
nanomaterials

Article

Construction of Electrostatic Self-Assembled 2D/2D
CdIn2S4/g-C3N4 Heterojunctions for Efficient
Visible-Light-Responsive Molecular Oxygen Activation

Hongfei Yin 1 , Chunyu Yuan 1, Huijun Lv 1, Xulin He 2, Cheng Liao 2, Xiaoheng Liu 3,* and Yongzheng Zhang 1,*

����������
�������

Citation: Yin, H.; Yuan, C.; Lv, H.;

He, X.; Liao, C.; Liu, X.; Zhang, Y.

Construction of Electrostatic

Self-Assembled 2D/2D

CdIn2S4/g-C3N4 Heterojunctions for

Efficient Visible-Light-Responsive

Molecular Oxygen Activation.

Nanomaterials 2021, 11, 2342. https://

doi.org/10.3390/nano11092342

Academic Editors: Hanfeng Liang,

Qiu Jiang, Gang Huang and

Yizhou Zhang

Received: 12 August 2021

Accepted: 7 September 2021

Published: 9 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
yinhongfei1016@foxmail.com (H.Y.); chunyuyuan.qfnu@gmail.com (C.Y.); hjlv.qfnu@gmail.com (H.L.)

2 Chengdu Science and Technology Development Center, China Academy of Engineering Physics,
Chengdu 610000, China; hexl0003@yinhe596.cn (X.H.); cliao@pku.edu.cn (C.L.)

3 Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of
Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

* Correspondence: xhliu@njust.edu.cn (X.L.); yzzhang@qfnu.edu.cn (Y.Z.)

Abstract: Molecular oxygen activated by visible light to generate radicals with high oxidation ability
exhibits great potential in environmental remediation The efficacy of molecular oxygen activation
mainly depends on the separation and migration efficiency of the photoinduced charge carriers. In
this work, 2D/2D CdIn2S4/g-C3N4 heterojunctions with different weight ratios were successfully
fabricated by a simple electrostatic self-assembled route. The optimized sample with a weight
ratio of 5:2 between CdIn2S4 and g-C3N4 showed the highest photocatalytic activity for tetracycline
hydrochloride (TCH) degradation, which also displayed good photostability. The enhancement of
the photocatalytic performance could be ascribed to the 2D/2D heterostructure; this unique 2D/2D
structure could promote the separation and migration of the photoinduced charge carriers, which
was beneficial for molecular oxygen activation, leading to an enhancement in photocatalytic activity.
This work may possibly provide a scalable way for molecular oxygen activation in photocatalysis.

Keywords: 2D/2D; electrostatic self-assembled; heterojunction; photocatalytic; molecular oxygen activation

1. Introduction

The energy crisis and environmental pollution are serious problems worldwide. Envi-
ronmental pollution originating from refractory organic pollutants, especially antibiotics,
has an extremely negative influence on humans. Photocatalytic technology has been rec-
ognized as a potential way to mitigate environmental pollution because titanium dioxide
is used as the catalyst for water splitting under UV light irradiation [1]. However, the
relatively large bandgap of TiO2 renders it unacceptable in handling the above-mentioned
environmental problems with high efficiency. Therefore, it is strongly desirable that photo-
catalysts with high solar utilization be explored [2–8].

CdIn2S4, a ternary sulfide of chalcogenide, with an appropriate bandgap and suitable
band edge positions, has gained increasing attention in the scope of photocatalysis, due
to its potential applications in photocatalytic hydrogen production [9–12], organic conver-
sions [13,14], and organic pollutant degradation [15–17], as well as CO2 reduction [18,19].
However, two issues have greatly restricted the widespread use of pure CdIn2S4. One is
the fast recombination of photogenerated charge carriers, and the other is photo-corrosion.
During the photocatalytic process, S2− can be oxidized by photoinduced holes [20], and
the generated dissociative Cd2+ would have a negative influence on living organisms.
Therefore, it is desirable to design an effective CdIn2S4-based photocatalyst without sacri-
ficing photocatalytic performance and using less Cd source. It was reported that doping
heteroatoms [21] or constructing heterojunctions [22–24] were efficient methods of alle-
viating the two above-mentioned problems, where the construction of heterojunctions
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could inhibit the speedy recombination of photoexcited charge carriers and alleviate the
photo-corrosion more efficiently, owing to the spatial location of photoexcited electrons
and holes.

