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Abstract: The rational design of direct Z-scheme heterostructural photocatalysts using solar energy
is promising for energy conversion and environmental remediation, which depends on the precise
regulation of redox active sites, rapid spatial separation and transport of photoexcited charge and
a broad visible light response. The Bi2WO6 materials have been paid more and more attention
because of their unique photochemical properties. In this study, S2− doped Bi2WO6-x coupled with
twin crystal ZnIn2S4 nanosheets (Sov−BWO/T−ZIS) were prepared as an efficient photocatalyst
by a simple hydrothermal method for the removal of tetracycline hydrochloride (TCH). Multiple
methods (XRD, TEM, XPS, EPR, UV vis DRS, PL etc.) were employed to systematically investigate the
morphology, structure, composition and photochemical properties of the as-prepared samples. The
XRD spectrum indicated that the S2− ions were successfully doped into the Sov−BWO component.
XPS spectra and photoelectrochemical analysis proved that S2− served as electronic bridge and
promoted captured electrons of surface oxygen vacancies transfer to the valence band of T−ZIS.
Through both experimental and in situ electron paramagnetic resonance (in situ EPR) characteriza-
tions, a defined direct Z-scheme heterojunction in S-BWO/T−ZIS was confirmed. The improved
photocatalytic capability of S-BWO/T−ZIS results ascribed that broadened wavelength range of light
absorption, rapid separation and interfacial transport of photoexcited charge, precisely regulated
redox centers by optimizing the interfacial transport mode. Particularly, the Sov−50BWO/T−ZIS
Z-scheme heterojunction exhibited the highest photodegradation rate was 95% under visible light
irradiation. Moreover, this heterojunction exhibited a robust adsorption and degradation capacity,
providing a promising photocatalyst for an organic pollutant synergistic removal strategy.

Keywords: z-scheme; photocatalytic degradation; synergistic effect; S2− doping; tetracycline hy-
drochloride; surface oxygen vacancies

1. Introduction

Organic pollutants in an aquatic ecosystem cause continuous environmental deteriora-
tion, which greatly threatens the ecological environment and human public health. Among
various organic pollutants, the increasing presence of antibiotics and textile dyes in wastew-
ater is one of the most serious issues. For instance, tetracycline hydrochloride (TCH), as one
of the main components of pharmaceutical wastewater, is usually chemically stable and
hardly removed by conventional biochemical and physical measures. It can bring about a
series of environmental concerns such as causing the formation of resistant microorganisms
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and upsetting the natural balance [1–4]. To mitigate the threats and promote the sustainable
and rapid development of industry, it is an emergency to exploit novel technologies aimed
at the purification of industrial wastewater. Various wastewater treatment techniques (e.g.,
adsorption, membrane separation, coagulation, biodegradation and advanced oxidation
processes (AOPs)) have been proven to be effective tactics for removing organic pollutants
from wastewater. Among these strategies, adsorption, as one of the simplest and most
efficient treatment methods, is strongly recommended for the extensive removal of organic
pollutants [5]. However, its limited adsorption capacity, increased regeneration cost and
potential secondary pollution limit its wide application. Therefore, it is necessary to find a
feasible and environmentally friendly adsorbent regeneration technology.

Recently, photocatalysis as one kind of the most “green” AOPs, has emerged as a
promising approach for the removal of TCH without bringing secondary pollution in the
wastewater treatment process. Especially, various photocatalysts possess high specific
surface area and ordered mesoporous layers, which facilitates the adsorption of contam-
inants within the mesoporous layer [6–8]. Moreover, it is beneficial to the subsequent
photocatalytic degradation through creating a partial microenvironment of organics, thus
better satisfying the requirements for highly efficient removal of pollutants. Besides, the
active component (OH, O2

−, h+, e−) produced by photocatalysts could immediately re-
act with adsorbed contaminants, reviving the regenerate adsorption ability. Currently,
bismuth tungstate (Bi2WO6), as the simplest Aurivillius-type member with alternating
(Bi2O2)n(WO4)n construction and simultaneously containing the WO6 perovskite compo-
nent, has attracted intense attention in the environmental remediation of refractory organic
wastewater [9–12]. Especially, surface vacancy-regulated Bi2WO6 (Bi2WO6-x) is widely
used in photocatalytic purify of organic contaminants due to its appropriate bandgap
structure and positive valence band level, visible-light response and robust photochemical
stability. In previous reports, introducing heteroatom has proven to be one of the most
effective modification strategies, because the band structure and electronic structure can be
effectively adjusted, ultimately optimizing the morphology, improving photoelectrochemi-
cal properties and enhancing the photocatalytic performance [13].

To date, it is widely attracting more and more attention in Z-scheme heterojunction
photocatalysts, due to their maximum redox capacity and effective separation and transfer
of photoexcited carriers. However, the building of a non-intimate contact heterogeneous
interface has been proven to be ineffective in the development of an extraordinary Z-
scheme system [14–16]. In 2018, Hao et al. found that the induction of surface oxygen
vacancies (Sov) in a Z-scheme system possessed several distinct advantages: on the one
hand, the introduced Sov facilitated the formation of intimate contact. Simultaneously, it
enhanced the separation and migration efficiency of photoexcited carriers due to its built-in
electric field; on the other hand, Sov could effectively adjust the band structure to realize
the optimized Sov-mediated Z-scheme systems [17]. Furthermore, Sun et al. investigated
firstly that Sov-dominated “Electron Bridge” greatly enhanced the spatial separation ability
and utilization efficiency of photoexcited carriers [18]. Therefore, considering the unique
advantages of Sov in heterojunction, coupling Sov-mediated porous nanosheets with other
porous nanosheets to build electron bridge in Z-scheme heterojunction is highly estimated
to regulate the photocatalytic degradation efficiency, but has rarely been reported.

