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Abstract: Flower-like metallic nanocrystals have shown great potential in the fields of nanophononics
and energy conversion owing to their unique optical properties and particular structures. Herein,
colloid Au nanoflowers with different numbers of petals were prepared by a steerable template
process. The structure-adjustable Au nanoflowers possessed double plasmon resonances, tunable
electric fields, and greatly enhanced SERS and photocatalytic activity. In the extinction spectra,
Au nanoflowers had a strong electric dipole resonance located around 530 to 550 nm. Meanwhile,
a longitudinal plasmon resonance (730~760 nm) was obtained when the number of petals of Au
nanoflowers increased to two or more. Numerical simulations verified that the strong electric fields
of Au nanoflowers were located at the interface between the Au nanosphere and Au nanopetals,
caused by the strong plasmon coupling. They could be further tuned by adding more Au nanopetals.
Meanwhile, much stronger electric fields of Au nanoflowers with two or more petals were identified
under longitudinal plasmon excitation. With these characteristics, Au nanoflowers showed excellent
SERS and photocatalytic performances, which were highly dependent on the number of petals.
Four-petal Au nanoflowers possessed the highest SERS activity on detecting Rhodamine B (excited
both at 532 and 785 nm) and the strongest photocatalytic activity toward photodegrading methylene
blue under visible light irradiation, caused by the strong multi-interfacial plasmon coupling and
longitudinal plasmon resonance.

Keywords: plasmon coupling; electromagnetic enhancement; Au nanocrystals; photocatalysis; SERS

1. Introduction

Plasmonic metal nanocrystals have attracted considerable attention and have been
widely applied in surface-enhanced Raman spectroscopy (SERS), nonlinear optical applica-
tions, photocatalysis, and photothermal conversion [1–4]. Surface plasmons originate from
the collective oscillations of electrons arising on the surface of metals upon electromagnetic
excitation. Under plasmon resonance excitation, the electromagnetic fields near the metal
nanocrystals are greatly enhanced and the light absorption can be distinctly boosted near
the resonant frequency. These advantages match well with the demands of photocatalysis
and SERS. Photocatalysis is a green technology that can produce clean solar fuels and
remedy environmental problems, and SERS is applied in the super-sensitive detection of
biomolecules, pollutants, and pesticides at a very low concentration through their unique
vibrational fingerprints [5–8]. The well-known mechanism behind the plasmonic metal-
based SERS and photocatalysis is electromagnetic enhancement, namely hotspots, which
refers to the enhancement of the local electromagnetic field as a result of the excitement
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of surface plasmons by incident light. In the SERS, the electromagnetic field can amplify
the vibration by several orders of magnitudes. In photocatalysis, the electromagnetic field
can offer abundant hot electrons, increase the speed of charge transfer and separation,
and generate a local heating effect, which are very useful to catalytic reactions. Normally,
plasmonic metal nanocrystals such as Au, Ag, and Cu have been dominant as the Raman
substrates and photocatalysts for highly improved SERS and photocatalysis possessing
electromagnetic enhancement, respectively [9–12]. The local electromagnetic fields of metal
nanocrystals highly depend on the morphology, size, composition, and the surrounding
dielectric environment [13,14]. The diverse structures and sizes of the same metal nanocrys-
tals usually have entirely different enhancement factors of SERS and photocatalysis caused
by the tunable local electromagnetic fields [15–17].

