,5-bis (pyridine-4-yl) isoxazole derivatives   

Antiglare 

mirrors and 

displays 

[21,28] 

Transition metals and 

lanthanoids  

poly [RuII(vbpy)2(py)2]Cl2 (being py = pyridine = 

С5H5N) 
Smart mirrors  [26,30] 

Metal phthalocyanines (Pc) [Lu(Pc)2] being Pc = C32H18N8 et al. Displays [7,30] 

Inorganic  

Transition metal oxides 

(TMOs) 
WO3, MoO3, V2O5, TiO2 Nb2O5, Ir(OH)3, NiO et al. 

“Smart 

Windows”, 

antiglare 

mirrors  

[32,34] 

Prussian blue (PB)  

Prussian blue (C18Fe7N18), 

Prussian brown (С6Fe2N6), Prussian green (C3FeN3), 

Prussian white (C6Fe3N6)  

“Smart 

Windows”, 

displays 

[7,29] 

In general, organic EC, possessing color-changing abilities, exhibit faster response 

times and higher staining efficiencies than inorganic ones, but have a low UV protection 

index and show lower electrochemical stability. Therefore, mainly organic EC materials 

are used in electronic non-emissive displays [24,28]. Inorganic EC materials show high 

Figure 4. Viologen: (a) general chemical formulae of viologen; (b) viologen ion; (c) general structure for viologens modifying
the titania surface.

Table 2 shows a general classification of EC.

Table 2. General classification of EC.

EC Class Chemical Name Application Ref.

Organic

Conductive
polymers

PEDOT (where EDOT = C6H6O2S),
PPy (where Py = Pyrrole = C4H5N),
PT (where T = thiophene = C4H4S),

PANI (where ANI = aniline = C6H4S)

“Smart Windows”, displays [13,33]

Viologens 3-aryl-4,5-bis (pyridine-4-yl) isoxazole
derivatives

Antiglare mirrors and
displays [21,28]

Transition metals and
lanthanoids

poly [RuII(vbpy)2(py)2]Cl2 (being py =
pyridine = C5H5N)

Smart mirrors [26,30]

Metal phthalocyanines (Pc) [Lu(Pc)2] being Pc = C32H18N8 et al. Displays [7,30]

Inorganic

Transition metal oxides
(TMOs)

WO3, MoO3, V2O5, TiO2 Nb2O5, Ir(OH)3,
NiO et al.

“Smart Windows”, antiglare
mirrors [32,34]

Prussian blue (PB)

Prussian blue (C18Fe7N18),
Prussian brown (C6Fe2N6), Prussian

green (C3FeN3), Prussian white
(C6Fe3N6)

“Smart Windows”, displays [7,29]

In general, organic EC, possessing color-changing abilities, exhibit faster response
times and higher staining efficiencies than inorganic ones, but have a low UV protection
index and show lower electrochemical stability. Therefore, mainly organic EC materials
are used in electronic non-emissive displays [24,28]. Inorganic EC materials show high
chemical stability and cyclicity, which makes them suitable for “Smart Windows” and
large-scale data displays [35].

Electrochromic materials are classified according to their solubility and according to
their redox states [29,30]. Classification of EC was introduced by I. F. Chang in 1975 [36].
According to this classification, there are three types of EC solubility in redox states [29]:

(1) Type I EC materials, such as viologen, heptyl, etc., are soluble in both their reduced
and oxidized states.

(2) Type II EC materials are soluble in their colorless redox state but form a solid film on
the electrode surface.
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(3) Type III EC materials are solids in both redox states, and they form an insoluble film on
the electrode surface. Type III materials include groups IV, V transition metal oxides
(TMO), conductive polymers, Prussian blue and metal polymers. Three types of
mechanism for changing color/transparency (according to I. F. Chang) are presented
in Figure 5.
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The electrochromic reaction can be described by the following equation:

ECn + yCEm
(bleached) ↔ ECn−a

(coloured) + yCE(m+a)/y (2)

Table 3 contains examples of each type of EC.

Table 3. Classification of EC materials (according to I. F. Chang [36]).

EC
Type EC Material Electrochromic Reaction

Mechanism Application Ref.

I
(solution)

(1) Methylviologene (MV, 1,
10-dimethyl-4,4′-bipyrindnium,
3-aryl-4,5-bis (pyridine-4-yl)
isoxazole;

(2) Phenothiazine (C12H9NS) in
non-aqueous solution

MV2+ +
e−(bleached)↔MV+•

(colored)

Night vision systems,
mirrors [37,38]

II
(hybrid)

(1) Cyanophenylparaquate (CPQ, 1-1
cyanophenyl-4,4′-bipyridine,
paraquat = C12H14Cl2N2, otherwise
known as viologen, due to the
herbicide name) in aqueous solution

(2) Heptyl or benzylviologene (HV or
BzV) or methoxyfluorene compounds
C3H4Cl2F2O in acetonitrile solution
(C2H3N)

CPQ2+ + e− +
X−↔[CPQ+•X−]

Electrochromic paper,
“Smart Window” [39–41]

III
(battery-

powered)

(1) Almost all inorganic EC materials,
such as transition metal oxides: WO3,
MoO3, V2O5, TiO2 Nb2O5, Ir(OH)3,
NiO;

(2) Phthalocyanine (Pc = C32H18N8)
(3) Metal complexes and

hexacyanometallates, such as Prussian
blue (PB = C18Fe7N18)

