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Abstract: MoS2/C nanocomposite coatings were deposited on a 304 stainless steel plate by unbal-
anced magnetron sputtering from carbon and molybdenum disulfide targets, and the target current
of MoS2 was varied to prepare for coating with different carbon contents. The mechanical and
tribological properties of the MoS2/C nanocomposite coating with different carbon contents were
studied using a low-velocity impact wear machine based on kinetic energy control, and the substrate
was used as the comparison material. The atomic content ratio of Mo to S in the MoS2/C coating
prepared by unbalanced magnetron sputtering was approximately 1.3. The dynamic response and
damage analysis revealed that the coating exhibited good impact wear resistance. Under the same
experimental conditions, the wear depth of the MoS2/C coating was lower than that of the substrate,
and the coating exhibited a different dynamic response process as the carbon content increased.

Keywords: MoS2/C coating; impact wear; damage mechanism; dynamic response

1. Introduction

Transition metal dichalcogenides (TMDs) have drawn significant attention in recent
years due to their excellent electrical conductivity, good chemical stability, and high me-
chanical strength [1,2]. The individual crystallites of TMDs have layered structures, which
can form a low shear strength friction film in a vacuum or in dry air, resulting in an ex-
tremely low coefficient of friction [3]. As a typical representative of TMDs, MoS2 coating
has been widely used in aerospace and other fields. The main failure modes of coatings
in these fields are wear and impact failure, and coatings are difficult to repair in a space
environment, so it is necessary to study their friction and impact resistance properties.
MoS2 coating has good self-lubricating properties that can be attributed to the proper
combination of grain size, two-crystal orientation, and absence of contaminants [4–7]. The
MoS2 coating under ultra-high-pressure conditions has a coefficient of friction of 0.001 [8,9].
However, the porous columnar structure of pure MoS2 coating results in low hardness,
low load-carrying capacity, poor film-based bonding properties, and easy tribochemical
reaction with air, which limit the practical applications of the MoS2 coating [10–13]. At
present, the tribological properties of the MoS2 coating are commonly improved by doping
other elements or compounds. Doping metal elements, such as Ti, Pb, and Au, can improve
the behavior of the MoS2 coating, and the oxidation of MoS2 can be suppressed by the
preferential oxidation of these metals [14–19]. Doping metal compounds, such as ZnO, PbO,
and TiN, reduce the crystallinity of MoS2, but these doped oxides may affect the tribological
properties of MoS2 [20–22]. Doping nonmetallic elements, such as C and N, can improve
coating density, hardness, and oxidation resistance, and is an ideal doping method [23–30].
Gu [31] used direct current magnetron sputtering to prepare MoS2-C composite films with
different carbon contents (carbon content 40.9–73.1 at.%). The amorphous MoS2-C coatings
structure increased the hardness and improved wear resistance. The coating exhibited a
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low coefficient of friction (less than 0.1). The composite structure protected MoS2 from
oxidation and improved the mechanical properties of the coating, which are both excellent
friction properties. Pimentel [32] used radio frequency magnetron sputtering to prepare
Mo-S-C coatings with different carbon contents and MoS2 target power ratios, and the
carbon content in the film was between 13 at.% and 55 at.%. The nanocomposite structure
embedded in the carbon matrix with molybdenum carbide and molybdenum disulfide
particles was characterized by using X-ray diffraction (XRD) and X-ray photoelectron spec-
troscopy (XPS), and its size was less than a few nanometers. The hardness of the coating
increased from 0.7 to 4 GPa with increasing carbon content, and the friction and wear of the
Mo-S-C coating in dry nitrogen were negligible. In humid air, the friction was higher at low
carbon contents, and the friction generally decreased as the load increased. Xu et al. [33]
studied the effects of C doping on the structure, morphology, mechanical properties, and
tribological properties of MoS2/a-C composite films deposited by using radio frequency
magnetron sputtering; when the sputtering power was increased from 0 to 400 W, the
hardness of the composite film increased from 0.22 to 2.23 GPa. In the pin-on-disk tests, the
film deposited with 300 W of graphite sputtering power exhibited low friction in vacuum
and ambient air, but showed different wear and lubrication mechanisms. The Raman
spectrum analysis of the tribological films and debris showed that shear strength induced
long-range reordering of sputtered MoS2 phases into a lamellar structure, whereas most of
the carbon content was immediately released from the tribofilm into debris under vacuum
sliding conditions. Presently, the tribological properties of MoS2/C coatings were mainly
tested using the pin-on-disk friction test machine. To further investigate their tribological
performance, we used a low-velocity impact wear machine based on kinetic energy control
to obtain the dynamic response of the test.