The combination of two or more plasmonic metals with an ultrashort distance will
produce strong interfacial plasmon coupling, which can generate a much stronger electro-
magnetic field localization and enhancement than isolated metals can [18–20]. The plasmon
coupling-based electromagnetic field can offer greater SERS and photocatalytic enhance-
ments than individual metal nanocrystals can. The electromagnetic field generated by
interfacial plasmonic coupling can be optimized by changing the size, shape, configuration,
and architecture. In addition, for some particular plasmon coupling systems, new plas-
monic modes will appear, such as magnetic and longitudinal resonance [21–23], which can
also promote the SERS and photocatalysis activity. Taking advantage of advanced chemical
synthesis and physical fabrication methods, diverse types of metals featuring plasmon
coupling have been designed and prepared in the forms of Janus-like structures [24], core–
shell motifs [25–27], particle-film systems [28–30], and self-assembled structures [31–34].
Meanwhile, some picturesque nanostructures have also been reported, such as nanosnow-
man [35], nanodumbbells [36], and nanoflowers [37–41]. As a typical plasmon-coupling
structure, flower-like structures possess numerous corners, tips, and gaps, offering an
ideal platform for plasmon coupling and generating abundant hotspots. Previous works
have reported the flower-like Au, Ag, and Au/Ag hybrids acting as Raman substrates and
photocatalysts to achieve excellent SERS and photocatalytic performances [38,40,42,43].
In the flower-like structure, the protruding petal is the key factor to achieving strong
plasmon coupling or producing new plasmon modes. However, the precise regulation
of the petals is usually uncontrollable and has rarely been reported due to the limits of
synthetic strategies.

In the present work, colloid Au nanoflowers with different numbers of petals were
prepared via a template method, which showed strong plasmon coupling, tunable elec-
tric fields, and greatly enhanced SERS and photocatalytic activity. The as-prepared Au
nanoflowers had a strong electric dipole resonance located around 530~550 nm in the
extinction spectra. When precisely increasing the number of petal of Au nanoflowers to
two or more, a new longitudinal plasmon resonance appeared, located around 730~760 nm.
The Au nanoflowers possessed tunable numbers of nanopetals, dual plasmon modes,
and abundant hotspots, showing better potentials with SERS and photocatalysis than
traditional Au nanocrystals, such as Au nanospheres, nanocubes, or nanoplates. On detec-
tion of RhB, structure-adjustable Au nanoflowers showed excellent SERS performances,
which were highly tuned by varying the number of petals. Four-petal Au nanoflowers
possessed the highest SERS activity excited both at 532 and 785 nm. The highest enhance-
ment factor reached 5.3 × 108, and the detection limit reached 10−12 M. The numerical
simulations verified that the strong electromagnetic field enhancements caused by multi-
interfacial plasmon coupling and longitudinal plasmon resonance were responsible for the
excellent SERS performances. Additionally, the nanoflowers also showed excellent and
petal-number-dependent photocatalytic activity on degrading methylene blue (MB) by
NaBH4 with light irradiation. Four-petal Au nanoflowers possessed the highest photocat-
alytic activity, which was 5.86 and 3.78 times those of Au nanospheres and one-petal Au
nanoflowers, respectively.
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2. Methods
2.1. Chemicals

Chloroauric acid (99.99%), sodium hydroxide (99.7%), L-ascorbic acid (AA, 99.7%),
sodium borohydride (96.0%), lead acetate (99.5%), thioacetamide (TAA, 99.0%), hexam-
ethylenetetramine (HMT, 99.0%), hexadecyltrimethylammonium bromide (CTAB, 99.0%),
and hydrochloric acid (36–38%) were purchased from Sinopharm Chemical Reagent
Co. Ltd. (Shanghai, China). Deionized water with a resistivity of about 18.25 MΩ·cm
was used as the solvent in all experiments.

2.2. Synthesis of Au/PbS Hybrids

PbS nanoshells were partially coated on Au nanospheres. The initial CTAB-stabilized
Au nanospheres were prepared by a modified seed-mediated method. To synthesize
Au/PbS hybrids, 1 mL of AA (0.1 M), 2 mL of CTAB (0.2 M), and 1 mL of HMT (0.1 M)
were added to 5 mL of as-prepared Au nanospheres. Then, 0.03 mL of TAA (0.1 M) and
0.01~0.05 mL of lead acetate (0.1 M) were added. The mixture solution was maintained at
85 ◦C in a vacuum oven for 8 h. The products were centrifuged at 8000 rpm for 5 min and
re-dispersed in water for further use.