In this study, a series of S2− doped Bi2WO6-x coupling with twin crystal ZnIn2S4
(Sov−BWO/T−ZIS) composites were fabricated by self-assembly method via the tactics
that synergistic adsorption with photocatalytic decontamination. Benefits from the S2−

doping and the electron trap consisted of Sov, the as-prepared Sov−BWO/T−ZIS Z-scheme
heterojunctions displayed the rapid separation and efficient utilization of carriers, thus
exhibiting the enhancement of TCH removal efficiency.
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2. Materials and Methods
2.1. Materials

Zinc chloride (ZnCl2), indium chloride (InCl3·4H2O), thioacetamide (TAA), glyc-
erol, sodium tungstate (Na2WO4·2H2O), bismuth nitrate (Bi(NO3)3·5H2O) and N, N-
dimethylformamide (DMF) were obtained from Shanghai Macklin Biochemical Co., Ltd.
(88 Darwin road, Pudong, Shanghai, China). All used chemicals were used as received
without further purification.

2.2. Synthesis
2.2.1. Preparation of Bi2WO6-x Nanosheets with Surface Oxygen Vacancies (Sov−BWO)

The Bi2WO6-x nanosheets were synthesized via the following steps: firstly, 485 mg
Bi(NO3)3·5H2O was added into 80 mL deionized water for 20 min with the aid of mag-
netic stirring. Then, 165 mg Na2WO4·2H2O was added into the aqueous solution and
sustained another 10 min. Then, the appeared precipitate was centrifuged several times
and transferred into 35 mL deionized water. Then, the mixed solution was transferred
into a Teflon-lined autoclave and kept at 433 k for 18 h. Finally, the products were washed
several times with deionized water and dried at 333 k for 12 h. The as-prepared products
were denoted as Sov−BWO.

2.2.2. Preparation of Bi2WO6-x/ZnIn2S4 Composite Photocatalysts with Surface Oxygen
Vacancies-Rich (Sov-xwt%BWO/T−ZIS)

The Bi2WO6-x/ZnIn2S4 composites were synthesized through a facile in situ solvother-
mal method, which was showed as Scheme 1. In a typical process, a certain amount of
Bi2WO6-x sample (25 mg, 50 mg, 75 mg, 100 mg) was dispersed into the 15 mL DMF solu-
tion. Then, ZnCl2 (1 mmol) was dissolved into DMF and maintained ultrasonic for 10 min.
InCl3·4H2O (2 mmol) was added into the mixture solution and maintained 10 min. TAA
(4 mmol) was dispersed in the mixture solution, which was going on ultrasonic processing
for 5 min. Subsequently, glycerol (3 mL) was added into the mixture and maintained for
5 min. The collected solution was then transferred into a Teflon-lined autoclave (50 mL)
and heated at 453 K for 10 h. Finally, after cooling down to room temperature, the as-
prepared product was obtained and labeled as Sov−25BWO/T−ZIS, Sov−50BWO/T−ZIS,
Sov−75BWO/T−ZIS, Sov−100BWO/T−ZIS. For comparison, the synthetic procedure of
the pure ZnIn2S4 sample was similar to the above steps except that the Bi2WO6-x was not
added and labeled as T−ZIS.
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2.3. Characterization

X-ray Diffraction (XRD) was obtained by a Rigaku D/MAX 2500 V (Matsubara-
choAkishima-shi, Tokyo, Japan), a scanning scope from 10◦ to 80◦. Fourier transform
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infrared spectroscopy (FT-IR) spectra of the samples were conducted using a Nicolet iS
50 (TMO, Waltham, MA, USA). The microstructures were monitored by transmission
electron microscopy (TALOS F200 TEM, TMO, Waltham, MA, USA). The morphology
of the samples was monitored on a field-emission scanning electron microscopy (S-4800
FE-SEM, HITACHI, Chiyoda-ku, Tokyo, Japan) equipped with an energy-dispersive X-
ray spectrometry (EDS). The positions of the XPS peaks were determined with reference
to the carbon peak of C ls at 284.8 eV. The binding energies of Zn, In, S, Bi, W and O
elements were acquired using an X-ray photoelectron spectroscopy (Nexsa, XPS, TMO,
Waltham, MA, USA). The electron paramagnetic resonance (EPR) analysis was performed
to test surface oxygen vacancies on a Bruker A300 spectrometer at 298 K. In situ electron
paramagnetic resonance (in situ EPR) spectra were obtained on a Bruker EMXplus spec-
trometer equipped with a 150 W mercury lamp as the illumination source. The details
of the instrumental parameters were as follows: Scanning frequency: 9.82 GHz, central
field: 3400 G, scanning power: 20 mW, and scanning temperature: 298 K (room temper-
ature, RT). The optical absorption of samples was gotten by a UV-vis DRS spectrometer
(UV-3600 Plus, SHIMADZU, Nakagyo-ku, Kyoto, Japan), in which BaSO4 acted as the
internal reflectance standard. Photoluminescence (PL) spectroscopy was measured using a
PerkinElmer LS55 photoluminescence spectrometry testing system under the excitation of
325 nm light. Liquid chromatography mass spectrometry (LC-MS) was measured on the
Agilent 1290 UPLC/6540 Q-TOF (Santa Clara, CA, USA).