(4) Conductive polymers: polypyrrole
(PPy), polythiophene (PT), polyaniline
(PANI)

MOy + x(H+ +
e−)↔HxMOy(colored)

“Smart Window”
(Boeing 757),
Electro-chromic paper

[32,42,43]
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Type I and Type II EC are self-erasing, since an electrical current is required to main-
tain the colored state, i.e., after the power is turned off, the ECW loses its color. Type III
ECW (battery-powered) remain colored for some time after the voltage is removed. Elec-
trochromic technologies make it possible to modulate the optical properties, such as color,
light transmission coefficient T(λ), reflection coefficient R(λ), and absorption coefficient
A(λ), of materials according to Kirchhoff’s law [44]:

R(λ) + A(λ) + T(λ) = 1 (3)

All of these optical processes (Figure 6) are characterized by the EC transmittance
T(λ), absorption A(λ) and reflectance R(λ), which indicates the proportion of the incident
light intensity that passes through, is absorbed by, or is reflected by the EC.
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Electrochromic properties depend on the electrochromic film structure; thus, different
EC have different absorption spectra, and, consequently, differ in color.

3.2. Organic EC

Organic films, such as conductive polymers, have multiple colored states, possess
high optical contrast, and exhibit fast response time and high staining efficiency [45–49].

Electrochromic behavior is observed in conjugated pyridine derivatives such as violo-
gens (Figure 7), which exhibit high cyclicity, low operating potential and other valuable
properties [50,51]. Viologens exist in solid crystalline form and in powder form. The name
‘viologen’ alludes to violet, one color it can exhibit (Figure 7).
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Figure 7. Three general viologen redox states (in terms of electron transfer): (a) dication; (b) radical cation; (c) neutral state.

Viologens are used in RGB (red, green, blue) devices (Figure 8), which reproduce three
main colors, red, green and blue, although research in this area is not yet well developed.
Modern technologies require the use of multicolor EC, which, in turn, necessitates the
creation of new functional composites [50].



Nanomaterials 2021, 11, 2376 9 of 32Nanomaterials 2021, 11, x FOR PEER REVIEW 9 of 32 
 

 

 
E = 0 V 

 

 
Е = 1.5 V 

 
Е = 0 V 

 

 
Е = 1.5 V 

Figure 8. Electrochromic transition cycle. 

The advantages of organic EC include compatibility with flexible substrates, low pro-

duction cost and the possibility of adjusting their synthetic material properties. 

Phenylenediamine (PD) derivatives are of interest due to their stable electrochemical 

reactions at the anode [52]. It is interesting to note that neutral arylamine is often colorless 

(it mostly absorbs UV light), but in redox states, it exhibits vivid color (Figure 9). Phe-

nylenediamines exhibit modulated visible absorption properties and high redox stability, 

which makes them suitable for RGB devices [53]. 

Figure 9. Redox chemistry of Phenylenediamine (Wurster’s blue), description of optical behavior in 

redox states. 

The color-changing abilities of conductive PEDOT polymers [54] are useful in elec-

trochromic non-emissive displays (Figure 10). 

  
  

 

(a) (b) (c) (d) (e) 

Figure 10. New electrochromic compounds obtained by reactions involving the cycloaddition of 

nitrile oxides to 1,2-bis (4-pyridinyl) ethylene derivatives (electrochromic transition): (a)—neutral 

state; (b–e)—oxidized states. 

 
Neutral: 

Non-colored 

Absorbs UV radiation 

Radical cation: 

Colored  

High absorption in the 

near-infrared range 

Dication: 

Colored  

Weak absorption in the 

near-infrared range 

Figure 8. Electrochromic transition cycle.

The advantages of organic EC include compatibility with flexible substrates, low
production cost and the possibility of adjusting their synthetic material properties.

Phenylenediamine (PD) derivatives are of interest due to their stable electrochemical
reactions at the anode [52]. It is interesting to note that neutral arylamine is often colorless
(it mostly absorbs UV light), but in redox states, it exhibits vivid color (Figure 9). Phenylene-
diamines exhibit modulated visible absorption properties and high redox stability, which
makes them suitable for RGB devices [53].
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Figure 9. Redox chemistry of Phenylenediamine (Wurster’s blue), description of optical behavior in redox states.

The color-changing abilities of conductive PEDOT polymers [54] are useful in elec-
trochromic non-emissive displays (Figure 10).
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Heterocyclic aromatic compounds (Figure 11), such as thiophene, aniline, furan,
carbazole, azulene and indole [55,56], can be oxidized chemically or electrochemically to
form anion-doped polypyrrole (PPy), polythiophene (PT) or polyaniline (PANI), poly(3-
methylaniline) (MEPA), poly(3-methyl-thiophene) (P3MTh), and poly(3-methylpyrrole)
(P3MPy). A change in the redox state (oxidized conductive state, reduced non-conductive
state, neutral state) leads to changes in color caused by significant changes in the visible and
near-infrared absorption spectra that vary depending on the degree of oxidation/reduction
Switching between polymer films in their colored (reduced) and uncolored (oxidized)
states changes their color from yellow to orange, red, purpuric, dark blue, green, light blue,
and black [57].
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Table 4 shows conductive polymers obtained by the oxidation of monomeric aromatic
compounds (neutral and oxidized states).