In this study, MoS2/C nanocomposite coatings were deposited on a 304 stainless steel
plate by using unbalanced magnetron sputtering. The effect of C doping on the structure,
morphology, and mechanical behavior of the MoS2/C nanocomposite coating was studied.
The tribological properties of the MoS2/C nanocomposite coating were investigated by us-
ing a low-velocity impact wear machine based on kinetic energy control, and the substrate
was used as the comparison material. The impact behavior and characteristics of the coat-
ings were determined based on the dynamic response of the energy and wear mechanism
in the experiment to determine the optimal carbon content and MoS2 content ratio.

2. Materials and Methods

A 304 stainless steel plate (30 × 30 mm × 2 mm; Crwt% = 18.0, Niwt% = 9.0) was used
as the substrate material, and ultrasonic cleaning was performed in acetone and absolute
ethanol for 20 min. MoS2/C nanocomposite coatings with different carbon contents were
deposited by using an unbalanced magnetron sputtering system (UDP-650). The substrate
was placed vertically on the sample holder of a uniaxial rotating structure. A MoS2
target of 99.9% purity and a high-purity graphite target were placed opposite each other.
Prior to deposition, the vacuum chamber was evacuated to 1 × 10−3 Pa. Afterward, the
304 stainless steel plates were sputter-cleaned with Ar+ ions for 30 min. A Cr target was
used to deposit a transition layer, which improved the adhesion behavior between the
coating and the substrate. Finally, the MoS2/C composite film was deposited. The working
pressure was 1 × 10−3 Pa, whereas the DC bias voltage was −50 V. The target currents of
MoS2 were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 A, whereas the target of C was 3.5 A.

The tribological properties of the coatings were evaluated by using a low-velocity
impact wear machine (Figure 1) [34,35]. This device was driven by a voice coil motor and
can reciprocate in the positive/cosine mode. The damping punch drove the mass under
the excitation of the motor. Owing to the low friction coefficient of the rail (approximately
0.006), the mass could be considered to maintain a constant velocity when impacting and
detaching the plane specimen.
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an ultrasonic bath. The same parameters were tested in the substrate as a reference. Each 
test was repeated twice. 

The surface morphology and cross-section image of the MoS2/C composite coating 
were obtained by using scanning electron microscopy (SEM, JSM-6610, Horiba, Kyoto, 
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Thermo Fisher Scientific, Waltham, MA, USA) with Al K Alpha radiation were used to 
obtain the compositions of the coatings. Raman spectroscopy (LabRam HR800, Horiba, 
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USA) and 3D morphology (Contour GT-K1, Bruker, Karlsruhe, GER) were used to meas-
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and the elastic modulus. The maximum indentation depth was 200 nm to minimize the 
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Figure 1. Low-velocity impact wear machine: (1) voice coil motor, (2) damping punch, (3) rail,
(4) impact block, (5) motion detector, (6) impact ball, (7) sample, (8) force sensor.

The tribological performance of the coating was tested at room temperature. The mass
of the impact block was 110 g, and the impact velocity was 50 mm/s. The number of cycles
was 10,000. The impactor was a GCr15 steel ball, with a diameter of 9.525 mm. Before
the experiment, the flats and impactors were cleaned by using anhydrous ethanol in an
ultrasonic bath. The same parameters were tested in the substrate as a reference. Each test
was repeated twice.

