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Abstract: Surface-enhanced Raman scattering (SERS) for semiconductor nanomaterial systems is
limited due to weak Raman signal intensity and unclear charge-transfer (CT) processes for chemical
enhancement. Here, rare-earth element neodymium-doped titanium dioxide (Nd-TiO2) nanoparticles
(NPs) were synthesized by the sol–gel method. The characterizations show that the doping of Nd ions
causes TiO2 NPs to show an increase in the concentration of defects and change in the energy level
structure. The CT process between Nd-TiO2 NPs substrate and probe molecule 4-Mercaptopyridine
(4-Mpy) was innovatively analyzed using the relative energy level location relationship of the
Dorenbos model. The SERS signal intensity exhibits an exponential enhancement with increasing
Nd doping concentration and reaches its optimum at 2%, which is attributed to two factors: (1) The
increase in the defect concentration is beneficial to the CT process between the TiO2 and the probe
molecule; (2) the introduction of 4f electron orbital energy levels of rare-earth ions created unique
CT process between Nd3+ and 4-Mpy. Moreover, the Nd-TiO2 NPs substrate shows excellent SERS
performance in Raman signal reproducibility (RSD = 5.31%), the limit of detection (LOD = 10−6 M),
and enhancement factor (EF = 3.79 × 104). Our work not only improves the SERS performance
of semiconductor substrates but also provides a novel approach to the development of selective
detection of probe molecules.

Keywords: surface-enhanced Raman scattering; charge-transfer; Nd-TiO2; 4-Mpy; energy level location

1. Introduction

Due to the high sensitivity, good selectivity, non-destructiveness, and information about
the structure of adsorbed molecules, surface-enhanced Raman scattering (SERS) has attracted
widespread interest [1–3]. Meanwhile, SERS has a high enhancement factor (up to 108 times
or higher), realizing trace detection analysis and even single-molecule-level analysis [4,5]. The
mechanisms of SERS enhancement are the electromagnetic mechanism (EM) and chemical
mechanism (CM) [6,7]. The EM is related to the localized surface plasmon resonance (LSPR)
of noble metal nanoparticles (NPs), such as gold, silver, and copper [8,9]. Due to LSPR, the
electric field intensity on the surface of the noble metal NPs is significantly increased, so when
the probe molecules are close to the surface, strong Raman scattering will be generated [10].
Studies have shown that the EM has nothing to do with the type of probe molecules, it is a
long-range effect, and the Raman signal of molecules within about 2 nm from the substrate
surface can be enhanced [11]. The CM is based on the new chemical bonds formed by the
adsorption of probe molecules onto the substrate [12,13]. The reasons for enhancement are:
(1) The charge-transfer (CT) process between the molecules and substrate; (2) the increase
in the polarizability of the probe molecules; (3) electron–hole pairs produce an electronic
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resonance effect, and CT is mainly attributed to them [14–16]. Moreover, the CM is a short-
range effect, which usually only occurs on the first layer of adsorbed molecules [17,18]. The
traditional noble metal SERS substrate has been widely developed due to its high sensitivity,
etc. However, due to the high price, low biocompatibility, and poor molecular selectivity
of noble metal substrate [19,20], researchers began to develop non-metal substrate systems,
such as semiconductors, graphene, and carbon nanotubes (CNTs) [21–23]. The SERS substrate
of semiconductor nanomaterials can produce a CT process. The energy level matching
between the probe molecules and SERS substrates is the key to analyzing the CT. It exhibits
unique properties compared with noble metal SERS substrates, such as a simple preparation
process, controllable bandgap, excellent SERS signal stability, high molecular selectivity, and
outstanding biocompatibility [24]. Yamada et al. [25] first discovered the enhancement of the
Raman signal on pyridine molecules adsorbed on NiO. Yang et al. [26] synthesized TiO2 NPs
(8–13 nm) by the sol–hydrothermal method, compounded them with sulfhydryl molecules
(4-MBA, 4-Mpy, and 4-PATP), and the Raman signal was significantly enhanced. Xue et al. [27]
studied the influence of crystallite size and quantum confinement on the SERS performance of
TiO2 NPs, and their ability to adsorb 4-MBA of different sizes, and the Raman signal reached
a maximum when the TiO2 NP size was 10.9 nm. Lombardi et al. [28] used ZnO nanocrystals
to detect 4-Mpy solution with a limit of detection (LOD) of 10−5 M and an enhancement factor
(EF) of 1000. However, the development of semiconductor substrates was limited by their
low EF, whose use in analysis and detection is still challenging to carry out. Therefore, it is of
great importance to design semiconductor SERS substrate with an outstanding EF and LOD.

