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Abstract: K+/Cl− and K+/F− co-doped LiNi0.5Mn1.5O4 (LNMO) materials were successfully synthesized 

via a solid-state method. Structural characterization revealed that both K+/Cl− and K+/F− co-doping 

reduced the LixNi1−xO impurities and enlarged the lattice parameters compared to those of pure 

LNMO. Besides this, the K+/F− co-doping decreased the Mn3+ ion content, which could inhibit the 

Jahn–Teller distortion and was beneficial to the cycling performance. Furthermore, both the K+/Cl− 

and the K+/F− co-doping reduced the particle size and made the particles more uniform. The K+/Cl− 

co-doped particles possessed a similar octahedral structure to that of pure LNMO. In contrast, as 

the K+/F− co-doping amount increased, the crystal structure became a truncated octahedral shape. 

The Li+ diffusion coefficient calculated from the CV tests showed that both K+/Cl− and K+/F− co-dop-

ing facilitated Li+ diffusion in the LNMO. The impedance tests showed that the charge transfer re-

sistances were reduced by the co-doping. These results indicated that both the K+/Cl− and the K+/F− 

co-doping stabilized the crystal structures, facilitated Li+ diffusion, modified the particle morphol-

ogies, and increased the electrochemical kinetics. Benefiting from the unique advantages of the co-

doping, the K+/Cl− and K+/F− co-doped samples exhibited improved rate and cycling performances. 

The K+/Cl− co-doped Li0.97K0.03Ni0.5Mn1.5O3.97Cl0.03 (LNMO-KCl0.03) exhibited the best rate capability 

with discharge capacities of 116.1, 109.3, and 93.9 mAh g−1 at high C-rates of 5C, 7C, and 10C, re-

spectively. Moreover, the K+/F− co-doped Li0.98K0.02Ni0.5Mn1.5O3.98F0.02 (LNMO-KF0.02) delivered ex-

cellent cycling stability, maintaining 85.8% of its initial discharge capacity after circulation for 500 

cycles at 5C. Therefore, the K+/Cl− or K+/F− co-doping strategy proposed herein will play a significant 

role in the further construction of other high-voltage cathodes for high-energy LIBs. 

Keywords: LiNi0.5Mn1.5O4; K+/Cl− co-doping; K+/F− co-doping; rate capability; cycling stability 

 

1. Introduction 

Currently, high-energy-density lithium-ion batteries (LIBs) are in urgent demand 

due to their wide applications in plug-in hybrid electric vehicles, portable electronic de-

vices, and renewable energy storage devices [1–4]. The electrochemical performances of 

LIBs are mainly dependent on the properties of both the cathode and anode materials, 

especially the cathode materials. The LiNi0.5Mn1.5O4 (LNMO) cathode, with a higher oper-

ating voltage (4.7 V) and theoretical capacity (147 mAh g−1), is favored for its high energy 
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density. Furthermore, LNMO possesses a three-dimensional framework structure, and 

the cost of the raw materials is relatively low, making it suitable for large-scale applica-

tions [5]. However, LNMO suffers from the undesirable generation of LixNi1−xO or NiO 

impurity phases and side reactions at the electrode interface at high potential, leading to 

structural instability and severe capacity fading during cycling [6]. 

To address the problems mentioned above, researchers have attempted to introduce 

metal cations or anions with similar radii into LNMO at different sites (Li, Ni, Mn, or O). 

Most of the previous studies were restricted to single-ion doping. For example, Li+ and 

Na+ ions have been incorporated into the Li site to synthesize Li1+xNi0.5Mn1.5O4 and 

Li1−xNaxNi0.5Mn1.5O4 materials [7–9]. For Ni and Mn sites, metal and non-metal cations, 

such as Al3+ [10], Cu2+ [11], Y3+ [12], Co3+ [13], Cr3+ [14], Zr4+ [15], P5+ [16], B3+ [17], Ti4+ [18], 

and V5+ [19], have been introduced by various synthesis methods. For the O site, F− [20] 

and Cl− [21] ions have been used to replace the oxygen. However, single doping may affect 

the LNMO’s electrochemical performance in certain aspects. Ion co-doping is an effective 

strategy to simultaneously stabilize the crystal structure and enhance the electrochemical 

properties of LNMO materials. Such materials include Al3+, Cr3+, and F− co-doped LNMO 

[22]; Li+ and F− co-doped LNMO [23,24]; Mg2+ and F− co-doped LNMO [25]; Cu2+ and Al3+ 

co-doped LNMO [26,27]; Cu2+, Al3+, and Ti4+ co-doped LNMO [28]; Mg2+ and Si4+ co-doped 