The surface morphology and cross-section image of the MoS2/C composite coating
were obtained by using scanning electron microscopy (SEM, JSM-6610, Horiba, Kyoto,
Japan), and the elements distribution of the as-deposited coating was detected by using an
electron probe micro analyzer (EPMA, JXA-8230, Horiba, Kyoto, Japan). X-ray spectroscopy
(EDX, Aztec X-Max 80, Oxford, Abingdon, UK) and XPS (ESCALAB-250Xi, Thermo Fisher
Scientific, Waltham, MA, USA) with Al K Alpha radiation were used to obtain the com-
positions of the coatings. Raman spectroscopy (LabRam HR800, Horiba, Kyoto, Japan)
with a 532-nm Ar+ laser was used to evaluate the information on the bonding structure.
A 2D profiler (NanoMap-500DLS, AEP TECHNOLOGY, San Francisco, CA, USA) and
3D morphology (Contour GT-K1, Bruker, Karlsruhe, GER) were used to measure the scar
depth and the damage volume, respectively. Additionally, a nanoindenter (MTS Nanoin-
denter G200, Agilent, Santa Clara, CA, USA) was used to detect the hardness and the
elastic modulus. The maximum indentation depth was 200 nm to minimize the effect of
the substrate.

3. Results
3.1. Coating Deposition and Chemical Composition

The surface morphology and element distribution of MoS20.1 and MoS20.5 are shown
in Figure 2. The results were obtained by EPMA. The elemental distributions of C, S, and
Mo are even, which indicates that the deposition process was in line with the expectations,
and the coating surface composition was consistent.
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The chemical composition of the MoS2/C films with different deposition conditions
are shown in Figure 3. As the MoS2 target current increased, the C content in the coating
decreased, whereas the Mo and S contents increased. Meanwhile, the S/Mo content ratio
was approximately 1.26, which was lower than the theoretical value of two because S was
easier to sputter from the surface than Mo, and Ar+ erosion reduced the S content in the
coating [24]. The marks, MoS20.1–MoS20.8, in the first column refer to the target currents
of MoS2 during sputtering.
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The cross-section morphology of the coatings is shown in Figure 4. The thickness of
MoS20.1 was approximately 0.91 µm, while the thickness of MoS20.8 was approximately
1.41 µm. As the MoS2 target current increased, the thickness of the coating thickened. To
determine the mechanical properties of the coating, the coating should not be destroyed
during the impact test. Therefore, we selected a light mass and a small impact velocity.
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The hardness and elastic modulus of the MoS2/C coatings are shown in Figure 5.
As the MoS2 target current increased, the hardness and elastic modulus of the coating
increased first and then decreased and reached the maximum when the target current
of MoS2 was 0.3 A. The hardness of the pure MoS2 coating was 2.6 GPa and the elastic
modulus was 48 Gpa [36], which were much lower than those of the MoS2/C coatings.
The hardness of the coatings was higher than that of the substrate, which means that the
MoS2/C coatings exhibited good mechanical properties. The load–displacement curve
indicates that as the MoS2 target current increased, the elastic recovery of the composite
film decreased linearly, which may refine the film load-bearing capacity in the same way.
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XPS analysis was performed to explore the chemical composition of the MoS2/C
coating. Figure 6 shows the XPS spectra of the MoS2/C0.5 films. The C 1s, S 2p, and
Mo 3d spectra of MoS20.5 were fitted by the Guassian–Lorentian function to analyze the
chemical forms. In the S 2p and Mo 3d spectra, the intensity decreased with carbon content.
Figure 6b shows the C 1s XPS spectrum of the composite coatings with different C contents.
The C 1s spectrum was fitted into three components, representing the C-C bond (287.0 eV),
the C=C bond (284.5 eV), and the molybdenum carbide (283.6 eV) [37]. Figure 6c shows the
S 2p XPS spectra of the coatings with different carbon contents, which were fitted into four
components, representing the MoS2 structure (163.2 eV and 162.1 eV) and MoS2 structure
(161.8 eV and 160.6 eV) [18]. In Figure 6d, the peaks are observed in the Mo-S (227.5 eV
and 230.69 eV) and Mo-O (231.3 eV and 234.6 eV) structures. The Mo 3d spectrum of all
samples showed a small shoulder at approximately 226.9 eV, which was represented by
the Mo 3d peak [38,39]. The Mo-C bond was confirmed in the Mo 3d spectra at 227.9 and
231.0 eV, which was consistent with the analysis of the C 1s spectrum [32]. The appearance
of Mo-O indicated that the surface of the coating was oxidized. The Mo-C and Mo-S peak
intensities in the film and the oxygen content increased with the MoS2 content.
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To further investigate the structure of the composite coatings, Raman spectra are
presented in Figure 7. The Raman spectra can be divided into three parts, namely, MoS2
(250–500 cm−1), MoO3 (750–1000 cm−1), and C (1000–1700 cm−1) [24]. Two major peaks
are observed (approx. at 1396 and 1510 cm−1) corresponding to carbon, and peaks in MoS2
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(260 cm−1) and MoO3 (910 cm−1) are also observed. The relatively sharp peaks of MoS2 in
the deposited film can be attributed to thermal crystallization through its high laser energy
during the Raman test [31]; the sharp peaks disappear when a low laser energy is used. The
intensity of the MoS2 peaks increased with the MoS2 target power, which is consistent with
the XPS results. According to the ID/IG, as the content of C element decreases, the defects
of C element crystal lessen, so it is recommended to strictly control the target current of C
when preparing MoS2/C by this method.
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3.2. Dynamic Response of Impact Wear Test

