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Abstract: Carbon nanotube field effect transistor (CNT FET) aptasensors have been investigated
for the detection of adenosine using two different aptamer sequences, a 35-mer and a 27-mer. We
found limits of detection for adenosine of 100 pM and 320 nM for the 35-mer and 27-mer aptamers,
with dissociation constants of 1.2 nM and 160 nM, respectively. Upon analyte recognition the 35-mer
adenosine aptamer adopts a compact G-quadruplex structure while the 27-mer adenosine aptamer
changes to a folded duplex. Using the CNT FET aptasensor platform adenosine could be detected
with high sensitivity over the range of 100 pM to 10 µM, highlighting the suitability of the CNT FET
aptasensor platform for high performance adenosine detection. The aptamer restructuring format is
critical for high sensitivity with the G-quadraplex aptasensor having a 130-fold smaller dissociation
constant than the duplex forming aptasensor.
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1. Introduction

Carbon nanotube field-effect transistor aptasensors have been demonstrated as an
effective semiconducting platform for sensor applications in clinical health diagnostics [1]
for the detection of a variety of targets, including small molecules [2,3], proteins [4,5],
and metal ions [6]. Aptamers have been developed as the primary recognition element in
biosensors due to their high specificity and affinity, reproducibility, and small size [7,8].
Aptamers for specific targets are synthesized using the systematic evolution of ligands by
exponential enrichment (SELEX) in vitro and depending on how the target is prepared and
bound, aptamers with different lengths and structures will be selected [9,10]. However, the
selection of optimized aptamers for electronic biosensing in body fluids can be challenging
for many reasons, including the need to overcome Debye screening in biological fluids and
optimize the aptamer morphology to maximize the selectivity sensitivity [11,12]. In the
presence of the target analyte, aptamers are known to adopt a folded 3-D conformation
structure, and these conformational changes of the aptamers are important for the devel-
opment of biosensors. The ability of aptamers to make conformational changes can be
extremely sensitive to the surrounding environment including ionic strength, pH, tempera-
ture, and even metal ions on electrode surfaces [13,14]. For effective CNT FET aptasensors,
the major conformal changes of the aptamer must take place as close to the CNT channel
as possible, e.g., within the Debye length [6,15].

Adenosine plays an essential and complex role in human physiological function, with
impacts in coronary blood flow, tumour immunity, and the development of neurological
diseases [16–18] to name a few. Adenosine can also promote the survival of cancerous
tumours by inhibiting the cell-mediated anti-tumour immune response [19]. Monitoring

Nanomaterials 2021, 11, 2280. https://doi.org/10.3390/nano11092280 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://doi.org/10.3390/nano11092280
https://doi.org/10.3390/nano11092280
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11092280
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11092280?type=check_update&version=1


Nanomaterials 2021, 11, 2280 2 of 11

adenosine levels could be clinically useful for vasodilation, blood pressure control and
antiarrhythmic treatments [20], with the potential of real time monitoring of adenosine in
bio-fluids in the diagnosing and monitoring of cancer patients. Considering the potential
impact of accurate adenosine detection in these clinical settings, the development of a
simple, accurate and sensitive adenosine sensor is highly desirable. Despite the clear
motivation for adenosine sensors, its detection remains a challenge, mainly because of
the low levels found in biological samples. The adenosine level in plasma from healthy
people was from 13 ± 7 nM [21] and significantly increased in patients with cardiogenic
shock to 2.74 ± 1.03 µM and heart failure 1.33 ± 0.27 µM [22]. Numerous methods and
platforms have been developed for detection of adenosine, including colorimetric [23,24],
fluorescence [25,26], and cyclic voltammetry [27,28] on silver nanoparticles [23], graphene
oxide [25], gold [27], and CNTs [28] (see Table S1 for a full summary). Although some
of these sensors have shown the sensitivity required for clinical adenosine detection,
sensitivity in a single sensor over a wide range of adenosine levels and the need of real-
time detection are problems that remain to be solved.