LNMO [29]; and Ti4+ and La3+ co-doped LNMO [30]. Among these co-doped ions, there 

are few reports of cation and anion co-doping in LNMO. Cation and anion co-doping has 

a unique advantage in that both ions can play a synergistic role in the impact of LNMO 

on the structure and properties. This approach has also been widely applied to improve 

the rate capability and cycling stability of LNMO. Sha et al. prepared a multi-substituted 

LiNi0.475Al0.01Cr0.04Mn1.475O3.95F0.05 cathode through a sol–gel method. After a series of tests, 

the Al3+/Cr3+/F− co-doped sample possessed excellent rate performance and cycling stabil-

ity. Moreover, the co-doping also enhanced the cycling stability at room temperature (20 

°C) and an elevated temperature (55 °C) [22]. In our previous work, Mg2+ and F− ions were 

incorporated into LNMO. The Mg2+/F− co-doping increased the quantities of Mn3+ ions and 

the lattice parameters. In addition, the Mg2+/F− co-doping increased the particle size, which 

could reduce the number of side reactions to some extent. The electrochemical results 

showed that the Mg2+/F− co-doped LNMO-MF sample obtained excellent rate performance 

and cycling stability at a high C-rate of 5C [25]. 

As K+ possesses a larger radius (0.133 nm) than Li+ (0.076 nm), it is often used as a 

doping ion to replace Li+ in several cathode materials, including LiMn2O4 [31], 

LiNi0.5Co0.2Mn0.3O2 [32], Li1.2Ni0.2Mn0.6O2 [33], and Li1.2Ni0.13Co0.13Mn0.54O2 [34]. The K+ dop-

ing decreases the cation mixing and expands the Li layer spacing, thereby enhancing the 

structural stability and accelerating the Li+ diffusion in the bulk lattice. As reported by 

Yang et al., K+-doped Li1.2Ni0.2Mn0.6O2 was prepared via a sol–gel method. The K+ doping 

stabilized the surface O2− and reduced the Mn3+ ion content. The electrochemical results 

showed that the electrode capacity retention in K+-doped Li1.2Ni0.2Mn0.6O2 was 99.96% after 

100 cycles, and it exhibited outstanding cycling stability [33]. F− (328 kJ mol−1) and Cl− (349 

kJ mol−1) ions, with larger electron affinities, are commonly used elements for O2− (141 kJ 

mol−1) site substitution in LNMO cathodes, and they can stabilize the crystal structure and 

reduce the LixNi1−xO or NiO impurity generation due to the stronger Mn-F/Ni-F bonds or 

Mn-Cl/Ni-Cl bonds as compared to Mn-O/Ni-O bonds [21]. 

Based on the studies described above, investigations into K+/Cl− or K+/F− co-doping 

effects on the crystal structures and electrochemical performances of LNMO are still lack-

ing. Hence, pure LNMO, K+/Cl− co-doped Li1−xKxNi0.5Mn1.5O4−xClx (x = 0.02 and 0.03), and 

K+/F− co-doped Li1−xKxNi0.5Mn1.5O4−xFx (x = 0.01 and 0.02) materials were prepared via a 

solid-state method. The characterization indicated that the influences of K+/Cl− co-doping 

on the structures and morphologies were different from those of K+/F− co-doping. The 

electrochemical results substantiated that both the K+/Cl− and K+/F− co-doped LNMO ma-

terials exhibited better rate and cycling performances than pure LNMO. The K+/Cl− co-

doping was more conducive to improvement in the rate properties of LNMO, while the 
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K+/F− co-doping tended to enhance the cycling stability. Hence, the structures, morpholo-

gies, and electrochemical performances of pure LNMO, K+/Cl− co-doped 

Li1−xKxNi0.5Mn1.5O4−xClx, and K+/F− co-doped Li1−xKxNi0.5Mn1.5O4−xFx were comprehensively 

compared in this study. 

2. Experimental Section 

2.1. Material Preparation 

A simple solid-state ball-milling process followed by a high-temperature calcination 

procedure was used to synthesize pure LNMO, K+/Cl− co-doped, and K+/F− co-doped sam-

ples. The synthesis process was as follows. First, stoichiometric amounts of Li2CO3 (5% 

excess), NiO, MnO2, and KCl (0.525:0.5:1.5:x by mole) were dispersed in ethanol by ball-

milling (Pulverisette 7, Fritsch, Ida and Germany) for 10 min at 200 rpm and then for 210 

min at 400 rpm to generate a homogeneous mixture. The obtained mixture was dried at 

100 °C for 3 h to evaporate the ethanol. Finally, the obtained powder was annealed at 500 

°C for 250 min and 850 °C for 8 h in air to form the K+/Cl− co-doped Li1−xKxNi1.5Mn0.5O4−xClx 

(x = 0, 0.02, and 0.03) samples (henceforth referred to as pure LNMO, LNMO-KCl0.02, and 

LNMO-KCl0.03, respectively). The K+/F− co-doped Li1−xKxNi1.5Mn0.5O4−xFx (x = 0.01, 0.02) 

samples, using KF as the dopant, were obtained using the same synthesis process as that 

used for the Li1−xKxNi1.5Mn0.5O4−xClx samples. The obtained samples were referred to as 

LNMO-KF0.01 and LNMO-KF0.02. The LNMO-KCl0.04, LNMO-KF0.005, and LNMO-

KF0.03 samples shown in the Supporting Information were also prepared via the same 

synthesis method. 