In recent decades, owing to the properties of earth abundance, non-toxicity, a simple
preparation process and stable structure, g-C3N4, which belongs to a type of metal-free pho-
tocatalyst, has been widely used for building heterojunctions [25–30]. Nevertheless, bulk
g-C3N4 exhibits low specific surface areas and suffers from the rapid recombination of pho-
toinduced electron-hole pairs; these drawbacks seriously limit photocatalytic efficiency. Ex-
foliating bulk g-C3N4 into two-dimensional nanosheets with few layers or single layers is an
effective method for improving the photocatalytic activities of g-C3N4 [31–33]. Wang et al.
described an ultrasonic exfoliation route for fabricating g-C3N4 nanosheets with boosted
photocatalytic performance; the abundant reaction active sites and the low recombination
rate of charge carriers were attributed to the enhanced photocatalytic performances [34].
Qu et al. combined freeze-dried, ultrasonic and solvothermal process-synthesized g-C3N4
nanosheets with an atomically thin mesoporous structure that exhibited superior photocat-
alytic hydrogen evolution performance; the ultrathin nanostructure could promote light
absorption as well as shorten the migration time and migration distance of photoexcited
charge carriers [35].

It has been reported that the 2D/2D nanostructures have tight interfacial contact and
a large contact area, which not only provides more channels for carrier transfer, but also
shortens the transfer time and migration distance, leading to improved photocatalytic
performance [36–41]. It is expected that coupling 2D CdIn2S4 with 2D g-C3N4 is an effi-
cient method to enhance the photocatalytic activities of CdIn2S4 while using less of the
Cd species. In this work, 2D/2D CdIn2S4/g-C3N4 nanocomposites with various weight
ratios were constructed through a simple and low-cost electrostatic self-assembled method.
Various characterization technologies were utilized to fully study the crystallization, mor-
phology, optical and electrochemical properties of the obtained 2D/2D CdIn2S4/g-C3N4
heterojunctions. The photocatalytic performance of the obtained 2D/2D CdIn2S4/g-C3N4
heterojunctions was estimated through TCH degradation under visible light illumination.
The constructed 2D/2D nanostructures could efficiently facilitate the separation and trans-
fer of photoexcited charge carriers between hetero-interfaces, which is favorable for the
process of molecular oxygen activation, resulting in improved photocatalytic activity.

2. Materials and Methods
2.1. Reagents

Urea (AR) and indium chloride (InCl3·4H2O, AR) were bought from Sigma Aldrich
(Shanghai, China). Cadmium acetate [Cd (CH3COO)2·2H2O, AR] and thioacetamide
(C2H5NS, AR) were provided by Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China).
All the chemical reagents were used without further treatment.

2.2. Synthesis of the Photocatalysts
2.2.1. Synthesis of g-C3N4 Nanosheets and Protonated g-C3N4 Nanosheets

First, bulk g-C3N4 was fabricated through thermal condensation of urea. Typically,
20 g urea was set in a covered crucible, then heated to 550 ◦C within 240 min and maintained
at this temperature for 240 min to obtain bulk g-C3N4, denoted as BCN. g-C3N4 nanosheets
were obtained via a secondary calcination of the BCN with the same calcination procedure
for BCN, and the generated samples were ground for further use and denoted as CNNSs.

