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Abstract: Epoxy resins for adhesive and structural applications are widely employed by various
industries. The introduction of high aspect ratio nanometric conductive fillers, i.e., carbon nanotubes,
are well studied and are known to improve the electrical properties of the bulk material by orders of
magnitude. This improved electrical conductivity has made carbon nanotube-based nanocomposites
an attractive material for applications where their weight savings are at a premium. However, the
analytical methods for validating carbon nanotube (CNT) nanofiller dispersion and for assuring that
the properties they induce extend to the entire volume are destructive and inhibited by poor resolution
between matrix and tube bundles. Herein, rare-earth oxide nanoparticles are synthesized on CNT
walls for the purpose of increasing the contrast between their network and the surrounding matrix
when studied by imaging techniques, alleviating these issues. The adherence of the synthesized
nanoparticles to the CNT walls is documented via transmission electron microscopy. The crystalline
phases generated during the various fabrication steps are determined using X-ray diffraction. Deep
ultraviolet-induced fluorescence of the Eu:Y2O3-CNT nanostructures is verified. The impacts to
nanocomposite electrical properties resulting from dopant introduction are characterized. The
scanning electron microscopy imaging of CNT pulp and nanocomposites fabricated from untreated
CNTs and Eu:Y2O3-CNTs are compared, resulting in improved contrast and detection of CNT bundles.
The micro-CT scans of composites with similar results are presented for discussion.

Keywords: carbon nanotubes; Eu:Y2O3; epoxy-CNT composites; micro-CT

1. Introduction

Nanoscale composites utilizing carbon nanotube (CNT) filler allow for significant
reductions in resistivity of an otherwise highly insulating matrix material while requiring
extremely low CNT loadings [1]. These improved conductivities result in an attractive
material with extensive applications in diverse industries, but particularly for electrostatic
discharge (ESD) and electromagnetic interference (EMI) prevention [2–11]. These enhance-
ments are heavily dependent on nanofiller dispersion in the matrix material. Dispersion
control becomes essential to ensuring uniform properties throughout the composite and
eliminating hotspots that could affect reliability or performance.

Validation of uniform dispersion is difficult due to minimal contrast differences
between CNTs and the surrounding matrix, making conventional imaging techniques
difficult. Existing high-resolution methods include thermography in the infrared (IR)
range [12] and voltage-contrast imaging with scanning electron microscopy (SEM) [13–18].
Both have been used to understand dispersion and nanostructures but are limited by the
processing time and low fields-of-view. Thermography techniques are depth limited as the
subsurface information is extrapolated.
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Nondestructive evaluation (NDE) techniques that make the differences in the disper-
sion of the nanofiller or the porosity of the surrounding matrix readily apparent would
be useful as the industrial use of these composites increases. This work aimed to improve
the contrast of the CNT network through the addition of rare-earth oxides, specifically
europium doped yttria, to the CNT surface. Europium doped yttria has been found to
emit red light under stimulation by deep ultraviolet (DUV) wavelengths [19,20]. Since its
discovery, Eu:Y2O3 has become a common red phosphor material due its narrow emission
peak, easy stimulation under DUV radiation, and high quantum efficiency [21–24]. Efforts
to exploit the demonstrated luminescence for increased visibility in bioimaging have been
explored through the use of Eu:Y2O3 nanorods [25] and nanoparticles incorporated into
CNT cavities [26]. Coincidently, rare-earth elements are heavier than those present in a con-
ventional CNT composite, e.g., iron, carbon, and polymer chains. These heavier elements
facilitate the compositional contrast through backscatter electron production in SEM imag-
ing. By colocating Eu:Y2O3 nanoparticles and CNTs (hereafter Eu:Y2O3-CNT), the detection
of red-emissions or the detection of heavy elements, yttrium and europium, can reveal the
location of an underlying CNT network and make bulk dispersion determinations of the
CNT filler easier to visualize and at greater depths.