2.4. Adsorption and Photocatalytic Performance Test

Using tetracycline hydrochloride (TCH) as a model pollutant, the decontamination
activity of as-prepared materials was evaluated. The initial pH of the TCH solution
was 6.3. The photocatalyst (T−ZIS, Sov−BWO) was added into solution, increasing PH
to 6.7. The adsorption capacity and photocatalytic activity of the as-prepared samples
(T−ZIS, Sov−BWO, Sov−25BWO/T−ZIS, Sov−50BWO/T−ZIS, Sov−75BWO/T−ZIS
and Sov−100BWO/T−ZIS) was investigated in the glass vial with circulating cooling
water system. A 300 W Xe lamp with a cut-off filter (λ > 400 nm) was used as the source
of visible light. Typically, 30 mg as-synthesized sample was dispersed in 100 mL TCH
aqueous solution (20 mg/L), and stirred magnetically in the dark for 30 min to achieve
adsorption-desorption equilibrium. Then, 2 mL suspension was withdrawn each 15 min
and then filter through 0.22 µm nylon membrane. The TCH concentrations were measured
using a UV–vis spectrophotometer (UV-5100, METASH, Shanghai, China) at the absorption
peak of 357 nm. The stability and reusability of the best-performing sample were tested for
five runs under the same conditions.

2.5. Active Species Trapping Experiments

Ethylenediaminetetraacetic acid disodium (EDTA-2Na), isopropanol, p-benzoquinone
of 1 mmol·L−1 were acted as scavengers to capture hole (h+), hydroxyl radical (OH) and
superoxide radical (O2

−), respectively. The experiments were similar to the above best-
performing photocatalytic degradation of TCH.

The adsorption and photocatalytic degradation rates were calculated by using the
following equations:

Removal efficiency = (C0 − Ct)/(Ct) (1)

where C0 was the absorbance of the original TCH solution. The Ct is the absorbance of the
residual concentration of TCH under different degradation times.

2.6. Photoelectrochemical Measurements

A CHI660E electrochemical workstation was performed to test. In a typical three-
electrode system, Pt foil acted as the counter electrode and Ag/AgCl served as a reference
electrode, in which the electrolyte was 0.5 M Na2SO4 aqueous solution. Electrochemical
Impedance Spectroscopy (EIS) was carried out in 0.5 M Na2SO4 aqueous solution over the
frequency ranging from 0.1 Hz to 105 Hz. Mott-Schottky plots were measured under the fre-
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quency of 1000 Hz and 2000 Hz in 0.5 M Na2SO4 aqueous solution. Photocurrent response
(I-t) of the as-prepared samples was measured on IVIUM electrochemical workstation. A
single wavelength (λ = 375 nm) was served as the light source.

3. Results and Discussion
3.1. Structure Characterizations

Figure S1a showed XRD patterns of the as-prepared T−ZIS, Sov−BWO, Sov−25BWO/
T−ZIS, Sov−50BWO/T−ZIS, Sov−75BWO/T−ZIS and Sov−100BWO/T−ZIS samples.
The characteristic peaks at 28.3◦, 32.7◦, 47.1◦, 55.9◦ and 58.5◦of pristine Sov−BWO could
be attributed to the (131), (200), (202), (133) and (262) crystal planes, corresponding to the
Bi2WO6 (Orthorhombic, JCPDS 39–0256), respectively [18]. Meanwhile, the diffraction
peaks at 20.6◦, 27.5◦ and 47.5◦ were assigned to the (006), (102) and (110) crystal planes
of ZnIn2S4 (Hexagonal, JCPDS 65–2023), respectively [19]. The peak at 13.9◦ could be
attributed to the (111) plane of cubic ZnIn2S4 (JCPDS 48–1778) [20]. Notably, the XRD
patterns of the Sov−BWO/T−ZIS Z-scheme heterojunctions were similar to that of T−ZIS,
indicating that the Sov−BWO coupling had no adverse influence on the crystal structure
of T−ZIS. However, it was clearly observed in Figure 1a that the (102) diffraction peaks of
Sov−BWO/T−ZIS composites significantly shifted lower than that of T−ZIS. In addition,
with the increase of Sov−BWO, the intensity of crystal plane (131) changed from weak
to strong, which indicated that the introduction of T−ZIS reduced the self-stacking of
Sov−BWO, promoted the cohesion of nanosheets and optimized the morphology. Mean-
while, the new peaks at 24.9◦ were observed in all heterojunctions and belonged to S2−

doping into Sov−BWO [21–23]. Furthermore, combined with XPS analysis, it was con-
vincingly confirmed the existence of S2− doping, which promoted the rapid transfer of
photoexcited charge on the unique interface. The FT-IR spectra of the as-obtained samples
were shown in Figure 1b. The characteristic peaks of pristine Sov−BWO at 581 cm−1 and
726 cm−1 were considered as W–O bonds, while the characteristic peak at 1382 cm−1 was
attributed to a W–O–W vibration bond, respectively [24]. Figure S1b showed that the
characteristic peaks of the T−ZIS, Sov−BWO and S2− doped Sov−BWO/T−ZIS samples
were around 1619 cm−1 and 3421 cm−1, respectively, which were caused by O–H bonds
and water molecules adsorbed on the surface [25].

