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Abstract: We theoretically study the multiple sharp Fano resonances produced by the near-field
coupling between the multipolar narrow plasmonic whispering-gallery modes (WGMs) and the
broad-sphere plasmon modes supported by a deep-subwavelength spherical hyperbolic metamaterial
(HMM) cavity, which is constructed by five alternating silver/dielectric layers wrapping a dielectric
nanosphere core. We find that the linewidths of WGMs-induced Fano resonances are as narrow as
7.4-21.7 nm due to the highly localized feature of the electric fields. The near-field coupling strength
determined by the resonant energy difference between WGMs and corresponding sphere plasmon
modes can lead to the formation of the symmetric-, asymmetric-, and typical Fano lineshapes in the
far-field extinction efficiency spectrum. The deep-subwavelength feature of the proposed HMM
cavity is verified by the large ratio (~5.5) of the longest resonant wavelength of WGM; ; (1202.1 nm) to
the cavity size (diameter: 220 nm). In addition, the resonant wavelengths of multiple Fano resonances
can be easily tuned by adjusting the structural /material parameters (the dielectric core radius, the
thickness and refractive index of the dielectric layers) of the HMM cavity. The narrow linewidth,
multiple, and tunability of the observed Fano resonances, together with the deep-subwavelength
feature of the proposed HMM cavity may create potential applications in nanosensors and nanolasers.

Keywords: spherical hyperbolic metamaterial cavity; multiple Fano resonances; tunability

1. Introduction

With the rapid development of plasmonics in the past decades, the plasmon reso-
nances supported by the metallic nanostructures provide us with a possible strategy for
device miniaturization down to the nanometric scale [1]. Meanwhile, the intrinsic Ohm
loss of metal materials often leads to a broad spectral linewidth, which further limits
the overall performance of the plasmon-based nanodevices [1]. Hence, engineering the
plasmon mode with a narrow linewidth in the metallic nanostructures is of crucial im-
portance for improving the device performance. Fano resonance (FR) is a well-known
interference phenomenon between a discrete autoionized state and a continuum state,
which is typically characterized by an asymmetric lineshape and first discovered in atomic
physics [2]. Similarly, the interference arising from the coupling between subradiant “dark”
and superradiant “bright” plasmon modes in metallic nanostructures can also lead to
the formation of FR [3-7]. FR in plasmonic systems has been generally recognized as an
efficient strategy to narrow the linewidths of the plasmon modes [3,8,9], and thus has
been widely utilized for improving the performances of FR-based nanodevices, such as
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plasmon rulers [10], nanolasers [11], nanosensors [12-19], molecular identifications [20]
and so on. Recently, the multiple FRs have also attracted extensive research attention for
the further improvement and expansion of functionalities in metamaterials and plasmonic
nanostructures [21,22]. Up to now, three main mechanisms have been used to generate
multiple FRs. In the first mechanism, the introduction of “symmetry breaking” into the
plasmonic nanostructures enables the excitation of multipolar (high-order) dark plasmons,
as well as the generation of multiple FRs, which is considered as the main strategy, re-
ported in various plasmonic nanostructures [22-27]. The second mechanism for generating
multiple FRs is through the coupling between plasmon and waveguide modes in hybrid
plasmonic dielectric-waveguide structures [28,29]. This mechanism is capable of achieving
the ultra-narrow (high-Q) FRs due to the non-radiative nature of the dielectric waveguide
modes [29]. More recently, the coupling between the plasmon modes, supported by the
metallic nanostructure, and the multipolar (high-order) dark plasmonic modes, supported
by the nanostructured graphene in the graphene-metal metamaterial, can also generate
multiple FRs (the third mechanism) [30,31]. In the graphene-metal complex nanostructures,
the exceptional electrical and optical properties (ultrahigh electron mobility and tunable
conductivity) of graphene can enable the active tunability of FRs by external voltage in the
terahertz and mid-infrared spectral range [32-34].

A noble metal (Au/Ag) nanoshell consisting of a dielectric nanosphere core and a
concentric metallic layer, is the most symmetrical (spherical symmetry) plasmonic nanos-
tructure that simultaneously exhibits broad (superradiant) sphere plasmon modes and
narrow (subradiant) cavity plasmon modes [35,36]. The near-field coupling between the
cavity and sphere plasmon modes in the metallic nanoshell has been theoretically demon-
strated to generate narrow FR [37,38]. However, the excitation efficiency of cavity plasmons
in the metallic nanoshell is highly dependent on the cavity size. For smaller-sized metallic
nanoshells within the electrostatic limit, the cavity plasmons can only be weakly excited
due to their weak interaction with the incident light [39,40]. Until more recently, benefit-
ting from the successful fabrication of high-quality large-sized metallic shells based on
self-supporting techniques, the multipolar (high-order) sharp cavity plasmons, as well as
their induced multiple narrow FRs, have been experimentally demonstrated to become
efficiently excited and generated due to the phase retardation effect [41]. This reveals that
beyond the “symmetry breaking” effect, the spherical-symmetry plasmonic nanostructures
can also generate multiple FRs.