2. Materials and Methods
2.1. Materials

The CNT pulp that served as substrate for the Eu:Y2O3 nanoparticle synthesis, and
for the epoxy composite fabrication, was a multiwall carbon nanotube (MWCNT) product
provided by Nanocomp Technologies Inc. (Huntsman Corporation, Merrimack, NH, USA).
This nanofiller is produced as CNT sheets via a chemical vapor deposition (CVD) process
facilitated by an iron (Fe) catalyst and subsequently reduced to a pulp by employing a
Hollander Beater and industrial burr [27]. The pulp consists of MWCNT bundles approx-
imately 0.05 mm in diameter and 1 mm in length with individual CNT diameter in the
order of 30 nm. The pulp used throughout this research comes from a single production
run (Lot C) and is contrasted later with CNTs from past batches (Lot A,B).

Yttrium (III) and europium (III) nitrate hexahydrate obtained from Sigma Aldrich
(St. Louis, MO, USA) with a purity of 99.8% and 99.99% respectively, were used as precur-
sors and dissolved in a >99.5% pure ethanol also obtained from Sigma Aldrich (St. Louis,
MO, USA).

2.2. Carbon Nanotube Preparation and Eu:Y2O3 Nanoparticle Synthesis

Sample generation consisted of a three-step process where CNTs were (1) activated,
(2) Eu:Y2O3 synthesized along tube walls, and (3) the resulting pulp dispersed into an
epoxy matrix to form the nanocomposite.

The CNT pulp was first activated to facilitate the nucleation of rare-earth oxides at
activation sites. CNTs were placed in an alumina boat and thermally activated by heating
them to 500 ◦C in a tube furnace (Thermo Scientific Lindberg/Blue M model TF55035A-1,
Waltham, MA, USA) for either 1, 2, or 2.5 h in an air atmosphere. The europium and
yttrium nitrates were mixed into the activated CNT bundles via wet impregnation aided
by the sonication technique illustrated in Figure 1a. Yttrium (III) and europium (III) nitrate
hexahydrate and the activated CNT pulp were weighed to achieve europium substitution
within the Y2O3 with a targeted stoichiometry of (Y0.85Eu0.15)2O3 and a 5 wt% of Eu:Y2O3
in the CNT pulp. The nitrates were dissolved in 10 mL of ethanol and the resulting solution
poured over the CNT pulp and agitated in an ultrasonic bath for several seconds. The
saturated CNT bundles were dried at 50 ◦C for 2 h in a convection oven (Binder GmbH,
Tuttlingen, Germany). Once dried, the remaining pulp and the alumina boat were placed
in the tube furnace and purged with argon for 30 min. The mixture was calcinated in an
ultrahigh purity Ar atmosphere for 2.5 h at 850 ◦C. The pulp was allowed to cool to room
temperature over ~3 h under Ar.
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Figure 1. Depiction of the processes for: (a) introducing Eu:Y2O3 nanoparticles to CNT walls;
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2.3. Nanocomposite Fabrication

The nanocomposites used throughout this study were synthesized using the CNT
pulp described in Section 2.1 and a two-part aerospace-grade epoxy matrix, Loctite Hysol
EA 9396 (Henkel Corporation, Dusseldorf, Germany). The two-part epoxy was employed
at a ratio of 100:30 by weight (part A:part B). All samples were cured at 66 ◦C for 1 h. The
base epoxy mixture had a reported electrical resistivity of 2.14 × 1015 Ohm-cm, tensile
strength of 35.2 MPa, and lap shear strength of 27.6 MPa at 25 ◦C [28].

The CNT dispersion and electrical board fabrication is illustrated in Figure 1b. The
epoxy and CNTs were weighed to generate the desired loading (0.75 wt%) and then
dispersed by mixing in a FlackTek asymmetric speed mixer (Landrum, SC, USA). The
mixer was operated for 3 min at lower speeds followed by three 1 min higher-speed cycles
with Part B added before the final cycle. A vacuum pump was used to evacuate the air from
the hermetic vessel where the samples were contained (low vacuum range) throughout
the mixing process. The mixture was then applied to prefabricated electrical boards and,
separately, poured into molds for curing. A convection oven (Binder GmbH, Tuttlingen,
Germany) was used for the 66 ◦C curing process.