2.3. Synthesis of Au Nanoflowers

Typically, 0.5 mL of HAuCl4 (0.01 M), 0.5 mL of AA (0.1 M), and 10 mL of CTAB
(0.05 M) were added to 2 mL of as-prepared Au/PbS hybrids. Stirring of the mixture
solution was continued at 1000 rpm for 2 h at room temperature. The final products were
centrifuged at 8000 rpm for 5 min and re-dispersed in water for further use. To dissolve PbS
nanoshells, 0.1 mL of HCl (1 M) was added to 2 mL of as-prepared Au/PbS/Au hybrids.
The mixture solution was maintained at 60 ◦C in a vacuum oven for 2 h. The products were
centrifuged at 8000 rpm for 5 min and re-dispersed in water for further use. The number
of petals of the Au nanoflowers were adjusted by varying the amount of lead acetate and
sulfur source in the process of PbS growth.

2.4. Photocatalytic Measurements

Typically, 1 mL of distilled water was mixed with 0.75 mL of 0.4 mM of methylene
blue (MB) solution in a quartz cuvette, and 0.25 mL of H2O2 solution was quickly added.
Then, catalysts (including Au nanospheres and Au nanoflowers) were injected rapidly.
The reduction of MB was verified by monitoring the decrease in the extinction intensity at
665 nm. For the light-assisted catalytic reduction, a 300 W Xenon lamp was chosen as the
light source. An ultraviolet cut-off filter (λ > 420 nm) was used to obtain the visible light.

2.5. Numerical Simulation

Commercial software (COMSOL Multiphysics) was used for the finite-element method
(FEM) simulations. The refractive index of water is 1.33, and refractive indices of Au
were taken from Ref. [44]. Perfectly matched layers were used in the simulations. An
Au nanosphere was taken to be a sphere with a radius of 10 nm. For the one-petal Au
nanoflower, the central Au nanosphere was taken to be a sphere with a radius of 10 nm,
and the petal was taken to be an ellipsoid, whose a, b, and c were set as 10, 12, and 14 nm,
respectively. For two-, three-, and four-petal Au nanoflowers, the central Au and petals
were taken to be spheres with a radius of 10 nm. The excitation light was along the x axis
and polarized along the y axis in the calculations.

2.6. Sample Characterization

Scanning electron microscopy (SEM) observations were performed with a FEG SEM
Sirion 200 (FEI Electronic Optics Company, Hillsboro, OR, USA) operating at an accelerating
voltage of 25.0 kV. The SERS spectra were acquired with a laser source with wavelengths of
532 nm (1 mW) and 785 nm (1.5 mW) for 10 s of illumination. Each spectrum represented the
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average spectrum from three replicates. The extinction spectra were tested by UV-VIS-NIR
spectrophotometry (TU1810, Beijing Pgeneral, Beijing, China).

3. Results and Discussion

The Au nanoflowers with tunable numbers of petals were synthesized via a modified
three-step method based on Au nanospheres, which were similarly reported in our previous
works [8,12]. In brief, monodispersed Au nanospheres were first prepared by a seed-
mediated method. Then, PbS nanoshells were partially coated on Au nanospheres using
thioacetamide and lead acetate as a sulfur source and precursor at a high-concentration
surfactant, respectively. Subsequently, Au nanoshells were deposited on Au/PbS hybrids
to form Au/PbS/Au hybrids. The Au overgrowth started preferentially at the exposed
surface of Au nanospheres. Finally, Au nanoflowers were obtained by dissolving the
PbS nanoshell off in the presence of hydrochloric acid. The number of petals of the Au
nanoflowers was adjusted by varying the amount of lead acetate and sulfur source in the
process of PbS growth. Figure 1 displays a set of representative SEM and TEM images
of the structure-adjustable Au nanoflowers. The inset shows the corresponding modes.
The four types of Au nanocrystals had the same central Au nanospheres, which can be
regarded as the flower heart. The overgrown Au shells attached on the Au nanospheres
can be seen as flower petals. The central Au nanospheres had uniform size, with average
diameters of 20 nm, while the Au flower petals had different sizes ranging from 14 to
45 nm. Noticeably, the number of petals was precisely tuned in the range from one to four
(see Figure 1a–d). The Au nanoflowers with tunable numbers of petals possessed uneven
surfaces and particle–particle nanogaps, offering a good platform for plasmon coupling.
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Figure 1. SEM and TEM images of Au nanoflowers with one (a), two (b), three (c), and four (d) petals.