In this study, we create CNT FET aptasensors for detecting adenosine molecules us-
ing two different aptamer sequences, a 27-mer and a 35-mer which are known to adopt
duplex [23] and G-quadruplex structures [29], respectively. Both the 27-mer and 35-mer
adenosine aptamers tested here have previously detected low concentrations of adeno-
sine (21 nM [23] and 5 µM [29], respectively), which are considerably lower than the
several hundred µM concentrations that previous work with different adenosine aptamer
sequences achieved [30,31]. These aptamers have also shown excellent selectivity in pre-
vious studies. The 27-mer duplex aptamer based sensor showed an improved selectivity
to adenosine against control molecules guanin, thymine, urea, L-Lysine, DL-Methionine,
and L-Threonin [23]. The 35-mer aptamer, which forms the G-quadruplex structure upon
binding to the adenosine molecule was reportedly detecting adenosine molecules with
high selectivity when compared to control molecules, cytidine triphosphate, guanosine
triphosphate, and uridine triphosphate [29]. There has been no direct comparison between
the 27-mer and the 35-mer adenosine aptamers on the same sensing platform, with the
G-quadruplex forming 35-mer having only been used in one previous study for adenosine
detection [29]. Here we have found limits of detection for adenosine of 320 nM for the 27-
mer aptamer and 100 pM for the 35-mer aptamer on nominally identical sensing platforms.
Our results show unambiguously that the effect of the conformational changes of aptamers
are important for improved sensitivity in CNT FET aptasensor design.

2. Materials and Methods
2.1. Carbon Nanotube Field-Effect Transistor Fabrication

Thin films of CNTs were fabricated directly onto SiO2/Si substrates using a solution
deposition method [2,32,33]. The CNT suspensions were made by ultrasonication of a
tweezer tip amount of CNT bucky paper (NanoIntegris Isonantube S-99) in 10 mL of 1,2-
dichlorobenzene (DCB) (Sigma Aldrich, St. Louis, MO, USA) for 30 min. SiO2/Si substrates
were cleaned in acetone, IPA and then dried in a stream of nitrogen. A 10 mg/mL solution
of 2-mercaptopyridine (99%, Sigma Aldrich, St. Louis, MO, USA) in ethanol was then
drop-cast over the entire SiO2/Si surface and left for 20 min before rinsing the substrates
in ethanol for 2 s to remove excess solvent. The device chips were submerged into the
CNT-DCB suspension for 2 h and rinsed in ethanol solution for 10 min. The CNT films
were then selectively etched in an oxygen plasma before deposition of Cr (5 nm)/Au
(50 nm) source and drain electrodes, with channels of 40 µm length and 100 µm width.
The electrodes were then encapsulated with photoresist AZ1518 (Microchemicals, Newton,
MA, USA) and hard baked at 200 ◦C for 10 min, creating an open space with dimensions of
10 µm length and 100 µm width in the CNT FET channel to the environment.
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2.2. Aptamer Functionalisation

Two different sequences of adenosine aptamers, the 27-mer and 35-mer (sequences
listed in Table 1) were used as the aptasensor receptors. All aptamers were functionalised
onto the CNT side walls using 1-pyrenebutanoic acid succinimidyl ester (PBASE) as a
molecular linker [34]. The fabricated CNT FETs were submerged into 1 mM PBASE (95%,
Sigma Aldrich, St. Louis, MO, USA) in methanol solution for 1 h, then rinsed a few times
in pure methanol to remove excess PBASE and washed in DI water for 5 s. Meanwhile,
the aptamers were diluted to a concentration of 1 µM aptamer solution in 20 mM Tris-HCl
buffer (Sigma Aldrich, St. Louis, MO, USA) and then denatured at 70 ◦C for 5 min in an
oven. A total of 100 µL of the prepared aptamer solution was added onto the channel of
the CNT FET at room temperature overnight in a closed petri dish. Finally, the unbound
aptamers on the surface were removed by washing the devices with 20 mM Tris buffer and
DI water before drying in N2.

Table 1. DNA sequences used in this study.

Adenosine Aptamer Sequence

27-mer 5′-NH2-ACCTGGGGGAGTATTGCGGAGGAAGGT-3′

35-mer 5′-NH2-AAAAAAAAAACCTGGGGGAGTATTGCGGAGGAAGG-3′

2.3. Electrical Characterisation

The electrical characterisation of the CNT FETs was carried out with an Agilent 4156C
parameter analyser (Agilent Technologies, Santa Clara, CA, USA) connected to the CNT
FETs via micromanipulators and a Rucker and Kolls probes station. Figure 1 shows a
schematic of the electrical characterisation setup of CNT FET aptasensors using liquid-
gated geometry. The source/drain electrodes are connected to the parameter analyser using
micromanipulators. A polydimethylsiloxane (PDMS) well was used to keep the electrolyte
on the channel and a gate voltage was applied via an Ag/AgCl reference electrode. We
have selected a 2 mM tris buffer for these experiments as optimised in our previous work
on potassium detection [6]. For the CNT conductance measurement, the liquid-gate voltage
(Vlg) was swept from −0.5 V to +1 V while the source-drain voltage (Vds) was set at
100 mV. For real-time electrical aptasensor measurements, Vlg was set at 0 V, and Vds is
set at 100 mV. The readings were recorded at the interval of 1 s. Initially, 100 µL of 2 mM
Tris-HCl buffer was added into PDMS well as an electrolyte for liquid measurements. As
the first test, another 10 µL of the 2 mM Tris-HCl buffer solution was added into the well.
After the initial buffer addition of 10 µL buffer, adenosine solutions were added to the
PDMS well every 500 s.
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3. Results
3.1. Characteristics of CNT FET Aptasensors