The morphology of prepared Sov−BWO, T−ZIS and Sov−50BWO/T−ZIS samples
were investigated by FE-SEM. As shown in Figure 1c, the pristine Sov−BWO sample
demonstrates obvious irregular ultrathin nanosheets. Figure 1d provided the FE-SEM
image of petal-like T−ZIS. As displayed in the SEM image from Figure 1e, the as-obtained
Sov−50BWO/T−ZIS photocatalyst exhibited self-assembly nanosheets with a tight contact.
It was clearly revealed that the introduction of Sov−BWO into T−ZIS would generate the
cohesion of petal-like structures. In addition, the Sov−BWO nanosheets were uniformly
assembled with T−ZIS nanosheets to establish two dimension (2D/2D) tight heteroge-
neous interfaces. Composition and distribution of elements in Sov−50BWO /T−ZIS
hybrid was revealed by the EDS spectrum and elemental mapping images and shown in
Figure S2. The EDS spectrum confirmed the presence of Zn, In, S, Bi, W and O elements
in Sov−50BWO/T−ZIS samples. Moreover, the elements of Bi, W and O were evenly
distributed, which was consistent with uniform anchoring and tight self- assembly.

Furthermore, HRTEM images of Sov−50BWO/T−ZIS sample were presented to
further analyze the morphology. HRTEM image in Figure 1f, the crystal spacing was
0.19 nm and 0.32 nm, corresponding to the (202) plane of Bi2WO6 and the (102) plane of
ZnIn2S4, respectively. The typical lattices of Sov−BWO and T−ZIS indicated the successful
construction of the Sov−50BWO/T−ZIS hybrid. Furthermore, as shown in Figure 1g, the
discontinuity of the lattice could be seen clearly, which arose from the existence of an oxygen
vacancy in Sov−BWO [26]. More meaningfully, it was intuitively observed that T−ZIS
had a (102) crystal plane symmetrical twin crystal structure, which was in accordance
with previous literature (Figure 1f,g) [27]. Moreover, it shown that the false-color image
in the (102) plane corresponded to twin crystal T−ZIS. Due to the unique advantage of



Nanomaterials 2021, 11, 2123 6 of 17

building crystal structure, it facilitated an internal electric field in the twinned T−ZIS,
thereby improving the separation efficiency of electrons and holes in the photocatalytic
reaction of twin crystal T−ZIS. It revealed that twinned crystals can promote adsorption
and increase photocatalytic reactions.
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The surface chemical state of surface elements was analyzed by XPS. Figure 2a pre-
sented the XPS survey scan of as-prepared Sov−BWO, T−ZIS and Sov−50BWO/T−ZIS
samples. It can be observed that Bi, W and O are the principal elements of Sov−BWO. In
addition, T−ZIS consisted of Zn, In and S elements, while the Bi, W, O, Zn, In and S exist
in the Sov−50BWO/T−ZIS sample. Figure 2b,c displayed high resolution spectra of Zn
2p and In 2d. For pure T−ZIS, the two distinct peaks at 1044.7 eV and 1021.7 eV are in
accordance with Zn 2p1/2 and Zn 2p3/2, while the two peaks at 452.5 eV and 445.0 eV were
distributed to In 3d3/2 and In 3d5/2, respectively. Similarly, as for Sov−50BWO/T−ZIS
sample, the characteristic peaks at 1145.2 eV and 1122.1 eV are assigned to the Zn 2p1/2 and
Zn 2p3/2 of Zn2+ species, while the peaks at 452.4 eV and 444.9 eV were consistent with
the In 3d3/2 and In 3d5/2 of In3+, respectively [28]. These relatively larger shifts of Zn2+

and In3+ revealed the strong influence of T−ZIS, compared to the previous literature with
heterojunction formation [29–31]. Meanwhile, it showed in Figure 2d that the S 2p (S 2p1/2
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and S 2p3/2 at 162.9 and 161.7 eV) of Sov−50BWO/T−ZIS hybrid exhibited the positive
shift compared to T−ZIS (S 2p1/2 and S 2p3/2 at 162.8 eV and 161.6 eV). Whereas the Bi 4f
characteristic peaks at 163.6 eV and 158.2 eV of Sov−50BWO/T−ZIS shifted toward lower
binding energy compared to the peaks at 164.4 and 159.0 eV of Sov−BWO. Interestingly,
the obvious new peaks approximately at 164.3 eV and 158.9 eV were attributed to the
reason that S2− doped into Sov−BWO [32]. The strong changes revealed that the S2− acted
as an efficient electronic bridge and facilitated the trapped electron carriers transfer from
Sov−BWO to T−ZIS. In Figure 2e, the O 1s of the original Sov−BWO was divided into
two peaks at 530.8 eV and 529.8 eV, which were attributed to the widespread existence of
lattice oxygen and the absorption of oxygen on the oxygen vacancies in the Sov−BWO
region, respectively. However, the peaks in Sov−50BWO/T−ZIS shifted to higher binding
energy at 532.7 eV and 531.4 eV, which resulted from the fast transport of electrons from
the captured region to the interface of T−ZIS. It was further demonstrated that the S2−