2.2. Material Characterization 

The crystalline structures and lattice parameters of all samples were characterized by 

X-ray diffraction (XRD, Ultima IV, Rigaku, Tokyo and Japan) with Cu Kα radiation in the 

2θ range of 10°–90°. The Rietveld refinement was carried out through TOPAS 4.2 soft-

ware. The functional groups of the as-prepared samples were obtained by examining their 

Raman spectra (Raman, RM2000, Renishaw, London and England). The surface elemental 

states and distributions of the samples were investigated via X-ray photoelectron spec-

troscopy (XPS, ESCALAB 250Xi XPS, Thermo Fisher Scientific, San Jose and USA) with λ 

= 633 nm. The material morphological characteristics were evaluated by scanning electron 

microscopy (SEM, SU 8020, Hitachi Limited, Tokyo and Japan) and transmission electron 

microscopy (TEM, JEM-2100 plus, JEOL, Tokyo and Japan). Energy-dispersive spectros-

copy (EDS, APOLLO XL, EDAX, USA) mappings were used for surface element charac-

terization of the co-doped LNMO samples. 

2.3. Electrochemical Measurements 

Electrochemical tests of all the samples were performed by assembling CR2032-type 

coin cells (Shenzhen Meisen Electromechanical Equipment Co., Ltd, Shenzhen and china). 

The positive electrodes were prepared by blending the co-doped LNMO powders, poly 

(vinylidene fluoride), and super-P carbon (8:1:1 by wt.%). The mixture was dispersed in 

an N-methyl-2-pyrrolidone solvent, and the resulting slurries were coated onto Al foil and 

then dried at 105 °C for 12 h under vacuum. The mass loading of the corresponding active 

materials was ≈1.5 mg cm−2 on each electrode. In an Ar-filled glovebox, the coin cells were 

assembled with metallic lithium as the negative electrode, a porous polypropylene sepa-

rator (Celgard 2400, North Carolina and USA), and a carbonate-based electrolyte (1 M 

LiPF6/EC+EMC+DMC (1:1:1 by volume)). The charge and discharge measurements of the 

cells were carried out in the voltage range of 3.5−5.0 V (1C = 140 mA g−1) using a testing 

system (CT2001A, Land, Wuhan Shenglan Electronic Technology Co., Ltd, Wuhan and 

china) at 25 °C. Cyclic voltammetry (CV, 0.1−0.5 mV s−1) and electrochemical impedance 

spectroscopy (EIS, 100 kHz–0.01 Hz, Gamry, Commonwealth of Pennsylvania and USA) 
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tests were conducted using an electrochemical workstation (Interface 1000, Gamry, Com-

monwealth of Pennsylvania and USA) between 3.5 and 5.0 V. 

3. Results and Discussion 

3.1. Material Characterization 

The XRD results of the pure LNMO, LNMO-KCl0.02, LNMO-KCl0.03, LNMO-

KF0.01, and LNMO-KF0.02 are shown in Figure 1a. The diffraction peaks of all the pat-

terns were well indexed to the standard diffraction pattern of spinel structures (JCPDS 

No. 80–2162). The impurities (marked with *) in the five samples are LixNi1−xO phases gen-

erated by LNMO losing oxygen when its calcination temperature exceeds 700 °C, as 

shown in Figure 1b. Based on the XRD patterns for all the samples, the Rietveld refine-

ments were carried out (in Figure S1), and the LixNi1−xO contents and lattice parameters 

are listed in Table 1. The contents of LixNi1−xO for the pure LNMO, LNMO-KCl0.02, 

LNMO-KCl0.03, LNMO-KF0.01, and LNMO-KF0.02 samples were 3.9, 3.3, 1.5, 2.4, and 2.0 

wt.%, respectively. The contents of LixNi1−xO impurities were reduced by the K+/Cl− and 

K+/F− co-doping because Mn-Cl/Ni-Cl and Mn-F/Ni-F bonds are stronger than Mn-O/Ni-