In the present study, we theoretically investigate the generation of multiple sharp FRs
in a deep-subwavelength spherical hyperbolic metamaterial (HMM) cavity formed by five
alternating silver/dielectric layers wrapping a dielectric nanosphere core. The multiple
sharp FRs are demonstrated to arise from the near-field coupling between multipolar
narrow plasmonic whispering-gallery modes (WGMs) and broad-sphere plasmon modes
supported by the HMM cavity. Furthermore, we also demonstrate that the electric fields of
the WGMs are highly concentrated within the different dielectric layers of the HMM cavity,
revealing the narrow linewidths (7.4~21.7 nm) of the WGMs-induced multiple FRs. In
addition, the symmetric-, asymmetric-, and typical Fano lineshapes of the WGMs displayed
on the extinction efficiency spectrum are demonstrated to be determined by the coupling
strength between WGMs and sphere plasmon modes. Finally, the resonant wavelengths of
the observed multiple FRs can be easily tuned by varying the dielectric core radius, the
dielectric layer thickness, and the refractive index of the proposed HMM cavity.

2. Methods

Figure 1 schematically shows the spherical metal/dielectric multilayers nanostruc-
tures with total radius of R, to be investigated. The proposed nanostructure consisted
of a dielectric nanosphere core (radius: 7, refractive index: n) coated by five alternating
silver/dielectric layers with thicknesses of s and d, respectively. For discussion simplicity,
the refractive indexes of the dielectric layers were kept the same as the dielectric core with
a value of n. The coordinates were chosen such that their origins were located at the center
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of the dielectric core, and the electric field Ej,,, magnetic field Hj,, and the wave vector
k of the incident light were along x, y, and z axes, respectively. The optical properties
(extinction, scattering and absorption) of the plane wave interacting with the proposed
spherical metal/dielectric multilayers nanostructures could be solved analytically based on
the improved recursive algorithm of well-known Mie scattering theory, due to its perfect
spherical symmetry (multilayered sphere) [42,43]. In the calculation, the permittivity of the
silver was taken from the experimental data reported by Johnson and Christy [44]. The
medium outside the cavity was assumed to be air with a refractive index of 1.0.

¥

P dielectric silver

Figure 1. Schematic of a spherical HMM cavity with total radius of R, which consists of a dielectric
nanosphere core (radius: r) and 5 alternating layers of silver (thickness: s)/dielectric (thickness: d).
The refractive indexes of dielectric nanosphere core and the dielectric layers are set as the same
value of n.

In the planar (two-dimensional) layered metal-dielectric multilayers structures, the
effective dielectric tensor could be described by ¢, ¢y, and ¢, in the rectangular coordinate
system, where & = ey = €|, €2 =€ [45]. When the dielectric tensors satisfied the conditions:
g >0 and e; <0, or g1 <0 and e, > 0, the planar metal-dielectric multilayers structures
had hyperbolic-typed dispersion [45]. The effective refractive index theory could be further
expanded to the three-dimensional (spherical) metal-dielectric multilayers structures. In
the spherical coordinate system, the effective dielectric tensor could be described by &;, ¢g,
and e, where gg = £ = €. The & and ¢; are expressed as the following, Equations [46,47]:

&r = emn®/[em(1 — f) + nf] 1)

er = emf + (1 — f) 2)

where f is the ratio of total silver volume to the whole cavity volume, e, is the dielectric
constant of the silver, and 7 is the refractive index of the dielectric materials. When the
dielectric tensors satisfied the conditions: &, > 0 and & < 0, or &; < 0 and & > 0, the spher-
ical metal-dielectric multilayers structures also had hyperbolic dispersion [46,47]. From
Equation (1), the epsilon near the zero (ENZ) point of ¢, corresponded to the ENZ point of
silver materials (A = 265 nm). From Equation (2), the ENZ point of ¢; was determined by
the following Equation:

em = 12(1 — 1/f) ®3)

For the proposed spherical metal-dielectric multilayers structures with different struc-
tural (dielectric core radius, dielectric thickness) and material (dielectric refractive index)
parameters in this paper, the maximum ENZ wavelength of e, was about 355 nm. As a
result, the condition of &; > 0 and & < 0 was satisfied at the spectral range of 400-1600 nm
for the proposed spherical metal-dielectric multilayers structures, demonstrating the hy-
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perbolic dispersion feature of the proposed nanostructures. One of the main features
of the hyperbolic dispersion structures was that the effective refractive index could be
very large [45—47], which could largely decrease the total cavity size and highly concen-
trated the resonant energy into the nanometric dielectric layers of the deep-subwavelength
cavity [46,47].