Coatings generally have superior mechanical and tribological properties to those
of substrates. In theory, increasing the damage to the material surface will change the
dynamic response. Therefore, the damage of the surface can be estimated based on the
dynamic response of the coating and the substrate during the experiment. The effect of C
doping on the mechanical and tribological properties of MoS2/C composite coating was
investigated using a low-velocity impact wear machine.

Figure 8 shows the evolution of impact force for different material parameters. As
another form of dynamic response in impact testing, the waveform of the impact force
also changes with different materials. The peak force of MoS2/C is higher than that of
the substrate, indicating that the hardness of the coating was higher. The impact forces at
different cycle times are shown in Figure 8a–c. The impact force of the coatings is higher
than that of the substrates. The peak impact force of MoS20.4 is always the largest, while
that of the MoS20.6 is the smallest. Furthermore, the contact time of the MoS2 coating is
lower than that of the substrate as expected. Figure 8d shows that the evolution of peak
impact force has three stages. In stage I, the impact force decreases because the wear scar
increases with the cycles of impacts, resulting in an increase in the contact area of the ball
with the plate. In stage II, the impact force remains basically the same because the wear
scar has reached the maximum at this time, and the contact area no longer increases. In
stage III, the impact force increases because work hardening occurs.
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impact force.

In addition to the kinetic energy and deformation during impact, other forms of energy
conversion exist, such as frictional heat and crack propagation. In the case of low-speed
impacts, the part of the thermal energy is generally negligible. Accordingly, this study
assumed that the initial impact energy only transformed into deformation energy, kinetic
energy, and the energy consumed in materials degradation. Therefore, the energy change
of the sample can be analyzed by the velocity curve of the impact test.

