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Abstract: In this study, the influence of oxygen concentration in InWZnO (IWZO), which was used
as the switching layer of conductive bridge random access memory, (CBRAM) is investigated. With
different oxygen flow during the sputtering process, the IWZO film can be fabricated with different
oxygen concentrations and different oxygen vacancy distribution. In addition, the electrical character-
istics of CBRAM device with different oxygen concentration are compared and further analyzed with
an atomic force microscope and X-ray photoelectron spectrum. Furthermore, a stacking structure
with different bilayer switching is also systematically discussed. Compared with an interchange
stacking layer and other single layer memory, the CBRAM with specific stacking sequence of bilayer
oxygen-poor/-rich IWZO (IWZOx/IWZOy, x < y) exhibits more stable distribution of a resistance
state and also better endurance (more than 3 × 104 cycles). Meanwhile, the memory window of
IWZOx/IWZOy can even be maintained over 104 s at 85 ◦C. Those improvements can be attributed
to the oxygen vacancy distribution in switching layers, which may create a suitable environment
for the conductive filament formation or rupture. Therefore, it is believed that the specific stacking
bilayer IWZO CBRAM might further pave the way for emerging memory applications.

Keywords: conductive-bridge RAM (CBRAM); InWZnO; bilayer switching layer; endurance cycle;
defect distribution

1. Introduction

In recent years, transparent amorphous oxide semiconductors (TAOSs) have attracted
much attention in the novel application of electronic devices [1,2] such as thin film transis-
tors [3,4], sensors [5], and memory [6–8]. From many options of TAOSs materials, InGaZnO
is the most widely studied because of high mobility, excellent reliability and good unifor-
mity. Briefly, in element can provide high carrier concentration and high mobility, while
Ga element will inhibit excessive carrier generation and enhance reliability. Besides, Zn
element may improve uniformity and amorphous stability. However, Ga is relatively ex-
pensive and is a rare element on the earth. It is urgent to find an effective carrier suppressor
to replace the Ga element. From many previous studies, tungsten (W) element doped
IZO (InWZnO; IWZO) might be a novel candidate to lower manufacturing costs and even
exhibit higher bond dissociation energy [9–11]. Furthermore, the distribution of oxygen
vacancy in thin film affects not only the thin film transistor device, but also the oxide-based
memory [12–14].

With simple structure, low power consumption, fast switching speed and high density
integration, resistive random access memory (RRAM) has gradually become one of the most
popular non-volatile memories in the research of memristor [15]. However, the operating
mechanism of RRAM has not yet been clarified. In fact, the conductive filament model
is the most acceptable theory model, in which the resistance state can be distinguished
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by the filament’s formation and rupture [16–22]. On the other hand, the filament model
can be further divided into two kinds of operation mode, which are the oxide resistive
random access memory (OxRRAM) and the conductive-bridging random access memory
(CBRAM). OxRRAM is based on the oxygen vacancy or ion migration, and CBRAM is
based on the drift of metal ions within the switching layer by electrochemical reaction.
Notably, compared with the OxRRAM, CBRAM with active metal electrodes (like Cu)
behaves more advantageously for integrated circuits, such as reducing electron migration
and RC delay [23].

In this study, the influence of oxygen concentration in IWZO which was used as the
switching layer of CBRAM is investigated. With different oxygen flow during the sputtering
process, the IWZO film can be fabricated with different oxygen concentration and different
oxygen vacancy distribution [24]. In addition, a stacking structure with different bilayer
switching is also systematically discussed. Compared with the interchange stacking layer
and other single layer memory, the CBRAM with a specific stacking sequence of bilayer
oxygen-poor/-rich IWZO (IWZOx/IWZOy, x < y) exhibits more stable distribution of the
resistance state and also better endurance (more than 3 × 104 cycles). Meanwhile, the
memory window of IWZOx/IWZOy can even be maintained over 104 s at 85 ◦C. As a
result, it is believed that the specific stacking bilayer IWZO CBRAM might further pave
the way for emerging memory applications.

2. Materials and Methods

First, a 100 nm-thick thermal SiO2 was grown on the 550 µm-thick p-type Si substrate
by furnace. Then, a 5 nm-thick Ti was used as an adhesion layer, and a 100 nm-thick
Pt was used as a bottom electrode. Two layers were deposited by the DC sputtering
method. After the bottom electrode formation, the switching layer IWZO was deposited
on the bottom electrode by the RF sputtering under a based pressure of 4 × 10−4 Pa
and a working pressure of 0.4 Pa. Afterward, a 2 nm-thick barrier layer TiW and 100
nm-thick Cu top electrode were patterned by circular mask (KEY STAR ELECTRON
CO., LTD. Taiwan) with a diameter of 100 µm. For CBRAM devices with a single IWZO
layer, the gas flow rate ratio of O2/Ar was set as 2/20 and 7/20 during the sputtering
process, respectively. On the other hand, the CBRAM devices with bilayer IWZO were
deposited with the interchange of different O2/Ar gas flow rate ratios of 2/20 and 7/20,
respectively. With four Cu/TiW/IWZO/Pt single or stacking structures, the IWZO CBRAM
devices were fabricated at room temperature and named IWZOx, IWZOy, IWZOx/IWZOy
and IWZOy/IWZOx, respectively, as shown in Figure 1. Furthermore, the thickness of
switching layers in four different devices is fixed at 10 nm for comparison.