3. Results and Discussion

Figure 2a displays the calculated total extinction efficiency spectrum, Qex; (total), of
the HMM cavity with the parameters of r = 20 nm, n = 1.4, s = 20 nm, and 4 = 15 nm
(total radius: R = 110 nm). The f factor is calculated as 0.68633. The most obvious spectral
feature is that five narrow resonances characterized by the symmetric, asymmetric, and
typical Fano lineshapes are observed in the total extinction efficiency spectrum, which
is marked as the Fano I (1202.1 nm), II (737.5 nm), III (684.6 nm), [V (564.8 nm), and V
(475.8 nm), from longer wavelength to shorter wavelength, respectively. The ratio of the
longest wavelength mode (1202.1 nm) to the HMM cavity size (diameter: 220 nm) could
reach a large value of 5.5, revealing the deep-subwavelength feature of the HMM cavity.
Decomposing the total spectrum into separated contributions of electric (7;) and magnetic
(b;) Mie modes (the subscript [ represents the angular mode number) is one of the main
advantages of analytical Mie scattering theory, which can help us to precisely identify
the resonant modes and deeply understand the underlying physical mechanism [42,43].
Results of this analysis of the HMM cavity (solid lines), as well as the same-sized solid Ag
nanosphere (dashed lines) for I =1, 2, and 3, are shown in Figure 2b (electric) and Figure 2c
(magnetic), respectively. It is clearly seen from Figure 2 that the observed multiple narrow
FRs are completely derived from the first three-order electric (a1, 4, a3) contributions
(Figure 2b). The first three-order magnetic terms (b1, by, b3) only provide the ultrabroad
linewidth and ultralow intensity contributions to the total extinction efficiency spectrum
in the displayed wavelength range, as shown in Figure 2c. The spherical HMM cavity
can support multipolar sharped plasmonic whispering-gallery modes (WGM, ,,,) with the
resonant energy highly concentrated within different dielectric layers depending on the
mode order number of m [47,48]. The five FRs observed in the total extinction efficiency
spectrum correspond to the excitations of plasmonic WGMs, which are marked as WGM; 1
(Fano I), WGM; 1 (Fano II), WGM; , (Fano I1I), WGM3 1 (Fano IV), and WGM;» (Fano V),
respectively (see Figure 2a,b). Besides the five narrow FRs observed in the total and
decomposed extinction efficiency spectra, a broad and intense extinction peak centered at
629.2 nm is also observed in the solid metal sphere from the contributions of a;, which is
marked as the TM; (dashed magenta line in Figure 2b).

In the following, we perform the near-field profiles at the selected wavelengths to fur-
ther understand the multiple FRs by using the analytical Mie scattering theory [42,43].
Figure 3a—e show the spatial distributions of the electric field intensity enhancement
(1E/Ey1?) at k-E (z—x) plane for the FRs induced by WGM; ;1 (A =1202.1 nm), WGM;;
(A =737.5nm), WGM3 1 (A =564.8 nm), WGM; 5 (A = 684.6 nm), and WGM; 7 (A = 475.8 nm),
respectively. It is clearly seen from Figure 3a—e that the electric field intensities are all largely
enhanced by 215~4380 times, and are tightly concentrated within the different dielectric
layers of the proposed spherical HMM cavity. These highly localized features of electric
fields reveal a small mode volume and low radiative loss of the plasmonic WGMs, and
thus lead to the formation of multiple sharped (high-Q) FRs in the far-field spectrum. In
addition, the electric field intensity distributions of the FRs induced by WGM; 1, WGM3 1,
and WGM3 ;1 are found to exhibit twofold (Figure 3a), fourfold (Figure 3b), and sixfold
(Figure 3c) symmetry features, and are all concentrated within the first dielectric layer
(order number: m = 1), revealing that these three resonances correspond to the excitations of
the electric dipolar (I = 1), quadrupolar (I = 2), and octupolar (I = 3) plasmonic WGMs in the
HMM cavity. Similarly, the electric field intensity distributions for WGM; ; and WGM, »
should have twofold, and fourfold symmetry features, and should be mainly concentrated
within the second dielectric layer of the spherical HMM cavity (order number: m = 2), as
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displayed in Figure 3d,e, respectively. In addition, the electric fields for TM; supported
by the solid metal sphere show a similar twofold symmetry, and are mainly concentrated
at the silver/air interface as shown in Figure 3f, which corresponds to the excitation of
the dipolar sphere plasmon mode. This distribution characteristic also reveals the broad
spectral feature of TMJ due to large radiative loss (Figure 2b), because the resonant energy
is easily radiated into the surrounding medium of air.