O bonds, which prevented oxygen release from the host lattice [21]. The calculated lattice 

parameters for the pure LNMO, LNMO-KCl0.02, LNMO-KCl0.03, LNMO-KF0.01, and 

LNMO-KF0.02 samples were 8.1726(8), 8.1771(0), 8.1815(2), 8.1768(6), and 8.1754(0), re-

spectively. Compared to pure LNMO, the K+/Cl− co-doping caused the lattice parameters 

to become larger as the K+/Cl− co-doping content increased due to the larger ionic radius 

of K+ (0.133 nm) than that of Li+ (0.076 nm) and the larger ionic radius of Cl− (0.181 nm) 

than that of O2− (0.140 nm). This expanded the Li+ transport channels and facilitated Li+ 

diffusion [35]. LNMO-KF0.01 and LNMO-KF0.02 both possessed larger lattice parameters 

than pure LNMO. However, as the K+/F− co-doping content increased, the lattice parame-

ters of LNMO-KF0.005 (8.17508), LNMO-KF0.01 (8.17686), LNMO-KF0.02 (8.17540), and 

LNMO-KF0.03 (8.16980) increased first and then decreased (Figure S2 shows the Rietveld 

refinements of LNMO-KF0.005 and LNMO-KF0.03). The reason for this phenomenon was 

mainly that the K+/F− co-doping caused the LNMO-KF0.02 and LNMO-KF0.03 to become 

more ordered structures with truncated octahedral shapes and the Mn3+ ion content to 

decrease; this was verified by further characterizations, as discussed below. 

 

Figure 1. XRD patterns of all samples compared with the standard LNMO pattern (a); Enlarged 

region of 30–50 degrees for all samples (b). 
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Table 1. Lattice parameters of all samples. 

Sample 
Lattice Parameters 

RP (%) RWP (%) 
LixNi1−xO 

(wt.%) a/Å V/Å3 

Pure LNMO 8.1726(8) 545.8753(5) 10.1 16.0 3.9 

LNMO-

KCl0.02 
8.1771(0) 546.7615(0) 10.4 16.6 3.3 

LNMO-

KCl0.03 
8.1815(2) 547.6486(1) 12.0 17.6 1.5 

LNMO-KF0.01 8.1768(6) 546.7133(6) 10.3 16.0 2.4 

LNMO-KF0.02 8.1754(0) 546.4205(6) 9.4 14.6 2.0 

Distinguishing the crystal structures of all the samples required the use of Raman 

spectroscopy, and the results indicated that they possessed disordered Fd-3m or ordered 

P4332 space groups, as shown in Figure 2. All the samples exhibited intense peaks in the 

~636 cm−1 region, ascribed to the symmetric Mn-O stretching mode of the MnO6 groups, 

and two other peaks in the ~400 and 495 cm−1 region, attributed to the Ni2+-O stretching 

mode [36]. The peak intensity at 636 cm−1 was much stronger than that at 596 cm−1, demon-

strating that all the samples are characteristic of typical disordered Fd-3m structures, 

based on a previous report [37]. Moreover, the splitting peaks between 580 and 630 cm−1 

and the relatively higher peak intensity around 164 cm−1 of the LNMO material are typi-

cally ascribed to the ordered P4332 structure [37]. The LNMO-KCl0.02 and LNMO-KCl0.03 

samples produced similar peaks to the pure LNMO, suggesting that the K+/Cl− co-doping 

did not affect the crystal structures. However, upon increasing the K+/F− co-doping con-

tent, slight peak splitting occurred at around 580–600 cm−1, and peaks with slightly higher 

intensity appeared at around 164 cm−1 for the LNMO-KF0.01 and LNMO-KF0.02, indicat-

ing that the crystal structure tended to show enhanced cation ordered degree by K+/F− co-

doping. 
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Figure 2. Raman spectra of all the samples. 

To confirm the detailed surface oxidation states of the elements in pure LNMO and 

the co-doped samples, XPS was performed, and the corresponding spectra are shown in 

Figure 3. The Mn 2p spectra of the five samples consisted of two main peaks at ~654 and 

~642 eV, assigned to Mn 2p1/2 and Mn 2p3/2, respectively, which matched well with the 

valence state of Mn4+ [38], as presented in Figure 3a–e. The peaks of Mn 2p3/2 fitted by the 

XPSPEAK software indicated the existence of a mixture of Mn3+ (642.3 eV) and Mn4+ (643.4 
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eV). The proportions of Mn3+ calculated based on the peak areas were 61.4%, 61.3%, 61.4%, 

56.5%, and 53.5% for pure LNMO, LNMO-KCl0.02, LNMO-KCl0.03, LNMO-KF0.01, and 

LNMO-KF0.02, respectively. The K+/Cl− co-doping did not affect the amount of Mn3+. 