served as an electronic bridge and facilitated priority trapped electron and transfer. In
addition, the W 4f of pristine Sov−BWO exhibited two peaks at 37.5 eV and 35.3 eV, which
could be assigned to W6+ species. Analogously, the lower shifted of Sov−50BWO/T−ZIS
at 37.0 eV and 34.9 eV [33]. It was speculated that W atoms were adjacent to the oxygen
vacancies-rich region, resulting in high electron concentration around vacancies [34]. These
results further proved the intimate interface contact between Sov−BWO and T−ZIS [35].
Moreover, the strong electronic interaction was achieved by the S2− doping and construc-
tion of electron bridge, which was conducive to the spatial separation and transport of
charge in Sov−50BWO/T−ZIS Z-scheme heterojunction.
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The specific surface area and pore structure of the samples were studied using
N2 adsorption-desorption isotherms and pore size distribution curves. As shown in
Figure S3a, the adsorption-desorption isotherms of all samples were shown as typical
IV type isotherms with H3 type adsorption hysteresis loop [36]. The hysteresis loops
appeared at relative pressure P/P0 of about 0.8–1.0, revealing that the samples are all
mesoporous structures [5]. Table 1 showed that the BET specific surface area and pore
volume of pure T−ZIS are 44.55 m2·g−1 and 0.1455 cm3·g−1, which was higher than
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that of pristine Sov−BWO (13.98 m2·g−1 and 0.0385 cm3·g−1). The higher specific sur-
face area and pore volume provided favorable conditions for the molecular diffusion
of the reactants and the approachability of active sites. Hence, pure T−ZIS had better
adsorption and decontamination capacity compared to pristine Sov−BWO. In addition,
all composites (Sov−25BWO/T−ZIS, Sov−50BWO/T−ZIS, Sov−75BWO/T−ZIS and
Sov−100BWO/T−ZIS) exhibited the enhanced specific surface area higher than single
Sov−BWO and T−ZIS samples, which were 71.47 m2·g−1, 73.16 m2·g−1, 62.48 m2·g−1 and
50.61 m2·g−1, respectively. The self-assembly Sov−BWO and T−ZIS nanosheets probably
possessed the tight heterogeneous interface contact and a puffier morphology, resulting
in a larger specific surface area. With the addition of Sov−BWO, the adsorption capac-
ity of TCH increased significantly, indicating that the construction of Sov−BWO/T−ZIS
Z-scheme heterojunction was bifunctional in adsorbing and in situ decontamination to
remove pollutants. Meanwhile, the Sov−50BWO/T−ZIS sample possessed the maximum
specific surface area of 73.16 m2·g−1, which was responsible for the enhancement of ad-
sorption capacity. However, the further addition of Sov−BWO resulted in a significant
decrease in the specific surface area of Sov−75BWO/T−ZIS and Sov−100BWO/T−ZIS
samples, which may be caused by excessive accumulation of Sov−BWO nanosheets during
the self-assembly process. Figure S3b exhibited the pore distribution of Sov−BWO, T−ZIS,
Sov−25BWO/T−ZIS, Sov−50BWO/T−ZIS, Sov−75BWO/T−ZIS and Sov−75BWO/T−ZIS
samples. The nanosheet morphology by the self-assembly process had both mesopores
located within the nanosheet and mesopores with large continuous nanosheet spacing.
The unique hierarchical structure exhibited multiple internal reflections and beneficial
diffusion properties which enhanced the ability of photon capture. Compared with other
composite materials, Sov−50BWO/T−ZIS had a smaller mesoporous particle size dis-
tribution, which was probably conducive to exposing more active sites in the composite
material, accelerating the transfer rate of photogenerated carriers, thereby increasing the
photocatalytic activity.

Table 1. The Brunauer–Emmett–Teller (BET) surface area, pore volume and Barret–Joyner–Halender
(BJH) Adsorption average pore size of T−ZIS, Sov−BWO and composites.

Samples SBET(m2·g−1)
Pore Volume

(cm3·g−1)
Average Pore Size

(nm)

T−ZIS 44.55 0.1455 17.61
Sov−BWO 13.98 0.0385 22.98

Sov−25BWO/T−ZIS 71.47 0.1897 12.98
Sov−50BWO/T−ZIS 73.16 0.2374 10.61
Sov−75BWO/T−ZIS 62.48 0.2207 14.13
Sov−100BWO/T−ZIS 50.61 0.1646 13.01