Figure 9 shows the dynamics velocity response under different cycles. The initial
impact velocity was 50 mm/s, and the difference in rebound velocity reflects the difference
in energy absorption. The rebound velocity of the coatings first decreased and then
increased with the decreasing carbon content. The trend of the rebounded velocity was
consistent at both 100 and 10,000 cycles, but ∆V gradually increased, because the wear scar
gradually deepened as the number of impacts increased, and work hardening occurred at
the contact position.
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Figure 9. Dynamics velocity response under different cycles. (a) Cycle = 102, (b) Cycle = 104, (c) ∆V in different cycles.

Using the same materials, the lower the rebound speed was, the more energy the
sample would absorb. Figure 10 shows the curve of the kinetic energy during the test; the
kinetic energy is calculated by a simple formula, E = 1/2 mv2, where v is the data from
Figure 9, and m is the mass of the impact block, which is 110 g. Therefore, the initial impact
kinetic energy is 0.14 (±5%) mJ. The absorbed energy of the MoS2/C coatings was higher
than that of the substrate. The absorbed energy first decreased and then increased with the
decreasing carbon content, which indicates that MoS20.3 absorbs the most energy, while
MoS20.6 absorbs the least energy.
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Figure 11a shows the energy distribution and energy absorption rate of different
material parameters. Total energy is the sum of the initial kinetic energies in 104 impact
experiments. Remaining energy is the sum of the returning kinetic energies in 10,000 impact
experiments. Absorbed energy is the difference between total energy and remaining energy.
The energy absorption rate of the coating was approximately 0.65–0.78 higher than that of
the substrate. The results show that the MoS2/C coating absorbed more energy than the
substrate under the same experimental conditions. The specific causes of this phenomenon
are discussed in Section 3.3.
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The evolution of the energy absorption ratio of MoS2/C and its substrates is shown in
Figure 11b. The energy absorption ratio of MoS2/C slowly decreased and then stabilized
at approximately the 2000th cycle. At the beginning of the test, the contact between the
impact ball and the plane sample could be regarded as a point contact. At this time,
the contact area was small, resulting in a high contact stress between the interfaces and
increasing the susceptibility of the sample to plastic deformation and material removal.
Therefore, in this process, the coating and the substrate exhibited a high level of energy
absorption ratio. As the test progressed and material damage accumulated, the contact
area increased and resulted in a decrease in contact stress. In addition, the surface of the
wear scar resulted in work hardening during the impact test, which increased the surface
strength and improved the wear resistance. Figure 12 shows the deformation of different
coatings and substrates, which was obtained by integrating velocity. Consequently, the
deformation gradually increased.
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3.3. Impact Wear Analysis

The 3D profile of impact damage was observed through the 3D morphology, and the
wear volume was calculated. The results are shown in Figure 13. The wear of the substrate
was serious, and severe deformation and accumulation had occurred. Meanwhile, a large
amount of abrasive debris had accumulated on the surface of the wear scar. The wear scar
area of MoS20.1 was relatively large, but the depth was shallow. The damage of MoS20.3
was worse than that of MoS20.1, which indicates that the wear scar area was similar but that
of MoS20.3 was deeper. MoS20.4 had a larger and deeper wear scar area, while MoS20.6 had
a lower wear scar area with the slightest wear volume than those of the other samples. The
wear of the coating was consistent with the dynamic response in the experiment. Impact
damage mainly consisted of plastic deformation and interface wear, depending on the
mechanical properties of the material. Under the same experimental conditions, MoS20.4
absorbed more energy and had serious damage, while MoS20.6 absorbed less energy and
had less damage, demonstrating that MoS20.6 has a better performance. In Figure 11, the
energy absorption ratio of the substrate is lower than that of the MoS2/C coatings, but
the wear damage is more serious. This shows that during the impact process, the coating
absorbs more energy with little damage, and their mechanical properties are better than the
substrate. Figure 13j shows the cross-sectional profiles of all the samples. After 104 cycles
of impact test, the wear volume of the substrate is larger than those of the coatings.
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(e) MoS20.4, (f) MoS20.5, (g) MoS20.6, (h) MoS20.7, (i) MoS20.8, (j) Cross-sectional profiles.