However, the content of Mn3+ was inclined to decrease with increasing K+/F− co-doping 

content, which agrees with the CV and the charge–discharge curves at the 4 V plateau 

discussed below. The Mn3+ contents of the five samples calculated by XPS were much 

higher than those calculated at the 4 V plateau during the charge–discharge tests, which 

may have been due to the existence of more Mn3+ on the surfaces of the samples instead 

of inside the structures [39,40]. Figure 3f displays the K 2p XPS spectra of LNMO-KCl0.03 

and LNMO-KF0.02. A corresponding satellite peak at ~295.0 eV (assigned to K 2p1/2) is 

evident in both samples after a major peak at ~292.0 eV (ascribed to K 2p3/2). This is con-

sistent with the characteristics of the valence state of K+ [32]. For the LNMO-KCl0.03 and 

LNMO-KF0.02 samples, the Cl 2p3/2 (Figure 3g) and F 1s (Figure 3h) peaks were located at 

198.2 and 684.3 eV, respectively, indicating that the chemical valences of the Cl and F ions 

were both −1 in the two samples [20,41]. 
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Figure 3. XPS spectra of Mn 2p regions for pure LNMO (a), LNMO-KCl0.02 (b), LNMO-KCl0.03 (c), 

LNMO-KF0.01 (d), and LNMO-KF0.02 (e); XPS spectra of K 2p for LNMO-KCl0.03 and LNMO-

KF0.02 (f); XPS spectrum of Cl 2p for LNMO-KCl0.03 (g); XPS spectrum of F 1s for LNMO-KF0.02 

(h). 

Figure 4 shows the particle morphologies of the five samples. The pure LNMO ex-

hibited mainly octahedral shapes with (111) crystal faces, shown in Figure 4a. LNMO-

KCl0.02 and LNMO-KCl0.03 also exhibited octahedral morphologies (Figure 4b,c). How-

ever, the morphologies of K+/F− co-doped particles were different from those of the K+/Cl− 

co-doped particles. As the K+/F− co-doping content increased, the LNMO-KF0.02 showed 

a truncated octahedral structure with mainly a {111} crystal face and extra {100} faces, as 

shown in Figure 4d,e. The positive {100} faces facilitated Li+ diffusion in the LNMO-KF0.02 
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sample, which was beneficial for its electrochemical performance [42,43]. To further in-

vestigate the effect of K+/Cl− and K+/F− co-doping on the particle size, the particle size dis-

tributions were determined for the five samples (about 200–250 particles for each sample 

in Figure S3), as depicted in Figure 5a–e. The particle sizes of both the K+/Cl− and the K+/F− 

co-doped samples decreased with increasing co-doping amount. Compared with the par-

ticle size of pure LNMO (0.967 µm), the particle sizes of LNMO-KCl0.02, LNMO-KCl0.03, 

LNMO-KF0.01, and LNMO-KF0.02 were smaller at 0.794, 0.724, 0.717 and 0.460 µm, re-

spectively. The K+/Cl− and K+/F− co-doping both narrowed the particle size distribution, 

and LNMO-KF0.02 exhibited the smallest particle size. Figure 5f shows that the standard 

deviations of the K+/Cl− or K+/F− co-doped samples were lower than that of the pure 

LNMO, and LNMO-KF0.02 had the smallest standard deviation, suggesting that the 

K+/Cl− and K+/F− co-doping resulted in a more uniform particle distribution [44]. The 

smaller and more homogeneous particle sizes could shorten the Li+ diffusion length. How-

ever, the larger surface area of the co-doped samples could accelerate the side reactions 

between the cathode and electrolyte, leading to capacity fading [16]. Figures S4 and S5 

present the EDS mappings of the LNMO-KCl0.03 and LNMO-KF0.02 samples, respec-

tively. O, Mn, and Ni elements were distributed in the two samples. Moreover, K/Cl and 

K/F were also dispersed homogeneously in the LNMO-KCl0.03 and LNMO-KF0.02 sam-

ples, respectively, and were incorporated uniformly. 