2.4. Thermo-Gravimetric Analysis

Untreated CNT pulp was analyzed in a simultaneous thermal analyzer (STA) 449
Jupiter F1 (Netzsch GmbH & Co. Holding KG, Selb, Germany) to determine initial iron
catalyst content. Data was collected during a temperature-programmed oxidation, heat-
ing the CNTs under a 20% O2 80% N2 environment analogous to sea-level atmosphere
composition, at a rate of 15 ◦C/min from room temperature to 850 ◦C.

2.5. Material Characterization and Imaging

A benchtop powder X-ray diffraction (XRD) Rigaku Miniflex 600 (Woodlands, TX,
USA) with a Cu-Source was used to determine crystalline phases throughout the process
of activation and Eu:Y2O3 inclusion.

An optical metallurgical microscope Nikon Epiphot 200 (Melville, NY, USA) was em-
ployed for low magnification observation of the CNT dispersions within the epoxy matrix.

A Zeiss Neon 40 (Zeiss, Oberkochen, Germany) Dual Beam SEM operating from
2 to 20 KV was utilized to investigate microstructural features of untreated CNT and
Eu:Y2O3-CNT bundles and the resulting CNT epoxy composites. Secondary electron (SE)
and backscattered electron (BSE) images were collected.

High-resolution transmission electron microscopy (HRTEM) images were acquired
using a FEI Tecnai Osiris TEM (Hillsboro, OR, USA). TEM bright-field images were captured
with an accelerating voltage of 200 kV, a second condenser aperture of 50 µm, and an
objective aperture of 40 µm. Scanning TEM (STEM) was used in conjunction with a high
angle annular dark-field (HAADF) detector for energy dispersive X-ray (EDX) spectroscopy
studies, the TEM’s coupled Super-X system.
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Micro-computed tomography (micro-CT) was utilized on two composite samples to
determine if improvements in network detection were possible with Eu:Y2O3-CNT samples.
The analysis was performed with a Zeiss Xradia 520 Versa (Zeiss, Oberkochen, Germany).
Scan parameters were 100 kV source voltage, 9 W power, and 10× optical magnification.
The source and detector distances were adjusted to achieve a voxel size of approximately
0.7 µm3 and 1601 projections through 360 degrees were collected with an exposure time of
1 s. Three-dimensional (3D) tomograms were rendered using tomviz freeware [29].

2.6. Deep Ultraviolet Fluorescence

Photoluminescence measurements of Eu:Y2O3-CNT composite samples were con-
ducted using a LabRAM HR Raman Microscope (Horiba Scientific, Kyoto, Japan). A
deep ultraviolet (DUV) source with an emission wavelength of 229 nm was used with
a 600 gr/nm grating. Source power was limited to 100 µW due to sample degradation
resulting in broadening of spectra peaks at higher intensities.

2.7. Conductivity Characterization

All electrical measurements were done by analyzing the prefabricated eight-point
circuit boards with a 2400 Keithley source meter (Tektronix, Inc., Beaverton, OR, USA)
operating as a current source and can be seen in Figure 2. A separate digital multimeter
(DMM) was used to measure the voltage drop across the 1 cm wide epoxy section. One
spot location was sectioned, and the thickness was measured via a Nikon Epiphot 200
reflective optical microscope (Nikon, Tokyo, Japan) to determine an average film thickness.
The electrical resistivity was then derived using Equation (ii) in Figure 2.
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3. Results and Discussion
3.1. Characterization of CNT Pulp and Synthesized Eu:Y3O3 Nanoparticles

Scanning electron microscopy observations of untreated, activated, and Eu:Y2O3-CNT
pulp were conducted and are shown in Figure 3. The untreated pulp shown in Figure 3a
consisted of tight bundles of CNTs, in contrast with Figure 3b, where the loosely packed
bundles of CNTs activated for 2.5 h can be seen. Figure 3c shows a section of the Eu:Y2O3-
CNT pulp that exemplified a feature observed in all sample locations; increased laxity of
the bundle structure. This progressive breakdown of the bundled CNTs results from the
mechanical agitation associated with handling and sonication during the activation and
Eu:Y2O3 nanoparticle synthesis.
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vated bundles; (c) Eu:Y2O3-CNT bundles.