Researchers usually enhanced the SERS signals of semiconductor nanomaterials
through ion doping, heterogeneous recombination, morphology, and structure design.
Among them, ion doping is a highly effective method, increasing the defect concentration
and adjusting the bandgap of SERS substrates. Zhou et al. [29] reported a substantial
enhancement of the SERS signal by near-infrared (NIR) light illumination with a hybrid
system consisting of silver and silver-doped titanium dioxide and adsorbed 4-MBA (4-
MBA/Ag/Ag-doped TiO2), which was attributed to the higher crystallinity of the substrate
and the promoted CT. Tian et al. [30] used 2D SnSe2 nanosheets as SERS substrates, which
essentially broke the limitations of 2D semiconductors for SERS applications and obtained
a Raman signal intensity of R6G that was 1.3 to 1.7 times higher than that of pure SnSe2.
Yang et al. [31] developed a novel sensitive Mo-doped Ta2O5 semiconductor substrate
by the “coupled resonance” effect, which can detect methyl violet (MV) molecules up to
9 × 10−9 M. This SERS enhancement effect can be attributed to (i) MV molecular resonance,
(ii) CT resonance between MV and Ta2O5, and (iii) electromagnetic enhancement around
the gap and tip of the substrate. Li et al. [32] investigated the effect of Ga doping on
ZnO nanoparticles and 4-MBA, and the results showed that the bandgap of ZnO could be
narrowed by Ga doping, which in turn affects the CT resonance process and ultimately
enhances the intensity of the Raman signal. In particular, rare-earth elements are rarely
used for the doping of SERS substrates, and because of their rich energy level structure
and unique optoelectronic properties, they can be used to expand SERS applications.

In this work, Nd-TiO2 NPs as SERS substrate were prepared via a simple sol–gel
method with different Nd doping concentrations (atom% = 0%, 1%, 1.5%, 2%, 2.5%, and
3%). The results show that the surface morphology, concentrations of defects, and energy
level structure of the substrates were changed with an increasing Nd/Ti ratio concentration
compared with pure TiO2 NPs. The SERS signal intensity is greatly enhanced and reaches its
optimum at a doping concentration of 2%, which is the chemical enhancement mechanism
triggered by a unique CT process that occurs between the Nd-TiO2 and 4-Mpy probe
molecule. This work specifically describes the CT process between the rare-earth ions and
the probe molecule by the Dorenbos model [33], and which is further validated by SERS
analysis under different laser excitation wavelengths. The substrate offers excellent SERS
performance, and also facilitates the exploration of the selective detection of various probe
molecules in SERS applications.
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2. Experimental Section
2.1. Materials

All water was distilled and purified to Milli-Q quality. Titanium butoxide (C16H36O4Ti,
98%), neodymium nitrate hexahydrate (Nd(NO3)3·6H2O, 99.0%), 4-Mercaptopyridine
(C5H5NS, 96%), and ethanol (C5H5OH, ≥99.7%) were purchased from Shanghai Aladdin
Biochemical Technology Co., Ltd. (Shanghai, China).