 

Figure 4. SEM images of pure LNMO (a), LNMO-KCl0.02 (b), LNMO-KCl0.03 (c), LNMO-KF0.01 (d), and LNMO-KF0.02 

(e). 
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Figure 6. TEM and HR-TEM images of pure LNMO (a,b), LNMO-KCl0.02 (c,d), LNMO-KCl0.03 

(e,f), LNMO-KF0.01 (g,h), and LNMO-KF0.02 (i,j). 
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3.2. Electrochemical Properties 

To investigate the effects of K+/Cl− and K+/F− co-doping on the electrochemical kinetics 

of Li+ intercalation/deintercalation in LNMO, CV tests for the electrodes were performed 

in the voltage range of 3.5–5.0 V. Figure 7a shows the CV curves of all samples at a scan 

rate of 0.1 mV s−1. All the curves possessed two peaks: a large one at 4.6–4.8 V caused by 

the redox of Ni2+/Ni4+ and a small one at ~4.0 V attributed to the redox reaction of 

Mn4+/Mn3+, demonstrating that all the samples possessed an Fd3m disordered structure 

[45], in accordance with the Raman and XPS results. As evident in the magnified images 

of the Mn4+/Mn3+ peaks in Figure 7a, LNMO-KCl0.02 and LNMO-KCl0.03 yielded almost 

the same peak areas as pure LNMO, suggesting that the K+/Cl− co-doping did not signifi-

cantly influence the content of Mn3+. However, with increasing K+/F− co-doping content, 

the LNMO-KF0.01 and LNMO-KF0.02 yielded smaller peak areas of Mn3+ than the pure 

LNMO, indicating that K+/F− co-doping reduced the Mn3+ contents. A low Mn3+ ion content 

may inhibit Jahn–Teller distortion and promote cycling performance [46]. To evaluate the 

Li+ diffusion coefficient, CV tests for the five samples were conducted with a scan rate 

from 0.1 to 0.5 mV s−1, as shown in Figure 7b–f. Table 2 lists the potential differences (∆V) 

between the cathodic and anodic peaks for all the samples. As the scan rate increased, 

pure LNMO showed the largest potential difference among the five samples. Further-

more, LNMO-KCl0.03 showed the smallest potential difference, indicating that it exhib-

ited the smallest electrode polarization and the best electrochemical reversibility. The lith-

ium-ion diffusion coefficient can be calculated by the following equation: 

Ip = (2.69 × 105) A n3/2 DLi1/2 C v1/2 

where Ip is the peak current, A is the electrode area (1.13 cm2), n is the number of electrons 

of each molecule in the electronic transfer reaction, C is linked to the concentration of Li+, 

and v is the scan rate (v s−1) [25]. Figure 7g,h shows the slope of the line Ip ∼ v1/2, and the 

diffusion coefficients of lithium ions for the five samples are given in Table 3. The DLi for 

pure LNMO (5.77 × 10−11/6.70 × 10−11) was smaller than those for LNMO-KCl0.02 (9.08 × 

10−11/1.06 × 10−10), LNMO-KCl0.03 (1.14 × 10−10/1.64 × 10−10), LNMO-KF0.01 (6.34 × 10−11/8.79 

× 10−11), and LNMO-KF0.02 (8.33 × 10−11/7.60 × 10−11). The LNMO-KCl0.03 exhibited the 

largest DLi because the K+/Cl− co-doping expanded the Li+ diffusion channels and im-

proved the structural stability. The enhanced DLi for the LNMO-KF0.02 may have been 

due to it having the smallest particle size and more positive {100} crystal faces, which 

shortened the Li+ diffusion path and benefitted Li+ diffusion. The improved Li+ diffusion 

coefficients for the K+/Cl− and K+/F− co-doped samples were favorable for enhancing the 

rate performance. 

Table 2. Potential differences (∆V, V) between anodic (φpa, V) and cathodic (φpc, V) peaks. 

υ 

(mVs−1) 

Pure LNMO LNMO-KCl0.02 LNMO-KCl0.03 LNMO-KF0.01 LNMO-KF0.02 

φpa φpc ∆V φpa φpc ∆V φpa φpc ∆V φpa φpc ∆V φpa φpc ∆V 

0.1 4.827 4.624 0.203 4.819 4.608 0.211 4.804 4.624 0.180 4.804 4.623 0.181 4.811 4.617 0.194 

0.2 4.849 4.581 0.268 4.852 4.577 0.275 4.836 4.589 0.247 4.838 4.587 0.251 4.842 4.585 0.257 

0.3 4.881 4.548 0.333 4.872 4.552 0.320 4.856 4.565 0.291 4.860 4.565 0.295 4.864 4.562 0.302 

0.4 4.901 4.519 0.382 4.890 4.534 0.356 4.874 4.547 0.327 4.877 4.545 0.332 4.884 4.541 0.343 

0.5 4.921 4.495 0.426 4.907 4.511 0.396 4.893 4.524 0.361 4.890 4.528 0.362 4.90 4.522 0.378 
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Figure 7. Cyclic voltammetry curves for all samples at 0.1 mV s−1 (a) and for samples individually 

at scan rates from 0.1 mV s−1 to 0.5 mV s−1 (b–f); Plots of the peak current (ip) vs. the square root of 

the scan rate (v1/2) (g,h). 

Table 3. The diffusion coefficients of Li+ in all samples. 