HRTEM analysis was conducted to determine the location of the synthesized Eu:Y2O3.
In all cases, the rare-earth oxides were found adhered to CNT bundles or to surrounding Fe
particulates, never as individual particulates. CNT bundles were found to have Eu:Y2O3
nanoparticles of approximate diameters from 3 to 20 nm adhered to the tube or Fe surface
despite the use of sonication to disperse the sample for observation. HRTEM analysis with
the corresponding EDX elemental maps for Fe, Y, Eu, and oxygen are presented in Figure 4.
Figure 5 shows a study performed in a different section of the sample, and is included
to point out that the Eu:Y2O3 distribution in the samples occurred throughout the CNT
network, to include both the Fe catalyst and bare CNT surfaces.
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CNT wall.

Iron particles, internal and external to the CNTs, with diameters between 10 and
120 nm, could be seen in all the sections analyzed and are a remnant of the CNT growth
process that utilized iron as a catalyst. Larger iron particles > 30 nm were found on the
tube surface and were surrounded by an oxide shell of approximately 5–8 nm in thickness.
Synthesized europium-yttrium oxide particulates were distributed throughout the CNT
and Fe surfaces and as agglomerated nodules reaching 20 nm in diameter on larger iron
particles. This colocation of Eu:Y2O3 nanoparticles along the tube walls ensures that their
detection indicates the presence of an underlying CNT bundle. It is worth noting that some
of the Fe particulates appeared to sinter during the step meant to decompose the nitrates,
conducted at 850 ◦C and described in Section 2.3.
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X-ray diffraction was conducted with untreated CNTs, CNT pulp activated for 2.5 h,
and the final product of 5 wt% Eu:Y2O3-CNT pulp. Figure 6 presents the three samples
with significant phases identified.
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Untreated CNT pulp contained the ferritic iron used as a catalyst during the growth
process and was left in place. Subsequent TGA analysis on the same pulp determined
the iron content to be 25.6% by weight. Activation of the untreated pulp resulted in com-
plete oxidation of the iron to form iron (III) oxide, Fe2O3. The Eu:Y2O3-CNT pulp sample
exhibited iron and a new iron oxide phase, Fe3O4. The Eu:Y2O3 synthesis process intro-
duced europium and yttrium nitrate hydrate and required calcination. These precursors
underwent thermal decomposition of the hydrates and off-gassing of oxynitrates in various
stages before eventually decomposing into the target oxides between 600 and 700 ◦C [30,31].
This same process results in the reduction of Fe2O3 to Fe3O4 and iron. The peaks identified
as Eu:Y2O3 are consistent with JCPDS #058-0800 where similar Eu doping of the Y2O3
lattice was conducted as (Y0.8Eu0.2)2O3.

A phase was also identified in the completed Eu:Y2O3, marked in Figure 6 by an
asterisk symbol. Two potential candidates were identified, iron nitrides with stoichiometric
close to FeNx (with 0.03 < x < 0.09) or a carbon allotrope referred to as n-diamond (new-
diamond). Previous studies have cataloged peaks with these iron nitrides [32]. However,
data has suggested that pure single phases where x < 0.2 have not been observed and are
energetically unfavorable [33]. N-diamond was discovered by Hirai and Kondo [34] at
high temperatures and pressures and has since been synthesized by numerous groups
in varying conditions [35]. The most relevant by Wen et al. using iron-catalyzed CNTs
at atmospheric pressures and temperatures as low as 800 ◦C [36] at the sacrifice of the
degradation of the CNT structure—something not seen here. Further analyses are required
to unequivocally differentiate the phase that gives origin to these peaks.

In sum, the XRD analysis confirmed the presence of Eu:Y2O3 and TEM identified it as
colocated with the CNT network.