Table 4. Conductive polymers obtained by the oxidation of monomeric aromatic compounds (neutral
and oxidized states).

Organic EC

State PANI P3MPy MEPA P3MT PPY PT

Neutral
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The shortcomings of polymer films include their low electrochemical stability and,
consequently, their low oxidation number [28–30]. The addition of inorganic materials
improves the properties of electrochromic conductive polymers [58]. Inorganic materi-
als improve the staining efficiency and reduce the switching time, but do not affect the
electrochemical properties of the polymer; therefore, the problem of improving polymer
electrochemical stability is still relevant. Electrochromic films, such as WO3, Nb2O5, NiO,
are preferable due to their high stability and durability.

3.3. Transition Metal Oxides

Inorganic materials include a large group of EC, mostly the TMO MexOy (Figure 12).
The most common TMO [32,59], such as molybdenum (VI) oxide, vanadium (V) oxide,
niobium (V) oxide, iridium (III) oxide, tungsten (VI) oxide, are in the form of an octahedron
MeO6 (Figure 13). The crystal structure of CWO3 perovskite shown in Figure 14.
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Figure 14. Crystal structure of CWO3 perovskite: (a) general view; (b) h-WO3 along plane; (c) h-WO3 along plane.

In the mentioned structures, electrochromic effects occur due to electron–ion separa-
tion. As a result, metal atoms are introduced into TMO, and the valence electrons move
to the d-levels of the transition metal ion, reducing it. Evidently, the injected ions should
possess a high diffusion coefficient and a high solubility in the lattice of TMO [18,20].

There are several highly efficient TMO (IrO2 [60], MoO3 [61], NiO [62], TiO2 [63],
WO3 [42,59]) that are colorless in the oxidized state and colored in the reduced state
(cathodic EC, color change is induced by ion injection). Inorganic compounds that are
colorless in their reduced state and colored in their oxidized state are called anodic EC
(color change is induced by ion extraction).
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Vanadium oxides [64] exhibit hybrid features, and ECD usually contain two EC
films [32,59]; therefore, it would be relevant to simultaneously use a cathodic oxide (for
example, Mo or Nb) and an anodic oxide (for example, Ni or Ir) [61,63].

EC exhibit polychromism [65], for example, amorphous Nb2O5 is brown in its colored
state, while crystalline Nb2O5 acquires a blue color; WO3 is blue in its colored state, while
TiO2 obtains its color (blue or grey) as a result of ion injection (H+ or Li+, respectively).
The most investigated cathodic EC is WO3 [66]. The color change mechanism has still not
been sufficiently investigated, but most scientists agree that the extraction and injection of
electrons and metal cations (Li+, H+, Na+, K+, etc.) play a crucial role in color change. NiO
and IrO2 are the most popular anodic EC. High concentrations of cations in the electrolyte,
which is an ion conductor, significantly affect the electrochromic properties of the TMO,
such as switching time, cyclicity and staining efficiency.

The majority of TMO have a band gap of 1–5 eV (Figure 15), and therefore occupy
an intermediate position between semiconductors and dielectrics [67]. EC behavior is
dependent on TMO structure. It should be noted that structural and impurity defects
directly affect the properties—particularly the physicochemical properties—of the EC
under study.
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 Figure 15. Classification of materials by conductivity (according to zone theory).

The optical band gap can be calculated according to Equation (4) [37]:

αhv = A
(
hv− Eg

)n (4)

where α is the absorption coefficient, which can be measured by the ultraviolet spectropho-
tometer; h is the Planck constant; v is the light frequency; A is a proportionality constant;
Eg is the optical band gap; n is a number that is 1

2 for the direct band gap semiconductor
and 2 for the indirect band gap semiconductor.

The Eg of the WO3 films decreased from 3.62 eV to 3.30 eV when the annealing
temperature was increased. In addition, the Eg of the colored WO3 films was less than that
of the bleached WO3 films [38]. The different band gap demonstrates that the conductivity
of the WO3 film is enhanced with decreasing Eg, while the high conductivity increased the
electrochromic response time.

The transparency of inorganic EC with high staining efficiency varies in response to
the low-voltage signal. WO3 and NiO (Table 5) have a staining efficiency of ~40 sm2·C−1,
while for organic EC films, such as PEDOT, this value is more than 100 sm2·C−1 [32,39].
Actually, TMO have a high physical and chemical stability.
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Table 5. Color variation in WO3, NiO and WO3/NiO electrochromic films (colored and bleached states).

Inorganic EC

State WO3 NiO NiO/WO3

Oxidized
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TMO belong to type III materials, according to I. F. Chang’s classification. Both
anodic (A) and cathodic (C) reactions are possible, depending on the redox state of the
electrochromic film. Table 6 describes the electrochemical anodic and cathodic reactions of
certain oxides.

Table 6. Electrochemical reactions of certain oxides.