Sample Li-Extraction DLi (cm2 s−1) Li-Insertion DLi (cm2 s−1) 

Pure LNMO 5.77 × 10−11 6.70 × 10−11 

LNMO-KCl0.02 9.08 × 10−11 1.06 × 10−10 

LNMO-KCl0.03 1.14 × 10−10 1.64 × 10−10 
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The rate capabilities of the five electrodes are presented at different C-rates in Figure 

8a. K+/Cl− and K+/F− co-doping effectively enhanced the discharge capacities of the elec-

trode materials compared to those of pure LNMO at high C-rates, as shown in Table 4. 

Specifically, LNMO-KCl0.03 exhibited the highest discharge capacities of 116.1, 109.3, and 

93.9 mAh g−1 at high C-rates of 5C, 7C, and 10C, respectively, compared with the values 

of 95.2, 73.0, and 27.6 mAh g−1 for pure LNMO. Figures S6a,b show the rate capabilities 

for different contents of K+/Cl− co-doped LNMO (LNMO-KCl0.02, LNMO-KCl0.03, and 

LNMO-KCl0.04) and K+/F− co-doped LNMO (LNMO-KF0.005, LNMO-KF0.01, LNMO-

KF0.02, and LNMO-KF0.03) samples. After an appropriate amount of K+/Cl− or K+/F− co-

doping, the LNMO-KCl0.03 and LNMO-KF0.01 samples delivered optimal rate perfor-

mances. The rate capability of LNMO-KF0.01 was better than that of the pure LNMO but 

worse than that of LNMO-KCl0.03. The improved rate capability of LNMO-KCl0.03 was 

attributed to the synergistic effect of K+ and Cl− co-doping, which gives it the highest Li+ 

diffusion coefficient and a stable structure. The charge–discharge curves of all the samples 

exhibited three plateaus (see Figure 8b–f): the 4.6 and 4.7 V plateaus were assigned to 

Ni2+/Ni3+ and Ni3+/Ni4+ redox reactions, and the 4.0 V platform was ascribed to Mn3+/Mn4+ 

redox reactions, corresponding to a disordered Fd3m space group, which is in accordance 

with the Raman and CV results. The relative Mn3+ ion contents of the five samples could 

be qualitatively evaluated by dividing the initial discharge capacity at 0.2C in the range 

of 3.8–4.3 V [47]. The capacity percentage values decreased to 10.2% for LNMO-KCl0.02, 

10.2% for LNMO-KCl0.03, 9.6% for LNMO-KF0.01, and 9.3% for LNMO-KF0.02 compared 

with 10.4% for the pure LNMO. This result further indicated that the K+/Cl− co-doping 

scarcely affected the Mn3+ ion content, while the K+/F− co-doping reduced the Mn3+ ion 

content as the K+/F− co-doping content increased. 
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Figure 8. Rate capability of all samples from 0.2C to 10C (a); Galvanostatic charge/discharge curves 

at different C-rates for all samples at 3.5–5.0 V (b–f). 
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Figure 9 shows the cycling performances of all the samples, and the data are summa-
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K+/Cl− and K+/F− co-doping could alleviate the electrode polarization and improve the elec-

trochemical kinetics. The LNMO-KCl0.03 and LNMO-KF0.02 exhibited the smallest po-

larization degrees of all the samples. The synergistic effect of the appropriate K+/Cl− and 

K+/F− co-doping was responsible for the improved cycling performances of LNMO-

KCl0.03 and LNMO-KF0.02. Both K+/Cl− and K+/F− co-doping reduced the formation of 

LixNi1−xO impurities, decreased the particle sizes, expanded the Li+ diffusion channels, ac-

celerated the electron migration, and improved the structural stability. Moreover, LNMO-

KF0.02 showed the best cycling stability. In addition, the synergistic effect of K+ and F− co-

doping not only exhibited a truncated octahedral morphology with more {100} faces but 

also exhibited the smallest particle size and lowest Mn3+ ion contents among the five sam-

ples. This allowed the Li+ diffusion between the active electrode particles to occur more 

easily, inhibited the Jahn–Teller distortion, and was therefore beneficial to improving the 

cycling stability. 
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Figure 9. Cycling performances of all samples at 5C for 500 cycles at 3.5–5.0 V. 

Table 5. Discharge capacity retention of all samples at 5C after 500 cycles at 25 °C. 