>
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Figure 2. (a) The calculated total extinction efficiency spectrum of the HMM cavity with struc-
tural/material parameters of r = 20 nm, s = 20 nm, d = 15 nm and n = 1.4. The total extinction
efficiency spectra of a spherical HMM cavity (solid lines) and a solid Ag nanosphere with radius of
110 nm (dashed lines) are decomposed into separate contributions of the electric (7;) (b) and magnetic
(b;) Mie modes, (c) with the angular mode number of [ = 1,2,3.
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Figure 3. The electric-field intensity (| E/Eg | 2) distributions at k—E(z-x) plane for WGM; 1 (Fano I) (a),
WGMy; 1 (Fano 1I) (b), WGM3 1 (Fano 1V) (c), WGM, o (Fano III) (d), and WGM, , (Fano V) (e) in the
spherical HMM cavity and the sphere plasmon mode (TM% ), supported by a solid Ag nanosphere
(f), respectively. Dashed circle lines indicate the interfaces of the silver/dielectric or silver/air.
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To accurately obtain the characteristics of the resonant modes, the calculated extinction
efficiency spectrum is fitted in the vicinity of the FR by using a typical Fano formula:
F(e) = 0hg + 00 (7 + €)*/(1 + €2), where 71,5 and 0 are the background and normalized
extinction, € = 2(A — Ares)/I with Ares and I' are the resonant wavelength and linewidth
of the resonances, and g is the so-called Fano parameter, which describes the degree
of asymmetry [3]. Figure 4 shows three examples of such a Fano fitting for the three
lowest-order WGMs induced FRs with different line profiles, e.g., WGM; ; (asymmetric
lineshape, Figure 4a), WGM;; (symmetric lineshape, Figure 4b), and WGM; ; (Fano
lineshape, Figure 4c). It is obviously seen from Figure 4 that the fitted curves (olive
lines) are all in good agreement with the theoretical spectra (red lines) for three different
lineshapes, revealing a precise fitting to the FRs. It is also seen from Figure 4 that the
linewidths as narrow as 7.4 ~ 21.7 nm are theoretically predicted for the observed FRs.
It should be pointed out that the multiple FRs generated by the “symmetry breaking”
mechanism in plasmonic nanostructures usually have broad linewidths and need precisely
controlled interparticle separation (on the order of several tens of nanometers) [22,24,49].
The linewidths of multiple FRs produced by the plasmonic dielectric-waveguide coupling
mechanism can be largely decreased to ~2 nm due to the non-radiative feature of the
dielectric waveguide modes [29]. However, the features of planar structures, together with
the relatively large vertical thickness, (the excitation of waveguide modes requiring the
vertical thickness of dielectric layer larger than a critical value) are unfavorable for the
device miniaturization [1]. Compared with the above two mechanisms, our proposed
spherical HMM cavity simultaneously has the characteristics of small device size (deep-
subwavelength for three-dimensional) and the multiple sharped plasmonic WGMs, which
are due to the large effective refractive index and the highly localized feature of resonant
energy (revealing low radiative loss, Figure 3), respectively [46]. In addition, the Fano
parameter (g), as small as 0.02, is obtained for WGMj; 1, revealing the symmetric lineshape
feature (Figure 4b). The g factor increases to 0.13 for the asymmetric lineshape of WGM; ;
(Figure 4a). Especially for the typical Fano lineshape, the g factor can reach a relatively large
value of 0.84 for WGM] », as shown in Figure 4c. It should be pointed out that the lineshapes
of WGMs displayed on the extinction efficiency spectrum arise from the near-field coupling
between the WGMs and the corresponding sphere plasmon modes. For example, the
symmetric lineshape of WGM, ; (Figure 4b) and the asymmetric lineshape of WGM; 1
(Figure 4a) result from the weak near-field coupling because of a large resonant energy
difference between the WGM,;/WGM; ; and the sphere plasmon modes (Figure 2b).
Meanwhile, for WGM)] », its resonant wavelength coincides with the extinction peak of
TM; (Figure 2b), and thus the strong near-field coupling between these two modes leads to
the formation of a typical Fano lineshape in the extinction efficiency spectrum, as shown in
Figure 4c.
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Figure 4. Fano fitting (olive lines) for the FRs induced by WGM; ; (a), WGM,; (b) and WGM; > (c),
respectively. The red lines display the calculated extinction efficiency spectra.
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Next, we mainly focus on the tunability of the multiple sharped FRs induced by the
multipolar plasmonic WGMs in the spherical HMM cavity. As has been demonstrated
in Figure 3, the most electric fields of all the WGMs are highly concentrated within the
dielectric layers of the HMM cavity, which allows us to tune the resonant wavelengths of
the FRs by changing either the refractive index (1) or the thickness (d) of the dielectric layers.
Figure 5 displays the total extinction efficiency spectra of the HMM cavity for different
n ranging from 1.0 to 1.5 with a fixed core radius of r = 20 nm, silver layer thickness of
s = 20 nm, dielectric layer thickness of d = 15 nm, and an f = 0.68633. It is clearly seen that
all the five FRs blue-shift to a shorter wavelength with the decreasing refractive index (n).
It is also apparent that the intensities of the FRs induced by WGM; 1, WGM, ; and WGM3 ¢
are gradually increased due to the enhancement of near-field coupling, which is because
their resonant wavelengths blue-shift to be close to the corresponding sphere plasmon
modes with the decrease in 1 (Figure 5).
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- |
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Figure 5. (a—f) The calculated total extinction efficiency spectra of the spherical HMM cavity for
different n from 1.0 to 1.5, respectively. Other structural/materials parameters: r = 20 nm, s = 20 nm
and d = 15 nm.