Metal Oxide Electrochemical Reaction Color Change Reaction Type

Manganese oxide (II) MnO2 + ze− + zH+ ⇔ MnO(2−z)(OH)
Yellow↔

brown A

Cobalt oxide (II) 3CoO + 2OH− ⇔ Co3O4 + H2O + 2e−
Green↔
light blue A

Nickel oxide (II) NiOxHy ⇔
[
NiII(1− z)NiIIIz

]
OxH(y−z) + zH+ + ze−

Colorless↔
brown A

Molybdenum oxide (VI) MoO3 + x
(
Li+ + e−

)
⇔ LixMoVI

(1−x)MoV
xO3

1
2 Colorless↔ blue C

Vanadium oxide (V) LixV2O5 ⇔ V2O5 + x
(
Li+ + e−

)
(A)

V2O5 + x
(
M+ + e−

)
⇔ MxV2O5 (C)

Blue↔ brown (A)
Yellow↔ light blue (C) C/A

Cerium oxide (IV) CeO2 + x
(
Li+ + e−

)
⇔ LixCeO2 Yellow↔ transparent C

Niobium oxide (V) Nb2O5 + x
(
Li+ + e−

)
⇔ LixNb2O5 Colorless↔ light blue C

Ruthenium oxide (IV) RuO2 · 2H2O + H2O + e− ⇔ 0, 5(Ru2O3 · 5H2O) + OH− Blue↔ brown/yellow C

Indium oxide (ITO) In2O3 + 2x
(
Li+ + e−

)
⇔ Li2xInIII

(1−x)In
I
xO3 Colorless↔ light blue C

Iridium oxide (III) Ir(OH)3 ⇔ IrO2 ·H2O + H+ + e− Colorless↔ blue/grey C

Tungsten oxide (VI) WVO3 + x
(
Li+ + e−

)
⇔ LixWVI

(1−x)W
V
x O3

WVO3 + x
(
H+ + e−

)
⇔ HxWVI

(1−x)W
V
x O3

Colorless↔ blue/black C

3.4. WO3 Electrochromic Films

Tungsten (VI) oxide (WO3) is the most universal EC, and its electrochromic properties
were first described by S. K. Deb in 1969 [17]. This oxide is still widely investigated [32,40].
High functionality, high staining efficiency, high contrast, high chemical stability, and long
life cycle are all features that make tungsten (VI) oxide useful in practice [41,43]. WO3
electrochromic films exhibit a deep blue color, preserve their color for some hours after
the voltage is removed (electrochromic memory), and demonstrate high cyclic stability in
comparison to other TMO [32]. The electrochromic mechanism of WO3 film is shown in
Figure 16.
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⎯⎯→
V VI VI Vhν

W A + W B W A + W B  (6) 

where А and В represent tungsten sublattice knots. 

This phenomenon was studied using X-ray photoelectron spectroscopy (XPS) and 
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WO3 films have different colors depending on x. At low values of x, the film is colored
blue, and at high values of x, it has either a red or golden tint. These phenomena are
associated with the fact that, firstly, WO3 is partially reduced to the oxidation state V+, and
secondly, the addition of the Li + cation occurs; all this leads to changes in the band gap
and, as a consequence, in the light transmittance of the TMO.

At the same time, the molecular reaction in WO3 films can be described as follows [68]:
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In [69], it was shown that the electrochemical reaction at the WO3/electrolyte interface
plays an imperative role in the electrochromic performance of WO3 electrodes, and the
lithium-ion transformation mechanism at the WO3/electrolyte interface was demonstrated,
wherein the states are replaced from one phase to another.

The high efficiency of amorphous WO3 films [40,70] manifests in a reversible switch
from transparent to dark blue during electrochemical redox reactions (Figure 16). Elec-
trochromic properties, such as staining efficiency, and switching time are dependent on
the atomic structure, nanoparticle size, pore size and absorption properties [71,72]. O. F.
Schirmer suggested that the optical absorption phenomenon in WO3 films was due to small
polaron (SP, charged and polarized quasiparticles) transitions from W(V) ions to W(VI) ones.
In [42,69,73], the light absorption mechanism in amorphous WO3 was is described as the
interval optically induced transfer of 5d1-electron of the W(V) ion (A) to the adjacent empty
5d0-orbital of the W(VI) ion (B):

W(V)(A) + W(VI)(B) hν→W(VI)(A) + W(V)(B) (6)

where A and B represent tungsten sublattice knots.
This phenomenon was studied using X-ray photoelectron spectroscopy (XPS) and

electron spin resonance (ESR) spectroscopy [74,75]. The WO3 films showed high absorption
in the near-infrared region due to polaron absorption [76]. Activated WO3 films are
characterized by a wide absorption band with a maximum of 0.9–1.46 eV, depending on the
film properties [73]. Figure 17 shows the optical transmission spectra of WO3 (Figure 17a)
and WO3/GO (Figure 17b) films upon coloring and bleaching.
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Figure 17. Optical transmission spectra of WO3 film during electrochromic response obtain by electrochemistry (cathodic)
deposition: (a) WO3 at constant potential; (b) WO3/GO deposition at AC potential [77].

The optical properties of WO3 thin films depend on their structure (crystalline, poly-
crystalline, amorphous or hybrid). Colored and colorless states of WO3 films are not
symmetric. Switching from transparent to colored states, polycrystalline WO3 films exhibit
reflective properties, and amorphous WO3 films exhibit absorption properties. The switch-
ing time depends on WO3 film density and on electrolyte concentration. Low-density films
with high-concentration electrolytes demonstrate the fastest switching speed [78].