Figure 2a shows the optical microscope image of the encapsulated channel of one of
the CNT FETs fabricated. Only a 10 µm length by 100 µm width part of the channel is
open to the environment and the electrodes and the CNT-metal interface is completely
encapsulated by the photoresist layer. The encapsulation was applied to electrically isolate
the source-drain electrodes and the Schottky junctions at the metal-CNT interface from the
gate electrolyte [6,15]. Figure 2b shows an atomic force microscopy (AFM) image of the
CNT channel deposited on the SiO2/Si substrates and confirms the presence of large CNT
bundles as well as smaller bundles or isolated CNTs, similar to our previously reported
work [15,35]. The average lengths of the CNTs were measured as 2.14 µm and the CNT
bundle diameter were found to be around 10–20 nm similar to our previous work [15]. All
the CNT devices used in this study were fabricated under similar conditions, allowing us to
minimise the device-to-device variation. The transfer characteristics of the CNT FETs were
measured in 2 mM Tris buffer before and after the immobilisation of both the adenosine
aptamers as shown in Figure S1. The results confirmed the immobilization of aptamers on
the CNT channel.
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which consist of large bundles with a diameter of ~20 nm and single tubes.

3.2. Sensing Response

The sensing measurements of the CNT FET aptasensors were carried out with Vlg = 0 V
and Vds = 100 mV while recording the current at 1 s intervals. A 2 mM Tris- HCl was
chosen as the buffer, as the 10 nm Debye length of the buffer is close to the fully extended
length of both the aptamers used in this study, 9 nm and 11 nm for the 27 and 35-mer
respectively. Figure 3 shows the current responses for (a) the 27-mer and (b) the 35-mer
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aptasensors as adenosine was added to the PDMS well at intervals of 500 s (black line).
As a control, we have also measured the response of 2 mM Tris-HCl buffer added to the
PDMS well of a similarly prepared CNT FET aptasensor at the same time intervals (red
line). Each measurement started with the initial load of 110 µL of 2 mM Tris-HCl buffer in
the PDMS well for 1000 s. The adenosine solution was then added at volumes between 10
and 25 µM for every 500 s in successively greater concentrations, which resulted in the total
concentration in the PDMS well increasing from 320 nM to 100 µM for 27-mer adenosine
aptamer and 100 pM to 10 µM for 35-mer adenosine aptamer (taking into account the
concentration in the PDMS well prior to each addition). The same protocol of analyte
addition was performed for the 27-mer and 35-mer. The different range of 320 nM to
100 µM for 27-mer adenosine aptamer was chosen as the 27-mer adenosine aptasensor
showed no response to adenosine concentrations of 1 nM and the signal became stable
at 100 µM. The drain current increased as the adenosine concentration was increased for
both aptamer sequences, which is consistent with our previous CNT FET aptasensor and
attributed to electrostatic gating [6,15]. The 35-mer aptasensor showed a greater current
response compared to the 27-mer aptasensor. During the sensing measurements taken
between 1000 s and 3200 s (Figure 3a), the 27-mer aptasensor showed an increase in the
normalised current I/I0 of 14%. The 35-mer aptasensor showed a normalised current
I/I0 increase of 26% over the same time interval (Figure 3b). The detection limit of the
adenosine level achieved was 320 nM and 100 pM for the 27-mer and 35-mer adenosine
aptamers, respectively.
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The target binding dynamics of both the 35-mer and 27-mer aptasensors were then
investigated by comparing the time taken to reach 90% of the maximum sensing response
after adding the target (t90) of both the aptasensors. The t90 values are calculated as given
by Groß, A. et al. [36]. The average t90 value of the 35-mer and 27-mer aptasensors were
found to be 86.5 (±19.5) s, and 202.4 (±98.1) s, respectively. It is clear that the G-quadruplex
forming 35-mer aptasensors showed a much faster sensing response when compared to the
duplex forming 27-mer aptasensors. The faster sensing response can be attributed to the
close proximity of the negative charge in the 35-mer aptamers to the dominating sensing
hotspots in the CNT bundle network [15].