The plasmon resonances of the Au nanoflowers with different numbers of petals were
investigated both experimentally and theoretically. Figure 2a shows the experimental
extinction spectra of Au nanospheres and Au nanoflowers with different numbers of
petals. The starting Au nanospheres displayed sharp plasmon peaks around 530 nm,
originating from the electric dipole resonance. For one-petal Au nanoflowers, the dipole
resonance peak redshifted and broadened, probably caused by the increased size and
the plasmon coupling between the Au core and Au petal. Noticeably, the as-prepared
Au nanoflowers with two or more petals exhibited two resonance peaks in the extinction
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spectra. The major peak at the high-energy side could be assigned to the electric dipole
mode coming from the intrinsic resonance of Au. Similarly, this mode redshifted and
broadened with the number of petals. The weak shoulder (around 730~760 nm) could be
attributed to the multipolar coupling between the Au nanospheres and Au petals induced
by the longitudinal polarization excitation. This plasmon resonance also redshifted with
the number of petals. Figure 2b displays the calculated extinction spectra of the Au
nanospheres and Au nanoflowers with different numbers of petals. The calculation results
matched well with the key peak positions observed in the experiments. Electric dipole
resonances ranging from 528 to 545 nm for Au nanospheres and Au nanoflowers were
obtained. Meanwhile, the longitudinal plasmon resonances of Au nanoflowers with two or
more petals were also observed. The calculated variation trends also matched well with
the experimental results, with both plasmon modes redshifting with the number of petals.
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Figure 2. Experimental (a) and calculated (b) extinction spectra of Au nanospheres and structure-
adjustable Au nanoflowers. The Au (0), Au (1), Au (2), Au (3), and Au (4) represent the Au nanosphere
and, one-, two-, three-, and four-petal Au nanoflowers, respectively.

To apply the tunable plasmon coupling for SERS application, we used these Au
nanoflowers as substrates to detect RhB. The SERS sensitivities of the Au nanoflowers
were first investigated using the excitation of a 532 nm laser, which matched well with
the electric dipole resonance. Figure 3a displays the Raman spectra of RhB absorbed
on the Au nanospheres and Au nanoflowers with different numbers of petals. The Au
nanoflowers showed much higher Raman intensities than Au nanospheres did, and the
SERS responses were greatly enhanced with the numbers of petals. Noticeably, four-petal
Au nanoflowers possessed the highest Raman signal. In order to quantitatively compare
SERS activities of the above samples, enhancement factors (EF) were calculated with the
intensity of 1647 cm−1 (10−6 M) based on the magnification of Raman intensity compared
with that on a glass slide (Figure 3b). The EFs of Au nanoflowers were much higher than
those of Au nanospheres, and they almost increased exponentially with the number of
petals. Four-petal Au nanoflowers had the largest EF, reaching 1.4 × 105, which was
14 and 4.5 times those of Au nanospheres and one-petal Au nanoflowers, respectively.
To reveal the physical mechanism behind the improved SERS, the local electric fields
of the Au nanoflowers were calculated. Figure 3c–j show the SEM images and electric
field distribution of Au nanoflowers with different numbers of petals. The electric field
distributions were calculated at the excitation of 532 nm. The Au nanoflowers showed
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structure-dependent electric field distributions. In particular, the one-petal Au nanoflower
displayed more hotspots than those of the Au nanosphere (Supplementary Materials,
Figure S1), indicating that the electromagnetic field was the main enhanced factor for the
enhanced SERS. For Au nanoflowers with two petals, strong electric fields located around
the interface between the Au core and Au petals were observed, coming from the strong
plasmon coupling. The numbers of hotspots increased with the number of petals. As
shown in Figure 3j, the four-petal Au nanoflower showed the strongest interfacial electric
fields and the most abundant hotspots, caused by the multi-interfacial plasmon coupling
between the Au core and petals. The Au nanoflowers with four petals displayed the highest
SERS signal, most abundant hotspots, and strongest electric field, demonstrating that the
multi-interfacial plasmon coupling played a key role in the improved SERS performance.
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Figure 3. (a) Raman spectra of RhB (10−6 M) absorbed on Au nanospheres and structure-adjustable
Au nanoflowers under a 532 nm laser excitation. (b) Calculated SERS EFs of RhB (10−6 M) at
1647 cm−1 in the presences of Au nanospheres and nanoflowers. SEM images and calculated electric
field distributions (excited at 532 nm) of one—(c,g), two—(d,h), three—(e,i), and four—(f,j) petal
Au nanoflowers.