In terms of material analysis, the cross-sectional image of the device was observed
by transmission electron microscopy (TEM), and the surface roughness of thin film was
obtained from an atomic force microscope (AFM). In order to further confirm the compo-
sition, X-ray photoelectron spectroscopy (XPS) was used for analyzing the detail of the
chemical composition. As for the electrical properties, all CBRAM devices were measured
by the Keithley 4200 semiconductor analyzer.
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Figure 1. Schematic cross-section diagram of all CBRAM devices with different switching layers. 
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the aforementioned results, it can be speculated that lower oxygen gas flow during the 
sputtering process may induce a higher gas flow ratio of argon, which means that more 
ion bombardment hit the surface of the IWZO film. 

Figure 1. Schematic cross-section diagram of all CBRAM devices with different switching layers.

3. Results

Generally, the root-mean-square roughness (Rq) may represent the fluctuation of mor-
phologies from reference height and can be extracted by AFM measurement. Figure 2a,b
shows the Rq of the IWZO film with different oxygen gas flow ratios in the sputtering
process; these are 0.37 nm and 0.24 nm of IWZOx and IWZOy, respectively. Based on
the aforementioned results, it can be speculated that lower oxygen gas flow during the
sputtering process may induce a higher gas flow ratio of argon, which means that more ion
bombardment hit the surface of the IWZO film.

To further investigate the influence of oxygen concentration during IWZO film depo-
sition, O1s peaks obtained by XPS have been deconvoluted into oxygen lattice, oxygen
vacancy and oxy-hydroxide, which is corresponded to 529.8 eV, 531.1 eV and 531.8 eV,
respectively [10,25]. Figure 2 shows the XPS spectra of (c) IWZOx film and (d) IWZOx film.
It is clear that the IWZOx film with a relatively high argon ratio and low oxygen ratio in
the sputtering process exhibits more oxygen vacancy than the IWZOy film. This might be
because there is more ion bombardment hitting the surface of the IWZO film. Therefore,
more defects or oxygen vacancies are generated inside the film, which is consistent with
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the AFM results shown in Figure 2a. On the other hand, with higher oxygen radical
concentration generated from plasma, more active oxygen can be bonded with In atom
and form a metal-oxide bond, as obtained from the XPS result of IWZOy film with fewer
oxygen vacancies. Besides, lower oxy-hydroxide concentration can also be observed in the
IWZOy film, which can be attributed to the surface clean effect during plasma immersion.
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Figure 2. The surface morphologies and Rq of (a) IWZOx and (b) IWZOy by AFM; Analysis of O1s spectrum for IWZO
with different oxygen ratio in process: (c) IWZOx and (d) IWZOy by XPS.

Figure 3a shows the stacking structure of a CBRAM device with an IWZOx/IWZOy
switching layer with a high resolution TEM image. The device structures including Pt
bottom-electrode, 5 nm-thick IWZOy film, 5 nm-thick IWZOx film, 2 nm-thick barrier
layer TiW and Cu top-electrode are all clearly observed. Furthermore, without obtaining
any diffraction, the IWZO switching layer might be kept in an amorphous phase after
fabrication. Figure 3b exhibits the EDS line scanning analysis of the O element performed
along the red line as labeled in Figure 3a. The oxygen concentration in IWZO film is
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gradually decreased from Pt to Cu, consistent with the different oxygen content on the
bilayer oxygen-poor/-rich IWZO (IWZOx/IWZOy, x < y).