The Eu3+ doping of yttria produces known photoluminescence in the visible spectrum.
Figure 7 shows the emission spectra of Eu:Y2O3-CNTs under an excitation wavelength
of 229 nm. The peak at 611 nm is the characteristic spectra indicative of Eu3+ transition
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from 5D0 → 7F2 that results in the desired red luminescence [19,20,23] and confirms the
successful introduction of Eu3+ ions into the host Y2O3 lattice.
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3.2. Characterization of the CNT and Eu:Y2O3-CNT Composites and Their Electrical Performance

Optical microscopy observations of epoxy nanocomposite films can be seen in Figure 7.
The three-dimensional network of CNT bundles is comprised of bundles of increasingly
smaller diameter and length at each step of the Eu:Y2O3-CNT production process. Under
SEM imaging, the CNT pulp in Figure 3 exhibited laxation of the CNT bundle due to me-
chanical agitation. Dispersing the CNT pulp in the epoxy was done via a dual asymmetric
mixer. It is suspected that the shear forces resulting from mixing in epoxy further separate
the CNT bundles resulting in the smaller mean bundle size seen in Figure 8c.
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Figure 8. Magnification microscope 50× images revealing CNT bundles, indicated by white arrows, in
nanocomposites created from: (a) untreated CNT pulp; (b) 2.5 h activated CNT pulp; (c) Eu:Y2O3-CNTs.

Observationally, significant decreases in viscosities were seen between the uncured
samples and support the previous discussion. The uncured epoxy with untreated CNT
filler must be manually deposited into a mold and has a distinct texture, while the uncured
Eu-Y2O3-CNTs epoxy is smooth and can be readily poured.

The electrical resistivity of the bulk nanocomposite must remain below 10–106 and
106–1011 Ohm-cm to maintain its applicability for EMI and ESD prevention applications,
respectively [37]. Figure 9 presents the measured electrical resistivity of the epoxy compos-
ite as a function of wt% CNT loading. The samples generated in the present study span a
large portion of the usable range for EMI and ESD applications. The composites based on
2.5 h activated CNTs had a resistivity roughly equal to past 0.014 wt% CNT loadings of
inactivated CNTs. However, once Eu:Y2O3 was included in the CNT epoxy, those values
diminished, that is, the electrical conductivity increased.
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Figure 9. Measured electrical resistivity of current CNT pulp (Lot C) contrasted with past production
runs (Lot A,B) with an applied current of 400 µA.

Different activation times were explored, with each activated pulp subsequently
subjected to synthesis of the Eu:Y2O3 nanoparticles. The resulting resistivity is plotted in
Figure 10. The composite fabricated from untreated CNTs (0 h activation), 1, 2, and 2.5 h
activation times resulted in resistivities of 15.67, 60.47, 982.7, and 5058 Ω-cm respectively.
After synthesizing Eu:Y2O3, the untreated, 1 h, 2 h, and 2.5 h activated samples measured
resistivities of 12.40, 18.14, 79.29, and 196.4 Ω-cm. Increases in resistivity during activation
are attributed to the oxidation of the iron catalyst remaining from the CNT growth process
into iron (III) oxide, a known electrical insulator [38]. Further, the activation process results
in oxygen containing species in the form of ether C-O-C and quinone C=O groups along the
CNT surface and likely plays a role in this decrease [39]. The resistivity improvements seen
during the subsequent calcination are attributed to the reduction of the iron (III) oxide to
small amounts of iron (II oxide) and iron. This is supported by the phase analysis presented
in Figure 6.
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nanocomposite samples with 0.75 wt% CNT loading.
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Figure 11 presents the resistivity as a function of applied current. Standard deviation
across samples is stable at ~5–10% of measured resistivity. Decreasing resistivity under
increased current application was seen for the activated CNT composite. A resistivity
reduction of 9.4% across the full current range was recorded. The drop across the full
scale in the untreated and Eu:Y2O3-CNT samples was <1%. Past research has documented
similar behavior at the high resistivities associated with 0.014 wt% CNT composites. This
current dependence with increasing current application is ascribed to temperature increases
due to resistive heating and irreversibility in the conductive path within the composite.
Further discussion can be found in [1]. Notably, a reduction in resistivity (increased
conductivity) is a positive attribute for the proposed applications.
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3.3. Scanning Electron Microscopy and Micro-Computed Tomography

SEM imaging was conducted on untreated CNT pulp, Eu:Y2O3-CNT, and nanocom-
posites fabricated from those two samples. SE and BSE images of CNT pulp (no epoxy)
and epoxy CNT nanocomposites are compared in Figures 12 and 13.

