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Abstract: Nanolaminated structure with an average boundary spacing of 67 nm has been fabricated
in copper by high-rate shear deformation at ambient temperature. The nanolaminated structure with
an increased fraction of low angle grain boundaries exhibits a high microhardness of 2.1 GPa. The
structure coarsening temperature is 180 K higher than that of its equiaxial nanograined counterpart.
Formation of nanolaminated structure provides an alternative way to relax grain boundaries and to
stabilize nanostructured metals with medium to low stacking faults energies besides activation of
partial dislocations.

Keywords: nanolaminated structure; deformation mechanism; low angle grain boundaries; thermal
stability; copper

1. Introduction

Formation of laminated structure in nanoscale (boundary spacing < 100 nm) with low
angle grain boundaries (GBs) provides an effective way to stabilize nanostructured metals
and to achieve extraordinary grain refinement. By using surface mechanical grinding
treatment (SMGT) with high strain rates and high strain gradients, nanolaminated (NL)
structure in Ni can be refined to a length scale as small as 20 nm [1], which is one order
magnitude below the saturated grain size induced by traditional plastic deformations [2–4].
The 20-nm lamellae in Ni exhibit superior thermal stability, with its onset temperature
for grain coarsening (Ton) 40 K higher than that of saturated ultrafine-grained structure.
Similarly, extraordinary grain refinement and/or enhanced thermal stability has been
achieved through the formation of NL structure in other metals or alloys with high stacking
faults energies (SFE) such as pure Al [5], interstitial-free steel [6,7], Al-Cu [8,9] and Al
alloy 5052 [10]. Even though the detailed mechanism remains ambiguous, formation of NL
structure can be attributed to extensive dislocation activities during plastic deformation
with high strain rates and strain gradients [5,9,11,12], where large amount of geometrically
necessary dislocations (GNDs) would be generated and line up as laminated boundaries to
accommodate increasing number of dislocations [4,13], finally forming laminated structure
in nanoscale.

However, for those metals or alloys with medium to low SFE, pure Cu for example,
NL structure can hardly be detected except for the localized regions in the shear bands [14].
Experimental observations show that laminated structure can be induced in Cu by severe
plastic deformation (SPD), such as accumulative roll bonding (ARB) [15–17] and equal
channel angular pressing (ECAP) [17,18]. Nevertheless, the boundary spacing between
lamellae is usually as large as 200–300 nm, which is corresponding to the critical grain
size for dislocation storage [19]. Further refining lamellae below the saturation size is
challenging due to the increasing tendency of GB annihilation via dislocation annihilation
and migration of GBs during straining [20]. By increasing strain rates and/or decreasing
deformation temperature, grains of pure Cu can be refined to 40 nm [21–23] and even
down to 10 nm [24]. However, the nanostructured Cu tends to show morphology of
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roughly equiaxed grains with plenty of twins and stacking faults rather than laminated
structure as that in Ni [1,11] and Al [5]. Detailed analysis shows that below 70 nm, full
dislocation activities in Cu may be inhibited while partial dislocation activities become
more favorable [21,22]. As a result, NL structure which can only be fulfilled with full
dislocation behaviors is impeded. To obtain NL structure in Cu need to hinder partial
dislocation activities while enhancing the laminated boundary generation by inducing
higher density of GNDs.

In addition to grain size, deformation conditions, such as temperature and strain
rate, et al., also affect deformation mechanism significantly [23], which provides a possible
way to generate NL structure in Cu with boundary spacing smaller than 200 nm. In our
recent study about tension induced GBM in nanograined (NG) Cu [25], it has been found
that full dislocation motion plays a key role in mechanically induced GBM and results in
an increasing fraction of low angle GBs. In other word, although the deformation in Cu
with grain size range from ~200 nm to 70 nm can be dominated by mechanically induced
GBM, low angle GBs are still generating through full dislocation motions in this process.
In this study, SMGT was employed to try to generate NL structure in Cu. The process
was conducted at room temperature (RT) rather than liquid nitrogen temperature (LNT)
to pump-in full dislocations as many as possible. High strain rates of SMGT facilitates
dislocation generation, while a modest temperature is beneficial for suppressing partial
dislocation activities and full dislocation annihilation as well. Additionally, high density
of GNDs can be induced by high strain gradient during SMGT [26]. As NL structure is
fabricated in Cu, its stability has also been identified.