3.2. Adsorption and Photocatalytic Performances

As an effective broad-spectrum antibiotic with outstanding antibacterial property,
tetracycline hydrochloride (TCH) has excellent antibacterial properties and has been widely
used in the medical field. Herein, performance test experiments using the synthesized
samples as adsorbents and photocatalysts were performed to evaluate the removal effi-
ciency of TCH. As displayed in Figure 3a, the adsorption capacity of pure T−ZIS (37%)
was significantly higher than that of Sov−BWO (14%), attributing to the large specific sur-
face area of T−ZIS. With the increased incorporation of Sov−BWO, adsorption quantities
of targeted TCH increased observably, demonstrating the superiority in adsorption by
Sov−BWO/T−ZIS samples. The adsorption performance of Sov−50BWO/T−ZIS sample
reached the maximum (61%), which proved that the self-assembly morphology was a
feasible way to improve the adsorption capacity. Meanwhile, the enhancement of adsorp-
tion performance of Sov−50BWO/T−ZIS after self-assembly optimization was mainly
attributed to the increase of specific surface area and pore volume. The removal efficiency of
Sov−BWO, T−ZIS, Sov−25BWO/T−ZIS, Sov−50BWO/T−ZIS, Sov−75BWO/T−ZIS and
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Sov−100BWO/T−ZIS were 67%, 47%, 89%, 95%, 88% and 86%, respectively. Moreover, the
Sov−50BWO/T−ZIS photocatalysts exhibited an enhanced TCH degradation rate of 93%
in 15 min (Figure 3b). It was attributed to the optimized morphology, high specific surface
area and rapid migration of photoexcited charge. We further analyzed the photocatalytic
degradation rate under different light times to analyze the photocatalytic kinetics. The pho-
tocatalytic kinetics of T−ZIS was higher than that of Sov−BWO, which was attributed to
the rapid carrier separation ability of twinned crystal T−ZIS. The Sov−50BWO/T−ZIS Z-
scheme heterojunction exhibited the maximum TCH degradation rate, which was attributed
to the optimized morphology and rational Z-scheme heterojunction. The doped S2− served
as electron bridge, accelerating the migration of photoexcited charge in Z-scheme hetero-
junction and enhancing photocatalytic kinetics. Figure 3c illustrated that the degradation
of TCH over the as-obtained photocatalysts follows the pseudo-first-order rate constants.
The rate constants of Sov−BWO, T−ZIS, Sov−25BWO/T−ZIS, Sov−50BWO/T−ZIS,
Sov−75BWO/T−ZIS and Sov−100BWO/T−ZIS samples were 0.008 min−1, 0.0108 min−1,
0.0226 min−1, 0.03 min−1, 0.0209 min−1 and 0.0195 min−1, respectively, which demon-
strated that the construction of Z-scheme heterojunction retained the strong redox ability
of T−ZIS and Sov−BWO. Meanwhile, due to the existence of electron bridge in the Z-
scheme system, the separation of photoexcited carriers was accelerated, and more O2

−, h+·
and ·OH were produced in the reaction solutions, greatly improving the photocatalytic
degradation rate of TCH.
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In addition, the active species scavenging experiments were carried out to identify
the active species involved in the TCH removal of Sov−50BWO/T−ZIS photocatalyst.
EDTA-2Na, isopropanol and p-benzoquinone are chosen as h+, OH and ·O2

− scavengers,
respectively. As shown in Figure 3d, compared with the reaction without sacrificial agent,
the addition of isopropanol had only slightly changed, indicating that OH was not the main
active radicals in the reaction. After adding EDTA-2Na and p-benzoquinone, the degrada-
tion rate was greatly decreased, indicating that the active species of Sov−50BWO/T−ZIS
Z-scheme heterojunction to degrade TCH were mainly h+ and ·O2

−, which were consistent
with previous literature [37]. For both pure T−ZIS and Sov−BWO samples, the addition of
trapping agent exhibited a certain inhibitory effect, probably due to the consumption of
active species.

Under the same conditions, five successive photocatalytic experiments were carried
out on decontamination and adsorbent regeneration. Figure S6a revealed that Sov−50BWO/
T−ZIS sample maintained high activity after five runs. It was obviously observed that the
concentration of TCH in the adsorption process remained basically unchanged, indicat-
ing that the adsorbed TCH could be effectively decontaminated through the subsequent
photodegradation process. In addition, by comparing the adsorption and degradation
performance after each reaction, the Sov−50BWO/T−ZIS photocatalyst realized stable
adsorption and sustained degradation (Figure S6b). It revealed that the degradation of TCH
adsorbed onto Sov−50BWO/T−ZIS nanosheets regenerated the adsorption performance
of the material. Moreover, Figure S6c showed that the XRD pattern of Sov−50BWO/T−ZIS
hybrid was similar before and after the reaction. Figure S6d exhibited the similar character-
istic peak in FT-IR spectra, indicating the Sov−50BWO/T−ZIS sample was stable.

3.3. Possible TCH Degradation Pathway

To identify the potential decontamination pathway of TCH during the photocatalytic
stage, the intermediate products were analyzed by LC-MS systems. The corresponding
m/z (mass-to-charge ratio) were presented in Figure S5. The products with m/z value of
491, 445, 433, 427,410, 352, 346, 256, 246, 242 and 184 produced during the degradation
of TCH in the presence of the Sov−50BWO/T−ZIS photocatalyst. Based on previous
related reports and analysis results, three possible degradation pathways were presented
in Figure 4. The typical functional groups of double bond, phenolic group and amine
group in TCH were possess high electron density, which were easily attacked by the active
species [38,39]. For pathway 1: the transformation (m/z = 445) from TCH to intermediate
product (m/z = 433) was started by dealkylation reaction under the h+ attack. Then, the
product (m/z = 346) was resulted from the deamination reaction [39,40]. For pathway II:
the intermediate product (m/z = 427) could be attributed to the loss of hydroxyl groups.
The product (m/z = 410) was attributable to the loss of C–NH2 [41]. Pathway III: The
product (m/z = 491) was formed by oxidation of double bonds, leading to the addition
of hydroxyl and ketone group [38]. Then, the intermediate product further transformed
into product (m/z = 433) by dehydration and product (m/z =352) via oxidation. As the
photocatalytic degradation proceeding, these intermediates were further oxidized to low
molecular weight organics through a series of dissociating functional groups and ring
opening processes, including m/z = 257, 246, 242, 184 [39]. Finally, the above-mentioned
products were mineralized into harmless inorganic substances, which completely destroyed
the TCH structure.
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3.4. Optical and Electrochemical Measurement