Nowadays, the importance of WO3 films has grown [79,80] due to their use in “Smart
Windows”, which smartly regulate indoor solar radiation by changing their optical trans-
mittance, contributing to a significant reduction in a building’s energy consumption (as a
result of the optimization of air conditioning consumption) and helping to create comfort-
able indoor environments [81]. However, despite all the advantages of WO3 films, their life
cycle is not very long: continuous switching between colored and colorless states causes
irreversible structural changes that affect their optical and electrical properties, ultimately
leading to material degradation, the so-called “aging” effect [82]. Therefore, the task of
increasing the life cycle of WO3 films involves the development of new nanomaterials
and/or the improvement of existing materials through the use of modificatory additives,
as well as the obtained improvement of WO3 film technologies [83–86].

4. ECD (Electrochromic Device) Structure

EC are able to reversibly change their optical properties through the application of
an electrical voltage, making them suitable for ECD, such as displays [30], electrochromic
“Smart Windows” [16], anti-glare rear mirrors [19], and sensors [87].

ECD structures usually include transparent conductors, electrochromic layers, and
ion conductors (Figure 18).
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Figure 18. ECD structure.

ECD for architectural applications include thin EC films placed between two glass
panels, as shown in Figures 19 and 20.
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Figure 19. ECW scheme showing voltage-induced transfer of positive ions and electrons to transpar-
ent conductive layers.
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Figure 20. ECW color cycle (colored↔ semitransparent↔ transparent state).

Cycle stability is an extremely important aspect in the performance of electrochromic
devices. In a recent study [88], ECD were reported to have obtained a superior long-
term cycling stability of over 10,000 cycles. This manuscript is recommended for its
review of some reports of devices with high long-term stability. In [89], a strategy was
presented involving an all-in-one self-healing electrochromic material, TAFPy-MA, which
was used for the fabrication of a high-reliability, large-scale and easy-to-assemble smart
electrochromic window. The all-in-one self-healing electrochromic material was able to
carry out in situ redox reactions with the Li+ ions. The Diels-Alder cross-linking network
structure was able to heal the cracks, improving the reliability of the electrochromic layer.
Great ion diffusivity (1.13× 10–5 cm2 s −1), rapid color switching (3.9/3.7 s), high coloration
efficiency (413 cm2 C−1), excellent stability (sustain 88.7% after 1000 cycles) and reliability
(crack can be healed in 110 s), large-scale “Smart Windows” (30 × 35 cm2) were achieved
using this all-in-one electrochromic material, and these exhibited fascinating and promising
features for a wide range of applications in buildings, airplanes, etc.

Electrochromic films change their color as a result of electrochemical oxidation/reduction
reaction associated with ion transfer, which involves the use of an additional coating
for the storage and transport of ions. Many companies offer “Smart Window” solutions;
energy-saving “Smart Window” technology is available on the market [4].

Depending on the purpose, ECD may contain materials with different characteristics
and properties. Figure 21 presents the classifications of ECD.
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Figure 21. ECD classification.

4.1. Substrate

Transparent ECW substrates include glassy (Figure 22) or transparent polymers (Fig-
ure 22), such as polyethylene terephthalate (PET), polyvinyl butyral (PVB) and polyethylene
naphthalate (PEN). Glass substrates are more common due to their greater transparency and
their chemical stability, which makes them suitable for the production of “Smart Windows”.
In turn, polymer substrates allow the production costs of ECD to be reduced [90–93].
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4.2. Transparent Conductive Electrode

The electrical resistivity and the light transmission coefficient are the most important
properties of transparent conductive electrodes (layers). An electrode should possess high
electrical conductivity in order to form the electric field required for ECD. Transparent
conductive electrodes include metal-based and oxide-based electrodes, but the electrode
properties should not affect the transmission properties of the electrochromic windows.
Indium-tin oxide (ITO) electrodes (indium (III) oxide and tin (IV) oxide) are among the best
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transparent electrodes to have been investigated ((In2O3)0.9-(SnO2)0.1: 90% and 10%) [90],
possessing high electrical conductivity (~104 S·sm−1) and low optical absorption (band
gap ~4 eV, refractive index −1.9), making it preferable to fluorine-doped tin oxide (FTO).
Transparent ITO electrode contains different numbers of doped Sn atoms, and consequently,
free electron density varies [94].

4.3. Electrochromic Layer

EC films reversibly change their optical properties, switching between transparent,
semi-transparent and colored states, modeling solar radiation and thus ensuring reliable
ECW operation. EC films (layers) can be divided into three different types according to
their color schemes [32]:

- EC film exhibiting one color, for example, transition metal oxides, Prussian blue [31];
- EC film exhibiting two colors, for example, polythiophene [28];
- EC film exhibiting multiple colors, for example, poly (3,4-propylenedioxypyrrole) [29].

4.4. Electrolyte (Ion Conductor)

Electrolytes can be classified into liquid, gel and solid electrolytes [32]. Liquid elec-
trolytes are dissolved ions. Such electrolytes provide high ionic mobility. Polymer elec-
trolytes are the most suitable for EC devices, as they provide a long circuit break and
uniformity of coloration [95].

Electrochromic device electrolytes are ionic materials that possess ionic conductivity.
Electrochromic device electrolytes should satisfy the following requirements [77]:

- compatibility with anodic and cathodic materials;
- high ionic conductivity;
- no electron transfer between electrochromic layers;
- high transparency without scattering effect.