Figure 6 shows the total extinction efficiency spectra of the HMM cavity for different
dielectric layer thicknesses of d from 15 nm (a) to 25 nm (b), and 35 nm (c) (other struc-
tural/material parameters: r = 20 nm, s = 20 nm, and n = 1.4). The f factors are calculated
as 0.68633, 0.57419, and 0.49467, respectively. It is interesting that the resonant wavelength
of WGM]  is first blue-shifted, and then red-shifted as the d increases from 15 nm to 35 nm
(Figure 6). The observed blue-shift effect of the WGM); ; is due to the reduced layer-to-layer
coupling for d = 25 nm, as displayed in Figure 6b. As has been demonstrated, the strong
layer-to-layer coupling can lead to the apparent red-shifting of the WGMs in the HMM
cavity when the dielectric layer thickness is smaller than 15 nm [48]. The red-shifting of
WGM; 1 for d = 35 nm is due to the normal size-increased effect (Figure 6c¢). It is also clearly
seen from Figure 6c that a new resonance of WGMy ; is red-shifted into the current spectral
range for d = 35 nm. In addition, the resonant wavelengths of the multiple FRs can also
be tuned by varying the dielectric core radius (r) of the HMM cavity as shown in Figure 7.
It is found that the WGMs clearly red-shift to longer wavelengths as the r increases from
20 nm (f = 0.68633) and 25 nm (f = 0.68053) to 30 nm (f = 0.67448). For r = 25 nm (Figure 7b)
and r = 30 nm (Figure 7c), a new narrow resonance of WGM3, is also red-shifted into the
current wavelength range. Additionally, the resonant positions of WGM; ; and WGM; »
are spectrally overlapped for ¥ = 30 nm, as displayed in Figure 7c.
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Figure 6. (a—c) The calculated total extinction efficiency spectra of the spherical HMM cavity for
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4. Conclusions

In conclusion, we have theoretically demonstrated the generation of multiple sharp
FRs with linewidths as narrow as 7.4~21.7 nm, arising from the near-field coupling between
multipolar narrow plasmonic WGMs and a broad-sphere plasmon mode in a deep sub-
wavelength spherical HMM cavity. The near-field coupling strength between the narrow
WGMs and the broad-sphere plasmon modes in the HMM cavity can lead to the formation
of the symmetric-, asymmetric-, and typical Fano lineshapes in the extinction efficiency
spectrum. The ratio of longest resonant wavelength of WGM; ; to the cavity diameter can
reach a relatively large value of 5.5, clearly revealing the deep-subwavelength feature of
the proposed HMM cavity. In addition, the resonant positions of the multiple sharped FRs
can be easily tuned by varying the dielectric core size, the dielectric layer thickness, and
the refractive index. Based on the above-demonstrated properties, our proposed spherical
HMM cavity could be used for high-performance deep-subwavelength devices, such as
nanolasers [11], nanosensors [20], and plasmon rulers [10].
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