To study the optical absorption and bandgap structure properties, the UV-vis DRS
was performed to characterize. Figure 5a displayed the UV–vis DRS curves of Sov−BWO,
T−ZIS and Sov−BWO/T−ZIS with different Sov−BWO concentrations. It was clearly
observed that the photoabsorption scope of the composites shifted to a longer wavelength
position compared with pristine Sov−BWO, suggesting that Sov−BWO was successfully
coupled with T−ZIS. The energy gap (Eg) derived from UV-vis DRS were evaluated from
the plots of (ahv)2 versus the absorbed energy [42]. The Eg values of T−ZIS and Sov−BWO
were shown in Figure S7c, which were 2.41 eV and 2.82 eV, respectively. Mott–Schottky
(MS) curves were executed to measure the flat-band potential and semiconductor types of
T−ZIS and Sov−BWO.
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As displayed in Figure S7a,b, the MS curves of T−ZIS and Sov−BWO were positive,
demonstrating the n-type characteristic. The flat band potential of T−ZIS and Sov−BWO
were −0.71 and −0.41 V (versus Ag/AgCl, PH = 7), respectively. The flat band potential of
negative 0.1 V was considered to be the conduction band edge (ECB) of n-type semicon-
ductors [30]. Therefore, the CB potentials of T−ZIS and Sov−BWO were calculated to be
−0.81 and −0.51 V (versus Ag/AgCl, PH = 7), which were equal to −0.61 and −0.31 V
(versus NHE, PH = 7), respectively [43]. Meanwhile, the valence band edge (EVB) of T−ZIS
and Sov−BWO were estimated to be 1.80 and 2.51 V versus NHE according to the formula:
EVB = ECB + Eg.

To investigate the photoexcited carrier separation of as-obtained photocatalysts, PL
spectra were performed at an excitation wavelength of 325 nm. As shown in Figure 5b,
the PL emission intensity of the Sov−BWO/T−ZIS Z-scheme heterojunctions presented
the decreased intensity compared with original Sov−BWO and T−ZIS, indicating that
the probability of carrier recombination in the composite photocatalysts was effectively
suppressed. It mainly caused by the formation of built-in electric field at the heteroge-
neous interface, which accelerated the separation and transfer of electron–hole pairs [44].
Moreover, the as-obtained Sov−50BWO/T−ZIS hybrid photocatalyst exhibited the low-
est intensity, revealing that the electrons could be rapidly transferred and separated by
heterogeneous interface via electron bridge path. In addition, both original Sov−BWO
and Sov−50BWO/T−ZIS hybrid exhibited obvious EPR signals at a g-value of 2.003
(Figure S8), demonstrating the existence of oxygen vacancies [45]. Especially, after cou-
pling of Sov−BWO with /T−ZIS, the EPR response was higher than that of Sov−BWO,



Nanomaterials 2021, 11, 2123 13 of 17

attributing that the optimized self-assembly process of nanosheets reduced stacking of
Sov−BWO and exposed more surface oxygen vacancies.

Furthermore, I-t curves and EIS measurements were employed to examine the trans-
port behavior of photoexcited carriers. As displayed in Figure 5c, it was obviously dis-
played that Sov−50BWO/T−ZIS Z-scheme heterojunction had the highest photocurrent
as a comparison to single Sov−BWO and T−ZIS, demonstrating the maximum separation
efficiency of photoexcited carriers [33]. Similar trends have been observed in Nyquist plot
(Figure 5d). Generally, the charge transfer resistance was inversely proportional to the arc
diameter of Nyquist plot. Table S1 listed the Rs, Rp and CPE values of the equivalent circuit,
indicating that Rp was the main resistance. An EIS Nyquist plot of the Sov−50BWO/T−ZIS
photocatalyst exhibited the smallest diameter of the semicircular (1182.3 Ω) in comparison
to those of the pure single component, implying the rapid separation and transport of
photoexcited charge at the interface.

3.5. Electron Transfer Mechanism of Z-Scheme Heterojunction

To gain insight into the Z-scheme photocatalytic mechanism, we further performed in
situ EPR studies to detect the responses of DMPO-·OH and DMPO-·O2

− of Sov−BWO,
T−ZIS and Sov−50BWO/T−ZIS photocatalysts, respectively. Figure 6a showed that all
samples had no in situ EPR signals in the dark environment, indicating that the active
species were generated by photocatalysis. Under light irradiation, the DMPO-·OH results
of in situ EPR detection showed that ·OH produced by Sov−50BWO/T−ZIS originated
from Sov−BWO. The intensity of DMPO-·OH over the Sov−50BWO/T−ZIS was stronger
than that of Sov−BWO, proving the improved photogenerated carrier separation and
transmission efficiency. We had hardly detected the DMPO-·OH signal after light irra-
diation over pure T−ZIS. It was mainly because the EVB potential of T−ZIS was lower
than that of ·OH/OH− (1.99 V vs. NHE) and H2O/OH (2.34 V vs. NHE), resulting in the
h+ in the CB of T−ZIS was unable to generate ·OH [22]. As displayed in Figure 6b, the
obvious DMPO-·O2