Protonated g-C3N4 nanosheets were prepared on the basis of previous reports with
some modifications [42,43]. Typically, 2 g CNNSs were added to 300 mL 1M HCl aqueous
solutions; after ultrasonic treatment for 1 h, a homogeneous suspension was formed, which
was further stirred for 4 h to promote the protonation process, the protonated g-C3N4
nanosheets were obtained via centrifugation, followed by washing with a large amount of
distilled water to eliminate the excess HCl until pH = 7. Finally, the protonated g-C3N4
nanosheets were dried at 60 ◦C overnight and denoted as PCNNSs.
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2.2.2. Preparation of CdIn2S4 Nanosheets

The CdIn2S4 nanosheets were prepared as described previously with some adjust-
ment [44]. In a typical preparation procedure, 399 mg Cd (CH3COO)2·2H2O and 880 mg
InCl3·4H2O were added into 300 mL deionized water. After 30 min stirring at room tem-
perature, 600 mg thioacetamide (TAA) was added. Then, the temperature was raised to
100 ◦C from room temperature after 30 min stirring, and the reaction system was refluxed
at this temperature for 12 h under continuous magnetic stirring. After the reaction was
finished, the produced samples were collected by centrifugation and then cleaned with
deionized water 2 times. Finally, after drying at 60 ◦C overnight, the final product was
denoted as CIS.

2.2.3. Synthesis of 2D/2D CdIn2S4/g-C3N4 Heterojunctions

CdIn2S4 nanosheets and PCNNSs were simultaneously dispersed into deionized water
with the assistance of ultrasonic treatment for 2 h to form 2 uniform suspensions with a
concentration of 0.75 mg/mL. Then, the PCNNSs dispersion was dropwise added into the
CdIn2S4 nanosheet dispersion under continuous magnetic stirring at room temperature;
after 6 h, the mixed suspension was separated by centrifugation, then dried at 60 ◦C in a
vacuum oven overnight. The final mass ratios of CdIn2S4 to PCNNSs were 5:1, 5:2, 5:3, and
5:4, denoted as CISCN-1, CISCN-2, CISCN-3, and CISCN-4, respectively.

2.3. Characterization

The crystal nature of the obtained CdIn2S4/g-C3N4 hybrids was examined by powder
X-ray diffraction (XRD) performed on a Bruker D8 Advance instrument. The morphology
of the fabricated samples was observed by field-emission scanning electron microscope
(FESEM, Hitachi S-4800) and transmission electron microscope (TEM, JEOL JEM-2100).
The optical properties of the as-prepared samples were measured by ultraviolet-visible
(UV-vis) diffuse reflection spectra (DRS) using a Shimadzu UV-3100 spectrophotometer,
where BaSO4 was used as reference, with a test range of 200–800 nm. Element composition
and chemical state of each element on the surface of the as-prepared photocatalysts were
detected on a PHI Quantera II SXM photoelectron spectrometer under Al Kα radiation
(λ = 0.84 nm).

2.4. Electrochemical Analysis

The photoelectrochemical tests, including transit photocurrent response and electro-
chemical impedance spectra (EIS), were characterized by a three-electrode electrochemical
system on a CHI760E electrochemical workstation. In the test system, Ag/AgCl elec-
trode and Pt wire electrode were utilized as reference electrode and counter electrode,
respectively. A 300 W Xe lamp was employed to provide visible light illumination. For
transit photocurrent measurement, the electrolyte was Na2SO4 aqueous solution with a
concentration of 0.5 M (pH ≈ 6.8). For EIS measurements, the electrolyte was a mixed
solution containing 0.5 M KCl and 5 mM K3[Fe(CN)6]/K4[Fe(CN)6], and the signals were
recorded from 100 kHz to 0.01 Hz, respectively. The working electrode was fabricated as
follows: 4 mg of the obtained catalysts were dispersed into a mixture solvent of 750 µL
water and 250 µL ethanol solution. Then, 10 µL Nafion solution (5 wt%) was added. The
mixture was ultrasonicated for 60 min to form a homogeneous slurry. Finally, 100 µL of the
dispersions were loaded onto a 1 cm × 3 cm ITO-coated glass substrate with coating area
of nearly 1 cm2.

2.5. Catalytic Experiments

The photocatalytic performance of the fabricated samples was evaluated by TCH
degradation under visible light illumination. A 300 W Xe lamp attached with a 400 nm
cut-off filter was used to provide visible light. Typically, 30 mg sample was dispersed into
50 mL 50 mg/L TCH aqueous solution. Then, the mixture was stirred for 1 h in darkness to
promote adsorption–desorption equilibrium between the sample and the TCH. After the
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reaction system was exposed to visible light, 3 mL suspension was sucked out every 20 min.
After removing the catalyst from the suspension, the remained filtrate was analyzed to
determine the concentration of TCH.