In [96], a novel Zn–Prussian blue (PB) system was reported for aqueous electrochromic
batteries. By using different dual-ion electrolytes with various cations (e.g., Zn2+–K+ and
Zn2+–Al3+), the Zn–PB electrochromic batteries demonstrated excellent performance. We
showed that the K+–Zn2+ dual-ion electrolyte in the Zn–PB configuration endowed a rapid
self-bleaching time (2.8 s), high optical contrast (83% at 632.8 nm), and fast switching
times (8.4 s/3 s for the bleaching/coloration processes). Remarkably, the aqueous elec-
trochromic battery exhibited a compelling energy retrieval of 35.7 mW·h·m−2, where only
47.5 mW·h·m−2 was consumed during the round-trip coloration–bleaching process. These
findings may open up new directions for the development of advanced net-zero-energy-
consumption ECD.

In [4,34,58,97], a hybrid electrolyte was developed based on aluminum trifluoromethane-
sulphonate (Al(TOF)3) and H3PO4 that could effectively alleviate the passivation, and
which exhibited superior stability. Additionally, an ex situ study revealed that the PANI
cathode undergoes a process of cointercalation/deintercalation of Al(H2PO4

−)x(TOF−)y
+(H2O)n, TOF−, and H+ during the charging/discharging process, with high reversibility
and stability. As a proof of concept, an electrochromic Al//PANI battery was fabricated
that combined both electrochromism and energy storage and delivered a higher coloration
efficiency of 84 cm2 C−1 at a wavelength of 630 nm.

4.5. Counter Electrode

The counter electrode provides ions, which, depending on the polarity of the applied
voltage, are injected into or extracted from the electrochromic coating. The counter electrode
should be transparent, with high conductivity, in order to reduce the voltage drop and
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prevent side reactions. Counter electrodes may include EC films, such as WO3/PANI
films [98], switching from transparent to blue.
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where x is the number of cations (M+, H+) and anions (A−, SO4
−).

Thus, thin-film electrodes broaden the ECD color palette and strengthen the elec-
trochromic effect.

5. WO3 Film Fabrication

The EC WO3 layer is obtained as a thin film on a conductive substrate with an FTO
or ITO electrode. There are several WO3 fabrication techniques [99] (Figure 23), including
magnetron sputtering [100], electrochemical deposition [101–106], spray pyrolysis [107],
sol–gel [108,109], mechanical sputtering [110,111], etc. These technologies are based on
electrochemical, chemical and physical principles. C. G. Granqvist [32] provided a compre-
hensive survey of WO3 fabrication technologies.
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Table 7 shows a comparative analysis of WO3 fabrication technologies.

Table 7. Comparison of three basic approaches to films WO3 fabrication.

Technology Types Scalability Equipment Cost Process Costs Coating Uniformity

Electrochemical +/− + + +/−
Chemical +/− + + −
Physical + − − +

The majority of technologies shown in Figure 24 are currently in use at the time of
writing. Optical contrast is a key parameter for evaluating EC device quality. However,
nowadays, there is no universal method that would satisfy all modern requirements. Each
method has its own advantages and shortcomings.
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Figure 24. Contrast response curves for WO3 films obtained by different processes during the
reporting period.

WO3 film characteristics include porosity, crystallinity and crystal size; these prop-
erties are highly dependent on manufacturing conditions and on production technology.
The requirements for WO3 thin films include uniformity, low production cost, and long
life cycle. Unfortunately, the production of a uniform WO3 film with good adhesion still
remains a problem.

The vacuum deposition method makes it possible to obtain high-density WO3 films
on a large flat surface, and the thickness and composition can be controlled during the
deposition process [100]. Vacuum-deposited WO3 films have an amorphous structure, and
annealed WO3 films have a crystalline structure. However, these technologies are highly
expensive due to the expensive equipment. Many glass manufacturing companies still
prefer vacuum deposition technologies, regardless of the cost, because WO3 films obtained
by vacuum deposition are stable, reliable and adjustable.

Chemical vapor deposition (CVD) is used for depositing WO3 films on a substrate [112].
However, during the deposition process substrates are heated to a high temperature, which
can lead to structural changes in the conductive layer. Electron beam evaporation technol-
ogy is a well-known method for preparing electrochromic WO3 films [113,114].

5.1. Electrochemical Deposition

Electrochemical deposition (electrodeposition) is a method of low-temperature syn-
thesis of WO3 films. Figures 25 and 26 show a three-electrode system in which conductive
FTO or ITO electrodes serve as a working electrode and a platinum electrode is used as a
counter electrode.
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The applied potential is shown relative to the reference electrode. The most common
reference electrode is the silver/silver chloride (Ag/AgCl) electrode (Figure 26), due to the
stability of the electrode potential.

The mechanism of electrochemical deposition of electrochromic WO3 films has been
well investigated [106]; metal or precursor ions are transferred to the working electrode
(cathode) under the influence of an applied electrical field. In this case, the metal deposition
process can be described by the reaction:

M+ + e− → M (8)

As already mentioned [115,116], the electrochemical deposition method makes it
possible to deposit WO3 films on large-area conductive substrates. However, special
equipment is required for the deposition process. The main advantages of this method
include: low cost and fast deposition, while not requiring high-temperature heating and
deep vacuum.