In order to compare the sensitivity of the 27-mer aptasensor to the 35-mer aptasensor
on the CNT FET platform, the normalised sensitivity response (I/I0) is plotted in Figure 4.
The error bars are from I/I0 for three sensing tests from devices fabricated under the same
conditions. The 35-mer adenosine aptasensor achieves a lower detection limit of 100 pM
compared to 320 nM for the 27-mer adenosine aptasensor, and higher sensitivity of 1.055
compared to 1.039, respectively.
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Figure 4. Normalised sensitivity in response to the added adenosine concentration for the 27-mer
(circle) and 35-mer adenosine aptamer (square) immobilised CNT-FETs aptasensors. The lines
indicate the corresponding Hill-Langmuir fittings of the sensing response.

The fitting curves of the sensing responses, Figure 4, follow the Hill-Langmuir
isotherm model for equilibrium binding of a ligand by a receptor [37,38] given as:

I
I0

= A

(
c

Kd

)n

1 +
(

c
Kd

)n + Z, (1)

where A presents the maximum response when all binding sites are occupied, c is the
adenosine concentration, Kd is the dissociation constant, n is the Hill coefficient, and Z is
an offset parameter. The best fit (R2 > 0.99) values of the Hill-Langmuir model for both
the 27-mer and 35-mer adenosine sequences are summarized in Table 2 where the Hill
coefficient value of n < 1 indicates a negative cooperativity in the binding of adenosine
molecules to the CNT FET biosensor. Negative cooperativity represents when the binding
of a ligand to a specific aptamer receptor makes it more difficult for that aptamer to then
bind to other molecules, resulting in the most sensitive responses [39]. Similar negative
cooperativity was also observed by graphene FET aptasensors for detection of cytokine [40]
and thrombin [41], and CNT FETs to detect protein [42].
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Table 2. Summary of the best-fit parameters from the Langmuir-Hill isotherm for the 35-mer and
27-mer adenosine aptasensors.

Aptamer
Sequence A Kd N Z

35-mer 0.09 ± 0.015 (1.2 ± 1.08) × 10−9 M 0.2 ± 0.03 0.97 ± 0.01
27-mer 0.07 ± 0.02 (1.6 ± 1.4) × 10−7 M 0.6 ± 0.08 0.96 ± 0.02

From the Hill-Langmuir isotherm model, the dissociation constant Kd for the interac-
tion between adenosine molecules and the 35-mer aptamers was 1.2 nM, which is 130-fold
smaller than the 160 nM found for the 27-mer aptamers. These results are substantially
lower than the first reported dissociation constant of an adenosine aptamer/adenosine
complex of 6 µM [43]. Prior to our work, the lowest Kd reported for an adenosine aptasensor
was 400 nM [44], achieved via a triplex DNA aptamer sequence. Moreover, our 27-mer
CNT FET aptasensor has a Kd value of 160 nM, which is more than 20-fold stronger than the
3.7 µM reported for the same adenosine sequence using a dual-polarization interferometry-
based technique [44]. Presently there are no reported values of the dissociation constant
for the 35-mer aptamer. The choice of the 27-mer and 35-mer aptamers used here was
based on a literature survey where these sequences have been shown to have excellent
limit of detection, up to 21 nM [23,45,46] and 5 µM [29], respectively, however there are no
reported Kd values for comparison.

4. Discussion

There are several possibilities that could cause the differences in Kd between the
27-mer and 35-mer aptamers tested here and those in the literature and we need to be
cautious when interpreting this data. The sensing platform in our experiments is a CNT
FET, which is ultrasensitive to charge modulation close to the CNT surface and within the
Debye limit. Furthermore, our CNT film is not flat and uniform, the morphology of the
device includes various junctions and conduction paths. This means that the sensitivity of
the sensor is not purely governed by the CNT-aptamer-analyte interactions in the same
way as other platforms and CNT junctions may be playing a key role in enhancing the
aptasensor sensitivity [15]. Moreover, the variation between the choice of buffer solutions
and pH value between our work (2 mM Tris-HCl, pH 7.4), and those used by other teams
(Table S1), can also significantly affect the aptamer binding constants. Finally, the actual
nucleotide sequences for adenosine detection used in this work are different from most of
those used in the other experiments (see Table S1), which should also have a significant
impact on the resulting Kd and sensor performance.