2.6. Quantitative Analysis of •O2
−

The generation of •O2
− was measured by nitroblue tetrazolium (NBT) conversion

strategy. Due to the reaction between •O2
− and NBT at a mole ratio of 4:1, the concentration

of •O2
− could be determined by the decrease in NBT. In a typical NBT transformation

reaction procedure, 10 mg sample was added into 50 mL 0.05 mM NBT aqueous solution.
Then, the mixed solution was stirred continuously in the dark for 60 min to promote the
adsorption–desorption equilibrium between the sample and the NBT. After the reaction
system was exposed to visible light, 3 mL solution was sucked out every 10 min. After
removing the catalyst via a millipore filter (0.22 µm), UV-vis spectrometer (UV-1801) was
used to test the concentration of NBT.

3. Results and Discussion

The crystalline structure of the as-fabricated CdIn2S4/g-C3N4 heterojunctions and
single component was studied by powder XRD, as displayed in Figure 1. The apparent
diffraction peak at 2θ = 27.6◦ in PCNNSs could be assigned to the (002) planes of graphitic
materials, which represent the interlayer stacking of a conjugated aromatic structure [45].
For CdIn2S4, the diffraction peaks of 2θ at 14.1◦, 23.2◦, 27.2◦, 28.5◦, 33.0◦, 40.7◦, 43.3◦, 47.4◦,
55.5◦, and 66.1◦ could be indexed into (111), (220), (311), (222), (400), (422), (511), (440), (533),
and (731) crystal planes of CdIn2S4 (JCPDS NO.27-0060) with cubic phase structure. All
the diffraction peaks of CdIn2S4/g-C3N4 heterojunctions were similar to those of pure CIS,
which indicated the existence of CIS in the CISCN heterojunctions. However, the diffraction
peak of PCNNSs could not be clearly observed in the CdIn2S4/g-C3N4 nanocomposites,
which might have originated from a lower peak intensity than that of CIS in the range of
27.2◦ and 28.5◦.
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Figure 1. XRD patterns of the fabricated catalysts.