In order to study the enhancement of longitudinal plasmon resonance to SERS, Raman
measurements of the above-mentioned samples were performed under an excitation of
785 nm. Figure 4a displays the Raman spectra of RhB (10−6 M) absorbed on Au nanospheres
and Au nanoflowers. Au nanospheres and one-petal Au nanoflowers showed very weak
SERS signals. This is because they have very weak absorption around 785 nm and cannot
produce enough electromagnetic enhancement to amplify the Raman signals. The SERS
responses of Au nanoflowers were still highly related to the number of petals. Au nanoflow-
ers with four petals exhibited the highest SERS activity compared with Au nanospheres
and the other three kinds of Au nanoflowers. The EF (calculated at 1647 cm−1, 10−6 M)
of four-petal Au nanoflowers reached 1.9 × 105, which was about 42 and 14 times those
of the Au nanospheres and one-petal Au nanoflowers, respectively (see Figure S2). In
addition, the EF at 785 nm of four-petal Au nanoflowers was much higher than that ex-
cited at 532 nm, with the enhancement reaching 1.4 fold. Concentration-dependent SERS
measurements of RhB (from 10−7 to 10−12 M) absorbed on four-petal Au nanoflowers were
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performed to identify the SERS detection limit. As shown in Figure 4b, even when the
concentration of RhB solution decreased to 10−12 M, the SERS signals were still identifiable.
The maximum EF was calculated as 5.3 × 108 (10−12 M, at 1647 cm−1). The variation
curve based on the concentration of RhB and Raman intensity at 1647 cm−1 is shown in
Figure 4c. The logarithmic curve showed good linearity as the concentrations changed
from 10−7 to 10−12 M (inset), indicating the high sensitivity and wide quantitation range
of four-petal Au nanoflowers. The electric field distributions excited at 785 nm of these
Au nanoflowers were calculated to explain the physical mechanism of the enhanced SERS
performance. As shown in Figure 4d,e, the one-petal Au nanoflower had a very weak
electric field, while Au nanoflowers with two or more petals showed a much stronger
electric field along the polarized directions, caused by the longitudinal plasmon resonance
excitation. Most interestingly, the electric fields were much stronger than those excited at
532 nm, matching well with the Raman results, demonstrating that longitudinal plasmon
resonances had a higher enhancement on SERS. The four-petal Au nanoflowers offered
two possible vertical directions of longitudinal excitation and multi-interfacial plasmon
coupling, thereby producing the strongest electromagnetic enhancement, finally greatly
amplifying the SERS signal.
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Figure 4. (a) Raman spectra of RhB (10−6 M) absorbed on Au nanospheres and structure-adjustable
Au nanoflowers under a 785 nm laser excitation. (b) Concentration-dependent SERS spectra of RhB
at various concentrations absorbed on four-petal Au nanoflowers. (c) Plots of the Raman intensity at
1647 cm−1 as a function of RhB concentration, where the inset figure represents the linear relationship
from 10−7 to 10−12 M. (d–g) Calculated electric field distributions of Au nanoflowers excited at
785 nm.