− signals were discovered in T−ZIS and the DMPO-·O2
− signals could

hardly be detected in Sov−BWO. The inexistence of·O2
− (O2/OH, −0.33 V vs NHE) over

Sov−BWO was due to the inadequate ECB potential [46]. Meanwhile, after constructing of
Sov−50BWO/T−ZIS hybrid, the intensity of DMPO-·O2

− was significantly higher than
that of T−ZIS. The coexistence of O2

− and OH species confirmed that the charge separation
pathway was a Z-type heterojunction, rather than the typical II-type heterojunction [47].
These results further indicated that the Z-scheme system was conducive to the transport of
photogenerated charge, thus demonstrating the robust photocatalytic activities. Based on
the above active species scavenging experiments and in situ EPR results, we speculated the
possible photocatalytic reactions as follows:

Sov−BWO/T−ZIS + hν→ e− + h+ (e−CB) (2)

T−ZIS + O2 → O2
− (h+VB) (3)

Sov−BWO + H2O→ OH (4)

O2
− + Pollutants→ degraded products (5)

H+ + Pollutants→ degraded products (6)

OH + Pollutants→ degraded products (7)
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Based on the above analysis, a reasonable mechanism of adsorption and in situ
decontamination in the sequential process was preliminarily confirmed between Sov−BWO
and T−ZIS. As shown in Figure 6c, due to increased specific surface area and abundant
mesoporous of Sov−BWO/T−ZIS, the adsorptive sites were beneficial to adsorption of
more pollutants. Hence, rapid enrichment of pollutants was achieved inside or on the
surface of the Sov−BWO/T−ZIS nanosheets. After adsorption equilibrium, the main active
species (O2

− and h+) mineralized adsorbed pollutants into CO2 and H2O under visible
light illumination. Herein, the electrons on the EVB of T−ZIS generated·O2

− by reducing
dissolved oxygen. The holes on the EVB of Sov−BWO produced OH by oxidized H2O and
OH− [37]. Meanwhile, the photoexcited electrons on the ECB of Sov−BWO were injected
into the EVB of T−ZIS through the Sov and rapidly transfer by S2− electronic bridge, and
promptly recombined with the photoexcited holes, which was consistent with the XPS
analysis. Therefore, the Sov−BWO/T−ZIS Z-scheme heterojunction not only promoted the
separation and transport of photoexcited carrier charges, but also retained the high redox
capabilities of Sov−BWO and T−ZIS, thus exhibiting the high degradation efficiency.

4. Conclusions

In summary, we proposed the Z-scheme heterojunction via coupling Sov−BWO with
T−ZIS nanosheets, which acted as an efficient functional photocatalyst for removal of
pollutants. The addition of T−ZIS nanosheets significantly optimized the cohesion of
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nanosheets and improved the adsorption ability of pristine Sov−BWO for removal of tetra-
cycline. The enhanced adsorption capacity of self-assembly Sov−BWO/T−ZIS nanosheets
was attributed to the increase in specific surface area, which was favorable for the subse-
quent photocatalytic process. The radicals ·O2

− and h+ were mainly species, which were
responsible for photodegradation. Therefore, the best-performing Sov−50BWO/T−ZIS
sample exhibited an excellent TCH removal rate of 95%, higher than Sov−BWO (47%) and
T−ZIS (67%). This study uncovers the correlation between adsorption and degradation,
and provides a new insight in the design and application of direct Z-scheme heterojunction
photocatalysts, which exhibits remarkable potential for the removal of pollutants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11082123/s1, Figure S1: (a) XRD patterns and (b) FT-IR spectra of the as- fabricated
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Sov−100BWO/T−ZIS, Figure S2: The corresponding EDS spectrum and elemental mapping images
of Sov−50BWO/T−ZIS, Figure S3: (a) N2 adsorption-desorption isotherms, (b) Pore size distributions
of prepared samples, Figure S4: Effect of as-prepared samples on the adsorption and degradation
efficiency, Figure S5: The intermediates analysis of LC–MS for photocatalytic degradation TCH,
Figure S6: (a) Cyclic experiment. (b) Comparison of the adsorption and degradation efficiency to
test the ability of Sov−50BWO/T−ZIS sample. (c) XRD patterns and (d) FT-IR spectrum before and
after photocatalytic degradation of TCH, Figure S7: Mott–Schottky plot of (a) T−ZIS, (b) Sov−BWO
in 0.5 M Na2SO4 aqueous solution under the frequency of 1000 Hz and 2000 Hz, (c) Tauc plots.
Figure S8: EPR spectra of Sov−BWO and Sov−50BWO/T−ZIS, Figure S9: TCH removal curves
under the different irradiation conditions, Table S1: the as-fabricated samples (Sov−BWO, T−ZIS,
Sov−25BWO/T−ZIS, Sov−50BWO/T−ZIS, Sov−75BWO/T−ZIS, Sov−100BWO/T−ZIS) are fitted
with Rs, Rp and constant phase elements (CPE), Table S2: Removal of tetracycline hydrochloride
(TCH) over the reported photocatalysis.
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