For CNT pulp, the addition of Eu:Y2O3 results in easier identification of individual
tubes due to the increased contrast of the colocated CNT, the sintered Fe particulates and the
Eu:Y2O3 when conducting SE imaging (Figure 12a vs. Figure 12c). The larger particulates
observed in Figure 12c correspond to the sintered Fe, while the Eu:Y2O3 is finely dispersed.
BSE detection is improved with the addition of the Eu:Y2O3 oxide nanoparticles due to
both the presence of heavier elements absent from the bare CNT pulp and that the Fe
particulates remained at smaller sizes in the untreated CNT pulp. The contrast between
Figure 12b,d is remarkable; Figure 12d shows a brighter tone for the Eu:Y2O3, previously
identified by TEM as the finely dispersed particles, than for Fe. The CNT network is barely
distinguishable in the background. BSE imaging of the untreated CNT bundles results in
poor contrast.

Epoxy nanocomposites fabricated from untreated CNT pulp allow the visualization
of a well-dispersed CNT network via SE electron imaging. BSE imaging results in poor
contrast between the epoxy matrix and the CNT network in the same sample (Figure 13a,b).
Eu:Y2O3-CNT nanocomposites show increased contrast in both imaging modes.
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Micro-CT analysis was conducted on nanocomposites made from untreated CNTs
and Eu:Y2O3 and generated 3D tomograms of internal porosity and CNT network. Videos
featuring the 3D tomograms can be found online as Video S1 and Video S2. A plane-view
of the captured volumes is presented in Figure 14. CNT loading was 0.75 wt% in each
case however, stark differences were seen between the composite with untreated CNT
filler and the Eu:Y2O3-CNT composite (Figure 14a,b). CNT bundles were detected more
readily in the Eu:Y2O3 sample and porosity differences were clear with average pore
diameters of 113 nm and 50.2 nm for the untreated and Eu:Y2O3-CNTs, respectively. Image
processing in Figure 14c,d allowed the pore outlines to drop out, making CNT bundle
detection differences clearer. The contrast seen in the micro-CT scans corresponds to X-ray
attenuation, which indicates the fraction of X-rays absorbed or scattered at each voxel.
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High atomic number elements such as Eu and Y attenuate X-rays more intensely compared
to the epoxy matrix. Therefore, Eu:Y2O3-CNT manifest as high-contrast bright spots while
pores in the matrix are shown as a circular outline with less intensity.
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4. Conclusions

Eu:Y2O3 was synthesized as distinct particles attached to CNT walls. The addition
of Eu:Y2O3 indirectly resulted in an increase in bulk resistivity when compared to the
untreated state. However, nanocomposite resistivity remained well within the required
limits for its intended EMI and ESD applications.

Photoluminescence of the Eu:Y2O3-CNTs under DUV excitation was documented
with a resulting red-orange emission wavelength of 611 nm. The utility of luminescence
in relation to the Eu:Y2O3-CNT nanocomposite was not tested. Future work could focus
on developing imaging and nondestructive techniques exploiting the photoluminescence
within a cured composite.

Through this presence of heavier rare-earth elements, i.e., yttrium and europium,
significant contrast improvements were realized in the SEM BSE imaging, potentially
allowing the detection of tube bundles more readily and at greater depths. Similarly, the
micro-CT scans benefited from Eu:Y2O3 inclusion and improvements to three-dimensional
visualization of the CNT network through the reconstructed images resulted.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11092168/s1, Video S1: 3D tomogram of untreated CNT composite, Video S2: 3D
tomogram of Eu:Y2O3-CNT composite.

https://www.mdpi.com/article/10.3390/nano11092168/s1
https://www.mdpi.com/article/10.3390/nano11092168/s1
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