5.2. Sol–Gel

Colloidal oxide can be synthesized by polycondensation, by acidification of aqueous
salt solution, or by hydrolysis of organometallic compounds (Figure 27). Recently, there has
been growing interest in the use of the sol–gel process to produce multilayer electrochromic
coatings based on non-organic compounds. The main advantage of this reaction is that
liquid compounds are converted into solid compounds [117].
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Most alkoxides used for electrochromic materials can be produced in several stages [91]:

(1) hydrolysis with the formation of reactive M–OH groups:

M−OR + H2O→ M−OH + ROH (9)

(2) condensation resulting in bridge oxygen formation:

M−OH + RO−M→ M−M + ROH (10)

M−OH + HO−M→ M−M + H2O (11)

There are different types of sol–gel processes, such as centrifugation, immersion
coating and spraying (Figure 28). The sol–gel method, widely applied in material synthesis,
is also used to modify the electrode surface [118].

 

2 

 
 

 

(a) (b) (c) 
 Figure 28. Types of sol–gel processes: (a) immersion coating; (b) centrifugation; (c) spraying.

Sol–gel methods make it possible to produce large-area WO3 films at lower cost
in comparison with traditional vacuum methods [119]. The advantages of this method
include: universality of sol–gel processes, easy control of microstructure and composition
under low-temperature conditions, relatively simple and inexpensive equipment, control
of microstructure, crystal size, porosity and composition of the deposited films, which
is important, since these characteristics affect thin film kinetics, durability and staining
efficiency [120]. However, many problems still remain to be solved, among them solution
stability, large-area uniformity, insufficient adhesion, insufficient film thickness, and low
repeatability.

5.3. Spray Pyrolysis

The main principle of spray pyrolysis is the pyrolytic decomposition of salt solution
sprayed on substrate consisting of deposition target material (Figure 29). The sprayed
solution undergoes pyrolytic decomposition and forms a crystallite or a crystallite cluster
when the drop comes into contact with the hot substrate surface.
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By-products and solvents evaporate during spraying. The hot substrate provides
thermal energy for thermal decomposition. After thermal decomposition, sintering and
crystallization of the crystallite clusters occur, ultimately leading to film formation. The
technique is used for the deposition of dense and porous films on different substrates, such
as glass, ceramics and metal.

Spray pyrolysis is a simple and relatively inexpensive method that does not require a
vacuum. This method allows large-area uniform films with good adhesion to be produced.
Moreover, film properties can be easily modified by changing the spray parameters, such
as substrate temperature, flow pressure and the molarity of the precursor solution. The
main advantage of this method is that it works at moderate temperatures (100–500 ◦C)
and allows films to be obtained even on low-quality substrates. It offers an easy way of
doping films with any elements in any proportion by adding them in some form to the
spray solution [121,122]. In [123], V2O5-WO3 composite films were reported to exhibit high
coloration efficiency (49 cm2 ·C−1). Ref. [124], a fibrous reticulated WO3 film obtained by
pulsed spray pyrolysis was reported to have a coloration efficiency of 34 cm2 ·C−1 at λ =
630 nm.

Spray pyrolysis is a cost-effective method for obtaining highly adhesive homogeneous
WO3 films with different microstructures. The technology can also be used to produce
multilayer films, which is achieved by varying the spray composition. However, this
method also has disadvantages, such as the non-uniformity of films, large grain size due to
uncontrolled sputtering, solvent loss, and low deposition rate. The mentioned advantages
of the spray pyrolysis method make it suitable for industrial applications.

5.4. Magnetron Sputtering

Magnetron sputtering is a deposition technology defined as “cathodic sputtering of
target material in magnetron discharge plasma (crossed field discharge)”, and is shown in
Figure 30.
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In this process, permanent magnets are arranged below the target plate so as to
produce a magnetic field close to the target material. This concentrates the electrons and
causes them to travel in a spiral fashion along the magnetic flux lines of the target instead
of wandering around the target material [100].

Magnetron sputtering is the most up-to-date deposition technology [99,100], and is
widely used in the industrial and scientific spheres. The frequency of the applied positive
DC voltage varies from 20 to 350 kHz, while reversed pulse duration is dependent on
dielectric surface discharge [125]. Negative voltage usually varies by an amount equivalent
to 10% of the average positive voltage. When the duration and number of positive voltage
pulses are sufficient to create electric current, the target surface is bombarded with ions,
and when the voltage becomes negative, the incoming ions are repelled. Chen [126,127]
investigated WO3 films deposited by pulsed magnetron sputtering at a constant frequency
of 70 kHz; the O2/Ar ratio was reported to vary from 0.2 to 1.0.

The disadvantages of this method include the expensive equipment required and the
high energy intensity, which significantly increases ECD cost. The magnetron sputtering
technique is used to produce FTO or ITO electrodes on transparent surfaces.

6. Nanomaterials for Electrochromic Devices

ECW control the transmittance of light and solar radiation by changing their optical
transmittance (transparent, semitransparent and colored states), which ensures comfortable
indoor environments and makes it possible to achieve energy savings in buildings. Recent
advances in ECD technology emerging in the 1970s led to the creation of different types of
ECD. However, there are still problems with respect to the commercialization of EC devices,
including aspects such as their high production cost [99], the stability of their long-term
operation, and the production of uniform electrochromic films to provide uniformity of
coloration in large-area ECW [28–32]. Nanotechnologies can be efficiently used to produce
low-cost high-performance ECD [128].