The different sensitivity of the CNT FET 27-mer and 35-mer aptasensors can be ex-
plained by considering the conformational change of aptamers after adenosine exposure.
Figure 5 schematically illustrates the conformation structure of both the aptamers upon
binding with adenosine molecules. The 27-mer adenosine aptamer forms a duplex struc-
ture [23,45,46], whereas the 35-mer aptamer forms a G-quadruplex structure [29].

The structures formed can have a huge influence on the expected sensitivity of the
sensors. The CNT-FET aptasensors are sensitive to any changes in the charge distribution
occurring within the Debye length [6,15,47], which within our sensing set up, with 2 mM
Tris buffer, is 10 nm [6]. If the aptamers were to be extended to the full length of their
chemical chains, they would reach to 9 nm and 11 nm for the 27-mer and 35-mer aptamers,
respectively. When folded, the G-quadruplex structure has been reported around 1.5 nm
to 2 nm [48,49] and the duplex structure is expected to be folded in half to a height of
around 4.5 nm. Both conformation changes of the adenosine aptamers bring the negatively
charged DNA backbone closer to the CNT wall and alter the charge distribution in the
Debye length region of the device [4,50], acting as a molecular gate [4,6]. The G-quadruplex
forming 35-mer aptamer with a shorter folding length of 2 nm compared to the 4.5 nm of
the 27-mer aptamer duplex, shows a more effective and faster sensing response. Moreover,
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when compared to the duplex, the G-quadruplex aptamer has twice the negative charge
density and a higher electrostatic potential per unit length [51] which could be a reason for
the faster sensing response. The 35-mer can also detect adenosine at concentrations as low
as 100 pM compared to 320 nM for the 27-mer aptamer, indicating that the 35-mer has a
stronger binding affinity and is overall more effective as a sensor receptor. Further work
with other sensing platforms is required to verify the improved binding affinity.
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We can compare our adenosine detection performance with other types of adenosine
aptasensors, as shown in Table S1. Our CNT FET aptasensors show significant sensitiv-
ity in the presence of 100 pM adenosine using 35-mer aptamer. This detection level is
comparatively lower than most of previously reported adenosine detection and is within
the biologically relevant testing regime for clinical biosensors. The adenosine concentra-
tion in plasma is 13 ± 7 nM from healthy people [21], however it increases significantly
to a few micromolar in patients with heart failure or cardiogenic shock [22]. Recently
Y. Wang et al. [52] and Das et al. [53] achieved a 0.02 pM and 1 pM adenosine detection
limit respectively. These limit detections were lower than our results, however, the detec-
tion range of these sensors, from 0.05 pM to 17 pM for the gold electrode platform [52] and
1 pM to 10 nM for the CNT FET platform [53], are lower than the full range of the biological
adenosine detection level for unwell patients. Compared to the adenosine aptasensors in
Table S1, the sensitivity of our CNT FET aptasensors with these aptamers have exhibited
multiple advantages. First, our detection limits of 100 pM up to 10–100 µM is within the
biological range of interest for adenosine in human blood. Second, since the real-time
measurement produces an immediate sensing signal, our CNT FET platform could be
useful for clinical diagnosis and monitoring applications. Third, the CNT FET aptasensors
are easy to fabricate, label-free, with high sensitivity and that can meet the needs of point
of care applications.
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5. Conclusions

The aptamer folding structurers are a crucial factor for improved sensitivity of the
CNT FET aptasensors. We have shown that the sensitivity of CNT FET aptasensors for
adenosine was higher for the 35-mer G-quadruplex aptamer in comparison to the 27-mer
duplex aptamer. The 35-mer G-quadruplex aptamer functionalized CNT FET showed a
clear increase in current over the range 100 pM to 10 µM with a level of detection of 100 pM
compared to 320 nM for 27-mer adenosine aptamer. Both aptamers also show an improved
binding affinity in comparison to previous studies, with dissociation constants of 1.2 nM for
the 35-mer and 160 nM for the 27-mer adenosine aptamer by applying the Hill-Langmuir
binding equation. We have demonstrated that the CNT FET aptasensor platform is a viable
candidate for adenosine detection and has performed better than numerous other sensor
platforms and aptamer systems in the literature.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11092280/s1, Figure S1: Transfer characteristics of the (a) 27-mer and (b) 35-mer adenosine
aptamers modified CNT FET (Source-drain voltage was kept at 100 mV for all measurements),
Table S1: Comparison of adenosine detection in various aptasensors platforms.
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