Figure 14a shows the maximum wear depth of the samples after the impact test. The
substrate had a maximum wear depth of 1.082 µm, while the coatings had a smaller wear
depth. Figure 14b shows the wear volume of all the samples. MoS20.4 had the largest
wear volume of approximately 9937 µm3, and MoS20.6 had the smallest wear volume of
approximately 3117 µm3. Except for MoS20.4, all other coatings had a smaller wear volume
than the substrate. Thus, MoS20.6 has a good impact resistance and can provide good
protection for its substrate.
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To determine the wear mechanism during the impact process, SEM and EDX were
used to observe the wear scar and measure the element distribution. Figure 15 shows the
SEM images and EDX of the substrate; a significant peeling of the material in the upper
part of the worn area is observed. According to the analysis results of EDX (point 1 is the
distribution of substrate material elements), the C and Si contents of point 2 increased
greatly, while the Fe element content decreased, so point 2 should be sandstone impurities;
at point 3, the C and Fe contents decreased, and the O content increased greatly. Meanwhile,
point 3 was in the crack area, so the material at point 3 should be frictionally oxidized, and
the material failed and cracked; the element distribution at point 4 was similar to that at
point 3, so point 4 should be the accumulation of material after frictional oxidation. In
summary, the substrate underwent friction oxidation during the impact process, causing the
oxide film to peel and aggravating the material loss. Figure 16 shows the SEM images and
EDX of MoS20.4. The wear volume of MoS20.4 was the largest, so elemental distribution
analysis was carried out to explore its wear mechanism. The wear scar of MoS20.4 was
relatively flat, with no obvious cracks or defects. The analysis result shows that the element
contents in the two regions were basically the same. Plastic deformation occurred on the
surface of the material during the entire impact process and no obvious chemical reaction
occurred. The SEM images and EDX of MoS20.6 are shown in Figure 17. Compared with
the element distribution of point 1, the oxygen content in the area where the wear debris
accumulated (point 2) was greatly increased, while the element contents of C, S, and Mo
decreased, demonstrating that frictional oxidation probably occurred. Point 3 shows a
different surface morphology than point 1. Analysis shows that the composition was the
same as that in point 1 because of the fault left by the surface peeling of the material.
Compared with point 1, the oxygen and carbon contents of point 4 increased, and the S
and Mo contents decreased, which should have been the accumulation of materials.
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low impact force.
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resistance and can protect the substrate. The wear mechanism of coatings presents
fatigue delamination and spalling, which are caused by cyclic shear stress. In addi-
tion, frictional oxidation occurs, especially in the stratified zone.
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4. Conclusions

MoS2/C coatings with different carbon contents (69 at.%–84 at.%) were prepared by
unbalanced magnetron sputtering. The structure, mechanical properties, and tribological
properties of MoS2/C coatings with different carbon contents were investigated. The
impact wear performance was analyzed using a low-velocity impact wear machine. The
following conclusions were drawn:

(1) The distribution of the C, S, and Mo elements in the prepared MoS2/C coating
was uniform, indicating that the surface properties of the composite coating were
consistent. Meanwhile, the S/Mo content ratio was approximately 1.26. C doping
increased the hardness and oxidation resistance of the MoS2 coating.

(2) C doping increased the hardness of the coatings (6.4–12 Gpa), which further improved
the wear resistance of the MoS2/C coatings.

(3) When the target current of C was 3.5 A and the target current of MoS2 was 0.6 A
(the carbon content was approximately 78.3%), the coating exhibited a good impact
resistance in terms of dynamic response, including low energy absorption ratio and
low impact force.

(4) The wear scar and the volume loss analysis show that MoS20.6 has a good impact
resistance and can protect the substrate. The wear mechanism of coatings presents
fatigue delamination and spalling, which are caused by cyclic shear stress. In addition,
frictional oxidation occurs, especially in the stratified zone.
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