The morphologies of the as-prepared PCNNSs, CIS, and CISCN-2 were observed via
FESEM and TEM, as shown in Figure 2. The characteristic SEM pattern of the PCNNSs
is displayed in Figure 2a; it exhibited a nanostructure of nanosheet, which was further
verified by the TEM test, as depicted in Figure 2b,c. Figure 2d shows the SEM image of CIS,
which displayed a small nanosheet-like morphology with a size of about 100–200 nm, in
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accordance with the TEM result (Figure 2e). The high-resolution TEM (HRTEM) pattern
of the CIS is illustrated in Figure 2f; the observable lattice space of 0.324 nm marked in
Figure 2f could be indexed to the (311) crystal plane of CdIn2S4. As for the CISCN-2
nanocomposite, from SEM observations (Figure 2g), it displayed a morphology similar
to that of PCNNSs, which might be due to the smaller size of the CIS nanosheets. TEM
(Figure 2h) and HRTEM (Figure 2i) were used to further investigate its nanostructure,
Low-resolution TEM (Figure 2h) revealed that the small CIS nanosheets were stacked on the
surface of the PCNNSs nanosheets, exhibiting a sheet-on-sheet morphology. Meanwhile, an
obvious interface between CIS and PCNNSs could be observed (Figure 2i), implying the CISCN
nanocomposite was successfully prepared by the facile electrostatic self-assembled method.
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The composition of surface elements and the chemical state of each element in the
obtained photocatalysts were investigated by XPS survey, as shown in Figure 3. It can be
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seen from Figure 3a that there were characteristic peaks of C, N, Cd, In, and S in the full
spectrum of the as-fabricated samples, implying the as-obtained CISCN-2 heterojunction
consisted of CdIn2S4 and g-C3N4. The signals of C 1s in PCNNSs were located at 284.8 and
288.2 eV, while the peaks of C 1s in CISCN-2 were located at 284.8 and 288.4 eV (Figure 3b);
the former peak could be attributed to the adventitious carbon, while the latter peak could
be assigned to N=C-N type carbons [46,47]. As for N 1s (Figure 3c), the characteristic signal
in PCNNSs could be divided into three peaks: 398.6 eV (C-N=C), 399.6 eV (N-(C)3), and
401.0 eV (N-H) [18,48], while in CISCN-2, these three peaks had a small shift toward higher
binding energy, located at 398.8, 399.8, and 401.2 eV, respectively. For Cd 3d (Figure 3d), two
obvious peaks at 405.3 and 412.0 eV could be observed in pure CIS, while in CISCN-2, these
two peaks exhibited a small shift toward lower binding energy at 405.2 and 411.9 eV, which
corresponded to the Cd 3d5/2 peak and 3d3/2 peak, respectively [49]. Meanwhile, this
phenomenon also occurred in the case of In 3d (Figure 3e) and S 2p (Figure 3f); compared
with the neat CdIn2S4, the characteristic peaks of In 3d and S 2p in CISCN-2 also exhibited
a small shift toward lower binding energy, indicating the change of chemical environment.
This might have originated from the bonding interaction between PCNNSs and CIS.
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The optical properties of the attained catalysts were investigated via UV-vis DRS
spectra, as displayed in Figure 4a. It can be clearly seen that CIS possessed a higher UV-
visible light absorption than pure PCNNSs. The absorption edges of CIS and PCNNSs were
about 540 nm and 420 nm, respectively. Compared to the neat CIS, the light absorption over
the obtained CdIn2S4/g-C3N4 heterojunctions exhibited an obvious decrease, indicating
that the introduction of PCNNSs was not helpful for light absorption, which may have
been due to the microstructural changes. Therefore, the light absorption might not be
responsible for the improved photocatalytic performance. However, the introduction of
PCNNSs had a positive influence on the formation of a heterogeneous interface between
CIS and PCNNSs; the formation of the heterogeneous interface could promote the transfer
of photoinduced electrons and holes [37,38]. The bandgap energies of PCNNSs and CIS
were calculated on the basis of the Kubelka–Munk equation and estimated to be 2.88 and
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2.52 eV, respectively [50]. The relatively higher bandgap energy of PCNNSs compared to
bulk g-C3N4 may possibly originate from the quantum confinement effect [51].
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The photocatalytic performance of the attained photocatalysts was assessed via photo-
catalytic TCH degradation under visible light irradiation, as illustrated in Figure 5. It can
be clearly observed from Figure 5a that pure PCNNSs exhibited the poorest photocatalytic
performance among the as-prepared photocatalysts; it had a TCH removal ratio of only
39.5%, whereas pure CIS exhibited a removal ratio of 82.1%. After the formation of CISCN
heterojunctions, the removal efficiency of TCH over the constructed CISCN-1, CISCN-2,
CISCN-3, and CISCN-4 was 79.9%, 83.6%, 80.1%, and 78.0%, respectively. For compari-
son, the contribution of adsorption over PCNNSs, CIS, CISCN-1, CISCN-2, CISCN-3, and
CISCN-4 was 36.8%, 2.1%, 34.7%, 35.7%, 31.5%, and 30.5%, respectively. Obviously, with the
increased content of PCNNSs, the photocatalytic performance of the CISCN nanocompos-
ites tended to increase first and then decrease. This might have originated from the excess
amount of PCNNSs, which would lead to an insufficient interface formed between CISCN
nanocomposites and PCNNSs and may exhibit a negative effect on the interaction between
CIS and PCNNSs, inhibiting the separation of the photoexcited electron-hole pairs. The
kinetic reaction procedure of TCH degradation was fitted by pseudo-first-order equations,
as shown in Figure 5b. Compared to the single component, the apparent kinetic constant
of CISCN-2 was 1.14 and 3.05 times as high as that of the CdIn2S4 and protonated g-C3N4,
respectively, indicating the superior photocatalytic performance of the CdIn2S4/g-C3N4
heterojunction. To verify that the decrease in TCH was triggered by photocatalysis during
visible light irradiation, a prolonged adsorption experiment with TCH over CISCN-2 under
dark conditions was carried out, as shown in Figure 5c. By prolonging the adsorption
time, a delayed decrease could be observed, due to the adsorption–desorption equilibrium
established between the TCH and the photocatalyst. Figure 5d shows the UV-vis spectra of
TCH at different periods of the photocatalytic process over CISCN-2; the absorbance of
TCH had an obvious decrease after 2 h of visible light illumination, implying photocatalysis
played an important role in the degradation of TCH. Therefore, the decrease in TCH could
be attributed to the collaboration of adsorption and photocatalysis, and during the period
of visible light irradiation, the decrease in TCH could be attributed to photocatalysis. To
highlight the superiority of the fabricated catalyst, a comparison with previous reports is
presented in Table 1.
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Table 1. Degradation efficiency (DE) of TCH over previous reports and CISCN-2 in this work.