In [129], an experiment was described in which reduced graphene oxide (rGO) films
were electrodeposited on indium tin-oxide-coated polyethylene terephthalate substrates
(ITO-PET) from graphene oxide (GO), and the resulting flexible transparent electrodes
were used in ethyl viologen (EtV2+) electrochromic devices. During continuous testing,
the resulting devices, which contained GO/rGO in the electrochromic mixture, exhibited a
lower switching voltage between the colored and bleached states. Graphene oxide (GO)
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and reduced graphene oxide (rGO) enabled devices with higher optical contrast than those
free of GO at the same applied voltage.

In [130], WO3/rGO nanocomposite film was fabricated by sol–gel centrifugation
using a mixed colloidal dispersion of WO3 precursor and GO. It was reported that the
WO3/rGO nanocomposite film exhibited shorter coloration and bleaching times (Tc = 9.5 s
and Tb = 7.6 s), higher coloration efficiency (75.3 cm2 ·C−1 at 633 nm), larger optical
modulatory range (59.6% at 633 nm) and better cyclic stability compared with WO3 films;
these advantages were attributed to faster Li+ ion diffusion and electron transfer rate.

Optically adjustable electrochromic films are basic and important components of
electrochromic devices; therefore, the performance of EC devices is strongly dependent on
EC film structure, morphology and fabrication method [131].

Amorphous WO3 films have a porous structure. Crystalline WO3 exhibits better
durability compared to amorphous WO3, due to its denser structure and low dissolution
rate (stability in acidic solution is less than 4 pH) [93,94,132]. However, crystalline WO3
possesses high bulk density, which increases switching time and reduces coloring efficiency,
so nanostructured WO3 with a large specific surface area is expected to have a faster
response time and a good durability. Recently, publications have appeared [105,133] on the
use of nanoscale or nanoporous WO3 (Figure 31) that exhibit fast switching speed and high
coloration efficiency due to possessing a good and suitable band gap (~2.6 eV). In [134–136]
the technologies for producing nanostructured WO3 films are discussed (Figure 32).
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Nanocrystal-in-glass WO3 thin films are considered to be the most promising cathodic
electrochromic material [113]. In [137], an all-solution technology was developed for large-
area low-cost preparation of electrochromic films. A WO3/ITO dispersion was successfully
developed; high-electrical-conductivity ITO nanoparticle networks along with ITO coating
on glass were able to serve as extended 3-dimensional electrodes, forming a microelectrical
field and acting as the pathways for electron diffusion to WO3 nanorods. In [138], h-WO3
QDs with an average size of 1.2 nm were successfully prepared by a simple decomposition
process of tungsten acid in ethylene glycol.

At present, various interactions have been introduced at the interface between the
organic and inorganic phases. The expected improved electrochemical and electrochromic
performances of the nanocomposites have been obtained. Among of these interactions,
covalent bonds have the strongest interaction, although their preparation is relatively
complicated [131,138].

Thus, it is an important first step for the fabrication of inexpensive EC “Smart Win-
dows”, and should shape the future research on solution-based processes.

7. Conclusions

It was possible, within the scope of this article, to provide a comprehensive review of
the large area of new electrochromic materials, and the authors had to use their discretion
in choosing up-to-date findings to illustrate this exciting area.

In summarizing this review of the literature on electrochromism in electrochromic
materials, and in WO3 films in particular, the following conclusions can be drawn:

(1) There are several hypotheses concerning the mechanism of electrochromism in WO3.
Generally, the electrochromic effect in WO3 films can be described as an electrochemi-
cal cathodic polarization during which H+ ions are transferred from the electrolyte
and an electron is transferred from the ITO electrode. As a result, WO3 film switches
from a bleached to a colored state; its color varies from pale blue to dark blue and
black. The conductivity of WO3 films is determined by the presence of cations (H+,
Li+, etc.) and electrons. As already mentioned, the coloration mechanism in WO3
films has still been insufficiently investigated.

(2) Despite a large number of works devoted to the study of electrochromic WO3 films,
the influence of the structural state on optical properties during the electrochemical
reaction has not been fully investigated. Different film deposition techniques have
been proposed. Film morphology is dependent on deposition technique and can
be amorphous, crystalline, nanocrystalline or hybrid. Additionally, there is still
a constant need for new technologies to produce WO3 films, and nanostructured
WO3 films in particular. Therefore, there is a necessity to study the fabrication of
amorphous, crystalline and nanocrystalline WO3 films, including their GO/rGO
modification. Analysis of literary sources makes it possible to identify prospects for
the development of WO3/rGO fabrication technologies. The obtained data will be
useful in the development of WO3 fabrication technologies.

Today, the development of the energy-efficient glazing sector is impossible without
EC Modern nanomaterials make ECD an interesting commercial product that has obvious
advantages over its competitors, such as PDLC, LCD and SPD. In this regard, according to
some forecasts, the market for electrochromic “Smart Window” will expand in the next 5–7
years. First of all, thanks to the development of modern technologies and nanomaterials,
as well as intensive research into EC by companies and scientific laboratories around the
world.
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Abbreviations

EC electrochromic materials;
PhC photochromic materials;
ThC thermochromic materials;
GhC gasochromic materials;
PDLC polymer-dispersed liquid crystals;
LDC liquid crystal dispersions;
ECD electrochromic devices;
ECW electrochromic windows;
TMO transition metal oxides;
GO graphene oxide;
rGO reduced graphene oxide;
SPD suspended particles;
EMR electromagnetic radiation.
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