2. Materials and Methods

Fully recrystallized coarse-grained oxygen-free pure Cu (99.97 wt.%) rods with an
average grain size of 25 µm were used in this work. The rods were machined to a diameter
of ~10 mm and then subjected to SMGT (BYJC-OKUMA, Beijing, China) for 7 passes. The
principle and setup of the SMGT were introduced by previous works [5,21,22,25]. During
SMGT processing, the rod sample rotated at a velocity of 100 r/min while a polished
hemispherical WC/Co tip (Φ = 6 mm) penetrated the sample surface by 40 µm deep and
slid along the sample at a velocity of 2.5 mm/min. The sample was cooled by water rather
than liquid nitrogen to maintain ambient temperature. The roughly equiaxed NG sample
in Ref. [25] processed by SMGT at liquid nitrogen temperature (LNT) is also included
for comparison.

The treated surfaces of the as-prepared samples were protected by electro-plating a
pure Cu film coating before microhardness test and annealing process. The samples were
then annealed at different preset temperature for 30 min and air-cooled down to room
temperature for thermal stability investigation. Samples were mechanical grinded and
then electrolytic polished before cross-sectional microstructure observations and in-depth
microhardness measurements.

Microhardness of the treated sample was measured on a Qness Q10 A+ Automatic
Vickers Hardness Tester (QATM, Golling, Austria) with a load of 20 g and a loading dura-
tion of 10 s. In-depth microhardness distributions were measured from the cross-sectional
view, i.e., on the surface vertical to the transversal direction of the rod. Microhardness of
the topmost surface layer was measured from the planar view, i.e., on the surfaces vertical
to the normal direction of the rod.

Cross-sectional morphology observation of the as-prepared and the as-annealed
samples were carried out on an FEI Verios 460 scanning electron microscope (SEM)
(FEI Inc., Hillsboro, OR, USA) operated at 18 kV. Orientation information was determined
by using electron backscatter diffraction (EBSD) equipped on an FEI Nova NanoSEM 450
(FEI Inc., Hillsboro, OR, USA) with a step size of 20 nm. Detailed microstructure was char-
acterized by an FEI Talos F200X field emission gun transmission electron microscope (TEM)
(FEI Inc., Hillsboro, OR, USA) operated at 200 kV. TEM foils were mechanically thinned
down to 40 µm, followed by final thinning by using double-jet electrolytic polishing.
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3. Results

Typical gradient microstructure is induced in the surface layer of coarse-grained
Cu after SMGT processing (as shown in Figure 1a) owing to the gradient distribution of
plastic strain and strain rates [1,9]. It should be noted that the topmost 1-µm-thick layer
was removed from our characterization to avoid any potential contamination and surface
effects. In the top 10 µm-thick surface layer, NL structure is formed with lamellae thickness
mainly ranging from 30 nm to 120 nm (Figure 1b), averagely 67 ± 25 nm, which is different
from the NG sample processed by SMGT at cryogenic temperature where nano-sized
grains are almost equiaxed [22,25]. Deformation twins can rarely be observed within the
nano-laminates. The laminated boundaries are up to several microns in length, giving an
estimated grain aspect ratio of about 10–20, such as those observed in the surface layer
of other metals and alloys, such as Ni, Fe, Al and Al alloy [1,5,7,9]. Corresponding to the
microstructural gradients, a gradient distribution of microhardness can be detected in the
deformed layer, as plotted in Figure 1c. The NL layer exhibits a high hardness of 2.1 GPa,
17% higher than that of NG sample with similar grain size [25].
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Figure 1. (a) Typical SEM image showing the gradient microstructure of SMGT processed Cu.
(b) TEM image of the NL structure at a depth of ~5 µm from the treated surface. (c) Microhardness
distribution of the sample processed by SMGT at RT and at LNT [25].

The {111} pole fifig (Figure 2a) shows that the texture components of NL structure are
major {111}<112>, suggesting a strong simple shear deformation in the top surface layer
during processing. Misorientation distributions of NL sample and NG sample (Figure 2b)
show that the fraction of low angle GBs in the NL sample (~30%) is significantly higher
than that of NG sample (~8.5%). A typical bright field TEM image illustrated in Figure 2c
delineates the straight and sharp boundary dividing two lamellae. The boundary boxed
by a white rectangular is further magnified in Figure 2d, which shows the atomic lattice
structures of the two lamellae across the boundary. The boundary is faceted at atomic level,
similar as the GB structure observed in Refs. [1,5,11], which is resulted from adjustment of
boundary structures for lowering excess energy. A minor orientation change of 3.7◦ can
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be measured from the inserted fast Fourier transformation (FFT). One-dimensional {110}
fringes (slip planes) are shown in Figure 2e, revealing the presence of the regularly arranged
dislocations. It can be counted that a full dislocation appears every 15–16 atomic plane,
suggesting a misorientation of 3.6–3.8◦ (arctan 1/16–arctan 1/15) according to geometric
model, which is consistent with that measured by FFT and high-resolution TEM.
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Figure 2. (a) {111} pole figure obtained from EBSD data of the NL sample. (b) Misorientation distribution of the NL and NG
sample [25]. (c) Typical bright field TEM image showing the faceting boundary between two lamellae. (d) High-resolution
TEM image of white rectangular area in (c) and its corresponding FFT pattern. (e) Corresponding one-dimensional {110}
fringes of (d), showing the presence of regularly arranged full dislocations.