Sample TC (mg/L) Dosage (g/L) t (min) Light Source DE (%) Refs.

Co/V-g-C3N4 10 0.5 120 250 W Xe lamp 64.3 [5]

2D/3D g-C3N4 10 0.5 120 250 W Xe lamp 69.6 [6]

Nitrogen-deficient tubular g-C3N4 10 1.0 150 300 W Xe lamp 84.3 [7]

BN QDs/g-C3N4 10 1.0 60 300 W Xe lamp 82 [8]

WO3/g-C3N4 25 0.5 120 300 W Xe lamp 70 [28]

Bi/α-Bi2O3/g-C3N4 10 1.0 180 300 W Xe lamp 91.2 [29]

Nb2O5/g-C3N4 10 0.5 150 250 W Xe lamp 76.2 [30]

CdIn2S4/g-C3N4 50 0.6 120 300 W Xe lamp 83.6 This work

The recycling ability of the photocatalyst is a vital factor to evaluate the performance
of the photocatalyst; therefore, the progress of the recycling photocatalytic experiment is
of great necessity. After each recycling run, the photocatalyst was collected and washed
for the next run. It can be observed from Figure 6a that after four recycling runs, the TCH
removal ratio over CISCN-2 was still 68.2%; compared to its the first-time usage, there
was only an 8.7% reduction, implying the relative stability of the as-prepared CISCN-2.
Moreover, XRD of the reused photocatalyst was tested to further confirm the stability of
the CISCN-2 composites, as depicted in Figure 6b. Notably, there were no obvious changes
in the reused sample as compared to the fresh photocatalyst, suggesting the stability of the
crystal structure.
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Generally, three steps are involved in the photocatalytic process: (1) semiconductor
photocatalysts were irradiated by light, leading to the formation of photogenerated elec-
trons and holes; (2) photoinduced electrons and holes were separated and transferred to
the surface of the photocatalyst; (3) the photoexcited electrons and holes participated in
the surface redox reactions [51]. The separation and transfer efficiency of the photoin-
duced charge carriers are important factors that affect the photocatalytic performance.
Transient photocurrent (Figure 7a) was measured to evaluate the separation efficacy of
the photoexcited charge carriers, while EIS (Figure 7b) measurement was carried out to
estimate the transfer efficiency of the photogenerated electron-hole pairs [52,53]. It can be
easily observed from Figure 7a that CISCN-2 displayed the highest photocurrent intensity
among all the photocatalysts, implying the highest separation efficacy of the photoexcited
electron-hole pairs. Meanwhile, the smallest semicircle of the EIS curve could be observed
over CISCN-2, implying the smallest transfer resistance of photoinduced charge carriers
and highly interfacial transfer efficacy of the charge carriers. These two results might be
reasons for the enhanced photocatalytic performance.
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It is worth studying the possible reaction mechanism during the TCH degradation.
In general, to distinguish the main active species generated in the photocatalytic reaction
process, active species trapping experiments were conducted. Isopropyl alcohol (IPA)
and disodium ethylenediaminetetraacetate (EDTA-2Na) were chosen as scavengers for
removing •OH and h+, respectively. N2 was continuously bubbled into the reaction
system for removing the soluble oxygen, eliminating the formation of •O2