The as-prepared Au nanoflowers had a rough surface, strong light absorption ranging
from the visible to infrared region, and tunable electric field enhancement, showing great
potential in photocatalysis. We adopted the reduction of MB by H2O2 with light irradiation
(λ > 420 nm) as a model reaction to evaluate the catalytic activity of Au nanoflowers.
Figure 5a schematically displays the MB degradation via Fenton-like reaction in the pres-
ence of Au and H2O2. Briefly, the Au can activate H2O2, thus generating hydroxyl radicals
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via a reversible cycle (Au0→Au+→Au0), and then reducing MB. These reactions can be
significantly enhanced when irradiated with light due to the plasmon-induced light absorp-
tion and hot electrons. The concentration of MB was monitored by recording the extinction
intensity at 665 nm. Figure 5b shows a typical set of extinction spectra recorded at different
time points of the reaction when four-petal Au nanoflowers were used as a catalyst. The
MB was rapidly reduced in 18 min as observed in the time-dependent UV-visible absorp-
tion spectra. We compared the photocatalytic activity of Au and structure-adjustable Au
nanospheres. Figure 5b shows that the Au nanoflowers had a much higher photocatalytic
activity than Au nanospheres did, and the photocatalytic rate could be further optimized
by increasing the number of petals of Au nanoflowers. The apparent reaction rate constants
were calculated by plotting In(Ct/C0) as a function of time, which are shown in Figure 5d.
The C0 and Ct refer to initial and real-time extinction intensities at 665 nm of MB, respec-
tively. Four-petal Au nanoflowers exhibited the fastest photoactivity with rate constant
k = 0.17 min−1, which was 5.86 and 3.78 times those of Au nanospheres and one-petal Au
nanoflowers, respectively. This is because the four-petal Au nanoflowers exhibited strong
two-mode plasmon resonance, which can act as a light-harvesting unit, thus leading to
intense light absorption in the visible and near-infrared regions. In addition, the strong
electric field caused by the multi-interfacial plasmon coupling can promote the generation
and transfer of hot electrons, eventually quickening the photocatalytic reaction.
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Figure 5. (a) Schematic illustration of the degradation of MB under light irradiation in the presence
of Au nanoflowers and H2O2. (b) Extinction spectra of MB recorded at different reaction time points
in the presence of four-petal Au nanoflowers. Photocatalytic degradation curves (c) and logarithm of
the absorbance at 665 nm versus reduction time (d) of MB over different catalysts.

4. Conclusions

In summary, we synthesized colloidal Au nanoflowers with a steerable number of
petals and investigated their strong plasmon coupling, tunable electric field, and largely
enhanced SERS activity. The Au nanoflowers had a strong electric dipole resonance located
from 530 to 550 nm, and a longitudinal plasmon resonance (730~760 nm) was observed
when the number of petals of Au nanoflowers increased to two or more. Numerical simula-
tions verified that the strong electric fields of Au nanoflowers were located at the interface
between the Au nanosphere and Au nanopetals, caused by the strong plasmon coupling.
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Meanwhile, the stronger electric field of Au nanoflowers with two or more petals were
identified under longitudinal plasmon excitation. The Au nanoflowers showed highly
improved SERS and photocatalytic activity. Four-petal Au nanoflowers displayed the
highest SERS signals on detecting RhB activity excited at both 532 and 785 nm. Mean-
while, four-petal Au nanoflowers exhibited the fastest photoactivity, which was 5.86 and
3.78 times those of Au nanospheres and one-petal Au nanoflowers, respectively, toward
the Fenton-like reduction of MB. These findings provide inspiration for the design of
plasmonic antennas, and the materials will find diverse promising applications in the fields
of photodetection and biological imaging.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11092176/s1, Figure S1: Morphology and optical properties of Au nanospheres, Figure S2:
Calculated SERS of Au nanospheres and flowers excited at 785 nm.
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