By properly adjusting the deformation parameters (decreasing strain rates and increas-
ing deformation temperature) during the SMGT process, full dislocation motions (GBM)
are significantly facilitated although little deformation twinning occurs (corresponding
to a twin boundary fraction of 4.6%, counted by EBSD). The thickness of grains with
sizes ranging from ~200 nm to 70 nm (where pronounced mechanically induced GBM
happens) also increases from 50 µm in the LNT-SMGT sample [21] to more than 100 µm
in the RT-SMGT sample, suggesting that mechanically induced GBM, which is related
to full dislocation motion [25], plays a more important role in the RT deformation pro-
cess. The pronounced full dislocation activities are further evidenced by the substantial
texturing among the NL structure (Figure 2a). Even though mechanically induced GBM
generally causes grain coarsening and hinders the processing of nanograined materials
by plastic deformation [21], laminated structure is refined to nanoscale as high density
of GNDs is generated and accumulated in the topmost surface layer with high strain
gradients (0.63 µm−1) and high strain rates (102–103 s−1). Formation of NL structure can
be attributed to the increased fraction of low angle GBs generated by mechanically induced
GBM [25].

Thermal stability of the NL specimen was examined by annealing at different tempera-
tures for 30 min. No obvious change is observed in either the morphology or the boundary
spacing of NL after annealing at 593 K. As annealing temperature reaches 633 K, although
no apparent recrystallization can be detected from the EBSD image (Figure 3a), short-
ening and fragmentation of the nanolaminates can be detected (as shown in Figure 3b),
which is frequently observed in the structural coarsening process of NL structure [27].
Statistical measurements of TEM (Figure 3c) show that average thickness of the NL layer
increases slightly from 67 ± 25 nm in the as-prepared samples to 104 ± 40 nm in the
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as-annealed ones (633 K). By contrast, the original ultrafine structures in deeper layers
beneath the NL structure coarsened into micrometer-sized grains under the same annealing
condition (Figure 3a).
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Previous studies [21,22,28,29] have shown that stability of pure metals and degree of
GBM are grain size dependent. With the decrease of grain size, stability of the grains gener-
ally decreases and GBM process becomes more pronounced due to the increasing density
of GBs with high mobility. However, when the grain size is below ~70 nm, autonomously
GB relaxation (GBR) process accompanied with transition of deformation mechanism is
triggered by the interaction of GBs and partial dislocations [22]. As a result, stability of
pure Cu increases with the decreasing grain size, as plotted in Figure 4. The 10-nm Schwarz
crystal in Cu is even stable against grain coarsening when close to the equilibrium melting
point [24]. Although intensive boundary relaxation can be triggered by rapid heating [30],
deformed grains of about 70 nm in size show the worst stability and grain coarsening
occurs when annealed at temperature lower than 0.3 Tm. However, the present NL struc-
ture with thickness equivalent to the most unstable grain size exhibits excellent thermal
stability, with its Ton is 180 K higher than that of its equiaxed NG counterpart (Figure 4).
Moreover, the NL structure also exhibits an enhanced mechanically structural stability
against grain coarsening, which can be reflected by the elevated microhardness of 2.1 GPa.
The value of microhardness is even higher than that of Hall-Petch relationship extrapolated
from the coarse grained Cu [31], which is understandable due to the presence of defects
within the laminates (Figure 1b). The nanostructured pure Cu with notably instable sizes is
stabilized by pumping in more GNDs and forming low energy laminated boundaries. It
is conceivable that intensive GBR, originating from the generation of nanolamellae with
atomically ordered boundaries, is triggered by full dislocation slips during SMGT defor-
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mation at ambient temperature. Formation of NL structure with increased fraction of low
angle boundaries provides an alternative way to relax GBs and to stabilize nanostructured
Cu besides activation of partial dislocations in plastic deformation.
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4. Conclusions

NL structure with an average boundary spacing of 67 nm is fabricated in Cu with
medium to low SFE through SMGT process at ambient temperature. Formation of textured
NL structure with an increased fraction of low angle boundaries can be attributed to the
full dislocation dominated deformation with high shear strain rates and strain gradients.
The NL Cu with elevated microhardness of 2.1 GPa exhibits an enhanced thermal stability,
with its Ton is 180 K higher than that of the equiaxed NG counterpart. Formation of NL
structure provides an alternative way to stabilize nanostructured metals with medium to
low SFE.
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