Sample 

Discharge Capacity at 

5C (mAh g−1) 
Retention at 

5C (%) 
1st cycle 500th cycle 

Pure LNMO 95.3 70.4 73.9 

LNMO-KCl0.02 109.6 85.2 77.7 

LNMO-KCl0.03 116.5 96.3 82.7 

LNMO-KF0.01 111.2 91.7 82.5 

LNMO-KF0.02 105.1 90.2 85.8 

To further understand the detailed effects of the K+/Cl− and K+/F− co-doping on the 

electrochemical properties of LNMO, EIS plots of the five electrodes after 200 cycles at 2C 

were obtained, as shown in Figure 10. Consistent with our previous studies [17,25], the 

five Nyquist profiles were similar. Each was constituted by a single semicircle in the high-

to-medium-frequency region and a sloped line in the low-frequency region, which were 

fitted using the modified Randles–Ershler equivalent circuit shown in the inset of Figure 

10. In the equivalent circuit, Rs represents the electrolyte resistance, Rct is the contribution 

of the charge transfer resistance at the interface of the electrode and electrolyte, and CPE 

is the double-layer capacitance [48]. The short sloped line is the Warburg impedance (Zw), 

related to the solid diffusion of Li+ into the LNMO material. The corresponding fitting 

results are listed in Table 6. The Rct value of pure LNMO (121.8 Ω) was higher than those 

of LNMO-KCl0.02 (100.5 Ω), LNMO-KCl0.03 (82.6 Ω), LNMO-KF0.01 (81.8 Ω), and 

LNMO-KF0.02 (77.1 Ω), suggesting that both K+/Cl− co-doping and K+/F− co-doping could 

reduce the charge transfer resistance, maintain stable interface structures, and promote 

charge transfer during the Li+ extraction/insertion processes. 
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Figure 10. EIS curves (Nyquist plots) and the equivalent circuit (inset) for all samples after 200 cycles 

at 2C. 

Table 6. The values of Rs and Rct of all samples after 200 cycles at 2C. 

Sample Rs(Ω) Rct(Ω) 

Pure LNMO 1.6 121.8 

LNMO-KCl0.02 1.6 100.5 

LNMO-KCl0.03 1.5 82.6 

LNMO-KF0.01 1.7 81.8 

LNMO-KF0.02 1.7 77.1 

4. Conclusions 

The effects of K+/Cl− and K+/F− co-doping on the structures, morphologies, and elec-

trochemical performances of LNMO were systematically studied. Both K+/Cl− co-doping 

and K+/F− co-doping increased the lattice parameters and reduced the LixNi1−xO impurities, 

which expanded the Li+ transport channels and improved the structural stability. Further-

more, the K+/F− co-doping could also decrease the Mn3+ ion content and inhibit Jahn–Teller 

distortion. Besides this, both the K+/Cl− and the K+/F− co-doping decreased the particle size 

and made the particles more uniform, resulting in a shorter Li+ ion diffusion distance. 

Especially at a high C-rate, the LNMO-KCl0.02, LNMO-KCl0.03, LNMO-KF0.01, and 

LNMO-KF0.02 samples exhibited enhanced rate and cycling performances compared to 

pure LNMO. The LNMO-KCl0.03 showed the best rate capability with a discharge capac-

ity of 93.9 mAh g–1 at 10C and superior cycling performance with capacity retention of 

82.7% after 500 cycles at 5C. However, LNMO-KF0.02 delivered the best cycling stability 

and retained 85.8% of its initial capacity. The excellent electrochemical performances of 

the K+/Cl− and K+/F− co-doped LNMO samples will meet the practical application demands 

of LIBs. 

Supplementary Materials: The following are available online at www.mdpi.com/2079-

4991/11/9/2323/s1, Figure S1: Rietveld refinement results of XRD patterns of pure LNMO (a), 

LNMO-KCl0.02 (b), LNMO-KCl0.03 (c), LNMO-KF0.01 (d), and LNMO-KF0.02 (e), Figure S2: 

Rietveld refinement results of XRD patterns of LNMO-KF0.005 (a) and LNMO-KF0.03 (b), Figure 

S3: SEM images of pure LNMO (a), LNMO-KCl0.02 (b), LNMO-KCl0.03 (c), LNMO-KF0.01 (d), and 

LNMO-KF0.02 (e), Figure S4: EDS images and the corresponding element mapping of O, Ni, Mn, K, 

and Cl for LNMO-KCl0.03, Figure S5: EDS images and the corresponding element mapping of O, 

Ni, Mn, K, and F for LNMO-KF0.02, Figure S6: Rate capability of the samples for pure LNMO, 

LNMO-KCl0.02, LNMO-KCl0.03, and LNMO-KCl0.04 from 0.2 C to 10 C (a); Rate capability of the 

samples for pure LNMO, LNMO-KF0.005, LNMO-KF0.01, LNMO-KF0.02, and LNMO-KF0.03 from 

0.2 C to 10 C (b), Figure S7: The charge/discharge curves of all the samples in the 300th cycle (a) and 

500th cycle (b) at 5C. 
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