Figure 4 shows the I-V curve of all the CBRAM devices by voltage sweep mode. In
order to initiate the device, a larger voltage bias needs to be applied on the new device.
This is referred to as the forming process. At the same time, an appropriate compliance
current limit (10−3 A) is applied to prevent the hard breakdown of the memory device.
After the forming process, a positive voltage is applied on the Cu electrode to switch the
resistance state to low (LRS), which is defined as process (1) as shown all Figure 4. Figure 4a
shows the forming and first reset process of the CBRAM devices with IWZOx, IWZOy, IW-
ZOx/IWZOy (x < y) switching layers. The forming voltages of the IWZOx/IWZOy device
range from 1.2 V to 2.1 V, which is more concentrated than IWZOx and IWZOy devices. In
addition, when the device executed the first reset process, it was observed that the current
of IWZOx/IWZOy device is smaller and more uniform than other devices [26,27]. During
the process (1), a conductive filament is formed with the dissociated Cu ion between the
Cu and Pt electrode. On the other hand, this conductive filament will be ruptured near
the Pt electrode and a high resistance state (HRS) can be achieved again if a negative
voltage is applied on the Cu electrode in process (3), which can be attributed to the Joule
heating effect. Generally, the voltage sweeping in process (1), at which the current suddenly
increases over the compliance current, is defined as the VSET. On the other hand, there is
also a negative voltage sweeping in the process (3) when the current drops abruptly and
the resistance switches from LRS to HRS. That voltage value is defined as the VRESET. It
is clear that standard bipolar resistive switching characteristics can be observed from the
I-V curves of CBRAM devices with an IWZOx, IWZOy, IWZOx/IWZOy (x < y) switching
layer. Obviously, the I-V curves of an IWZOx/IWZOy (x < y) CBRAM device are exhibited
relative to a uniform set and reset process, as shown in Figure 4d. Interestingly, the CBRAM
device with IWZOy/IWZOx (x < y) cannot execute the resistive switching behavior, as
shown in Figure 4e. The deposition of bilayer IWZO thin film is a continuous process. The
oxygen flow increases from 9% to 26% instantly, so that the surface of IWZOx is modified
by instantaneous oxygen plasma treatment. The dense and oxygen-rich dielectric layer is
formed, resulting in the path of conductive filaments being fixed or unable to be formed
between the top and bottom electrode. Based on the aforementioned reason, the function of
the IWZOy/IWZOx CBRAM device is a failure, as shown in the schematic model Figure 5.
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Figure 4. (a) Forming and first reset (magnified in inset) process for IWZOx, IWZOy, and IWZOx/IWZOy are obtained
from multiple CBRAM devices. Typical bipolar I–V curves for 100 cycles after the initial forming process were measured
from the CBRAM devices with the (b) IWZOx, (c) IWZOy, (d) IWZOx/IWZOy, (e) IWZOy/IWZOx switching layer.

According to those experimental results, a physical model has been proposed to
explain the phenomenon that an excellent resistive switching behavior can be achieved
by the stacking of the IWZOx/IWZOy (x < y) switching structure, while the device with
a stacking IWZOy/IWZOx (x < y) switching structure cannot be executed the resistive
switching behavior (HRS and LRS.) As shown in Figure 5, More Cu ions will be dissociated
from the Cu electrode when a positive voltage is applied, and those Cu ions will penetrate
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into the switching layer (IWZOx) with a large numbers of defects. Therefore, a defect-rich
switching layer (upper layer) may be good for keeping Cu ions during the set process (1).
However, the enhanced conductive filament near the Pt electrode might also be difficult
to be ruptured by the Joule heating effect during the reset process (3). Therefore, a less
defective IWZOy switching layer (bottom layer) may introduce a thinner conductive
filament that would be easier to be ruptured. As a result, stacking a suitable sequence of
bilayer switching may be very helpful to improving the performance of CBRAM devices.
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In order to further investigate the reliability of the CBRAM device, the endurance cy-
cles and cumulative distributions are exhibited in Figure 6. Figure 6a,b shows the endurance
cycles of CBRAM with single IWZOx and IWZOy switching layers. It is approaching 200
and 500 cycles, respectively. Notably, the CBRAM device with an IWZOx/IWZOy (x < y)
switching structure exhibits a better endurance cycle, which is up to 3 × 104 cycles, and
a better cumulative distribution for LRS and HRS when compared with other CBRAM
devices with a single switching layer. In addition, Figure 7 shows the data retention time of
CBRAM devices with different switching layers at 85 ◦C. Surprisingly, the CBRAM device
with the IWZOx/IWZOy (x < y) switching structure also exhibits an excellent ability to
maintain the memory window (LRS/HRS over 102) for 104 s, even at 85 ◦C. According to
those experimental results, it is believed that this specific stacking bilayer IWZO CBRAM
might further pave the way for emerging memory applications.
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4. Conclusions

In this study, the influence of oxygen concentration in IWZO, which was used as
the switching layer of CBRAM, was investigated. Compared with single switching layer
devices, the CBRAM with a specific stacking sequence of bilayer IWZOx/IWZOy (x < y)
exhibits more stable distribution of the resistance state and better endurance (more than
3 × 104 cycles). Meanwhile, the memory window of IWZOx/IWZOy can even be main-
tained at over 104 s at 85 ◦C. Those improvements can be attributed to the oxygen vacancy
distribution in the switching layer, which may create a suitable environment for conductive
filament formation or rupture. Therefore, it is believed that this specific stacking bilayer
IWZO CBRAM might further pave the way for emerging memory applications.
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