− [54,55]. As
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shown in Figure 8, the addition of IPA (1 mM) had an extremely small effect on the
photocatalytic performance of the CISCN-2, indicating that the role of •OH formed during
the photocatalytic process could be ignored. After the EDTA-2Na (1 mM) was introduced,
an apparent decrease in the TCH removal ratio could be observed; it was decreased from
74.6% to 54.6%, implying the photoexcited holes made contributions to the degradation of
TCH. Meanwhile, when N2 was continuously bubbled into the reaction system during the
whole photocatalytic TCH degradation process, a dramatic decrease could be observed;
the removal ratio of TCH was decreased from 74.6% to 25.3%, implying that •O2

− played
the prominent role in TCH removal. Therefore, the generated •O2

− played a predominant
role in the TCH photodegradation procedure, but in the meantime, the contributions of
photoexcited holes also could not be overlooked.
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The generation of •O2
− was measured by the NBT transformation experiment. Be-

cause the reaction between •O2
− and NBT occurred at a mole ratio of 4:1, the content of the

•O2
− could be estimated by the change in NBT. Figure 9a–c were the typical time courses

of absorption variation of NBT over the PCNNSs, CIS, and CISCN-2. For PCNNSs, a
delayed change could be observed. However, the intensity of the typical absorbance signal
at 260 nm for NBT exhibited a noteworthy decrease over CIS and CISCN-2, indicating the
generation of •O2

− during the photocatalytic reaction. Figure 9d,e displays the change in
NBT concentration and the corresponding kinetic fitting curves. Obviously, the reaction
between •O2

− and NBT over the CISCN-2 had the fastest rate. Meanwhile, the •O2
−

generated over CISCN-2 was the largest amount produced among these three samples
(Figure 9f), which further verified the enhancement of the photocatalytic activity over
CISCN-2 in •O2

− production.
Moreover, measurements of the band edge positions of the single component were

necessary, as they could further verify the possible photocatalytic mechanism. Figure 10a, b
exhibits the corresponding VB-XPS spectra of the PCNNSs and CIS. It can be clearly observed
that the valence band (VB) position of PCNNSs and CIS was +1.89 and +1.11 eV, respectively.
Therefore, based on the evaluation with UV-vis DRS, the conduction band (CB) position
of PCNNSs and CIS could be determined by the equation Eg = |ECB − EVB| to be −0.99
and −1.41 eV, respectively. The possible photocatalytic mechanism and the transfer path
of photogenerated charge carriers were proposed on the basis of active species trapping
experiments and the band edge positions of the PCNNSs and CIS, as displayed in Figure 10c.
When the photocatalytic reaction system was exposed to visible light (λ > 400 nm), both
PCNNSs and CIS could be excited to generate electron-hole pairs. Owing to the more
negative CB position of CIS than that of PCNNSs, the photoexcited electrons on the CB of CIS
would transfer toward the CB of PCNNSs, which could react with soluble oxygen molecules,
leading to the formation of •O2

− with strong oxidation ability that could oxidize organic
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pollutants. Simultaneously, the photoinduced holes on the VB of PCNNSs with more positive
potentials would migrate to the VB of CIS; the photoinduced holes could directly oxidize
organic pollutants. This spatial separation of photoinduced charge carriers might be one of
the reasons for the enhanced photocatalytic performance.
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4. Conclusions

In summary, 2D/2D CdIn2S4/g-C3N4 heterojunctions were productively constructed
through a facile electrostatic self-assembled route. The unique 2D/2D nanostructures
exhibited tight interfacial contact and a large contact area, which could provide more
channels for the transfer of photoinduced charge carriers and shorten the transfer distance
of the charge carriers, realizing a higher separation efficacy of photoexcited electron-hole
pairs, thus benefiting molecular oxygen activation. The optimized 2D/2D CdIn2S4/g-C3N4
heterojunction exhibited the highest photocatalytic performance and photostability toward
TCH degradation. The improved photocatalytic activity could be attributed to the high
separation and transfer efficacy of the photoexcited charge carriers, achieving a higher
molecular oxygen activation efficiency.
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