2.2. Preparation of Nd-TiO2 NPs

The Nd-doped TiO2 NPs SERS substrates were prepared by the sol–gel method. First,
C16H36O4Ti and Nd(NO3)3·6H2O were dissolved in 13.4 mL of ethanol with 0.4 mL of
acetylacetone with atomic ratios of 0.5%, 1%, 1.5%, 2%, 2.5%, and 3% under stirring for
20 min. Then, a mixed solution of 0.16 mL HCl and 2.02 mL deionized H2O was added into
the mixed solution under stirring to carry out hydrolysis, and golden yellow transparent
sol was obtained by continuously stirring for 100 s. Finally, the as-prepared sol was dried
at 80 ◦C for 24 h in an oven and then calcined for 500 ◦C with a heating rate of 2 ◦C·min−1

and was held at that temperature for 1 h. Meanwhile, the pure TiO2 substrate was also
prepared with the same method.

2.3. Characterization

X-ray diffraction (XRD, Model Smartlab; Rigaku Ltd., Tokyo, Japan) using graphite
monochromatic copper radiation (Cu Kα) (λ = 0.15406 nm) was used to analyze the crystal
structure and phase composition within the term of 2θ in the range 10–90◦ at a speed rate of
4◦·min−1. The morphologies and microstructure of prepared samples were observed using
field emission scanning electron microscopy (FE-SEM, Model JSM-7001F, JEOL, Tokyo,
Japan) under the condition of 15 kV and transmission electron microscopy (TEM, Model
JSM-2000FX, JEOL, Tokyo, Japan) operating at 200 kV.

The surface component and binding energy were determined using an X-ray photo-
electron spectrometer (XPS, Model Axis supra, Shimazu-Kratos Analytical, Manchester,
UK) with monochromatized Al Kα X-ray radiation. The optical absorption spectra were
recorded on a UV–Vis–NIR spectrophotometer (UV–Vis, Model UV-3600 Plus, Shimadzu,
Kyoto, Japan) with BaSO4 as a reference.

2.4. SERS Analysis

SERS signals were detected by a Raman spectrometer (Raman, Model XploRA Plus,
HORIBA Scientific, Kyoto, Japan) with 532, 638, and 785 nm He-Ne lasers as excitation
sources, the diffraction grid was set as 1200 gr·mm−1, the data acquisition was set as double
15 s accumulations for the samples, a laser spot area with a diameter of ~0.72 µm was
probed using a 100× objective lens, and incident power at the sample was 1.0 mW. 4-Mpy
was used to be probe molecules. In order to find the optimal Nd doping concentration
of TiO2 substrates, 20 mg of Nd-TiO2 NPs (atomic ratio = 0.5%, 1%, 1.5%, 2%, 2.5%, and
3%) mixed with 5 mL 4-Mpy (10−2 M) ethanol solution under 1 h ultrasonic dispersion
was used to ensure absolute adsorption and dried under ambient conditions for 24 h.
Meanwhile, the reproducibility, sensitivity, and LOD of the SERS substrates were assessed
using the same method. A normal Raman signal of 10−2 M 4-Mpy ethanol solution without
substrate was also acquired to calculate EF.

3. Results and Discussion
3.1. XRD Analysis

XRD was carried out to investigate the crystal structure and degree of crystallinity
of the prepared Nd-TiO2 NPs with different doping concentrations. The XRD patterns
of the samples along with corresponding enlarged spectra in the plane peak at the (101)
plane are shown in Figure 1. Figure 1a reveals that all samples have the single anatase
phase, which is well indexed as reported in JCPDS file No. 21-1272 [34]. No diffraction
peak of neodymium oxides could be detected, indicating that Nd doping concentration
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was extremely low and out of detection limits of the XRD instrument or part of the Nd ions
doped in the TiO2 lattice [35]. Additionally, as the doping content of Nd ions increased, the
relative intensity of the peak decreased significantly, the full width at half-maximum of the
(101) peak greatly increased, and the average particle size of Nd-TiO2 at the (101) plane can
be estimated according to Scherrer equation:

D =
Kλ

β cos θ

where D is crystalline size, λ the wavelength of X-ray radiation (0.1541 nm), K is a constant
usually taken as 0.89, β is the peak width at half-maximum height, and θ is the diffraction
angle. The average particle size of samples was calculated to be from about 16.4 nm to
8.2 nm with the increment in Nd doping, which is because the introduction of Nd hinders
the crystal growth of TiO2 NPs. Furthermore, an enlarged peak of the XRD spectra at (101)
is shown in Figure 1b [36]. It can be seen that there is no obvious shift of the main peak at
(101) as Nd doping in TiO2 though the ion radius of Nd3+ (0.0983 nm) is much larger than
that of Ti4+ (0.0605 nm), which might be due to the coeffect of the ionic radius difference
between Nd3+ and Ti4+ and the reduced particle size [37,38].
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3.2. SEM and TEM Analysis

The characterization analysis of the 2%Nd-TiO2 (Figure 2) and TiO2 (in the Supporting
Information, Figure S1) NPs was carried out by SEM and TEM. As shown in Figure 2a,b,
it can be seen that the samples are agglomerated in a sharp but irregular block shape
and some nanoparticles are present on the surface after Nd doping. The high-resolution
transmission electron microscope (HRTEM) image of 2%Nd-TiO2 NPs shows clear lattice
fringes with interplanar crystal spacing of 0.35 nm, corresponding to the (101) crystal
plane of the anatase TiO2, which is virtually unchanged from that of TiO2 (Figure S1c),
further confirming that only a small amount of neodymium enters the TiO2 lattice. In the
selective area electron diffraction (SAED) pattern, it was further verified that the samples are
polycrystalline structures of anatase TiO2 with (101), (004), (200), (105), and (213) concentric
diffraction rings, which matches previous XRD analyses. The elemental mapping patterns
(Figure 2e–g) and energy dispersive spectrum (EDS) show that Nd elements with minimal
doping are homogenously distributed in the TiO2 NPs, and unmarked peaks are copper
ions from the copper grid of the sample holder.
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3.3. XPS Analysis

The chemical components at the surface of samples can be studied by the XPS tech-
nique. Figure 3a shows the XPS spectroscopic survey spectrum of 2%Nd-TiO2 and TiO2
NPs. XPS peaks showed that the samples contained C, Ti, O, and Nd elements (only C,
Ti, and O for TiO2), corresponding to orbits of C 1s, Ti 2p, O 1s, and Nd 3d, respectively.
Figure 3b shows the high-resolution XPS spectrum for Ti 2p of samples. There are two
characteristic peaks located at 458.7 and 463.3 eV in Nd-TiO2, which correspond to Ti
2p3/2 and Ti 2p1/2 of TiO2, respectively, and the splitting value varies with the chemical
components of samples and is about 5.7 eV. It indicates that the Ti element mainly exists as
the chemical state of Ti4+. The O 1s region of TiO2 can be fitted by two peaks at 529.9 and
531.3 eV (Figure 3c), which are the Ti-O bond in TiO2 and hydroxyl groups. Additionally,
three peaks of Nd-TiO2 are located at 529.8 eV, 530.3 eV, and 531.6 eV, which can be ascribed
to Ti-O, Nd-O, and the hydroxyl group, respectively [38]. It can be confirmed that Nd3+

was doped in the TiO2 lattice. Figure 3d shows that the binding energy of Nd 3d is 994.6 eV.
Although the peak intensity for Nd was weak, it can be ascribed to the presence of Nd in
TiO2 [39–41].
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Figure 3. XPS spectra of 2%Nd-TiO2 and TiO2 NPs. (a) Survey spectrum; high-resolution XRS spectra of (b) Ti 2p, (c) O 1s,
and (d) Nd 3d.

3.4. UV–Vis DRS Analysis

UV–Vis diffuse reflectance spectroscopy (DRS) is used to analyze the optical ab-
sorption properties under light irradiation in the wavelength range of 350–850 nm. The
absorption spectra of TiO2 and Nd-TiO2 NPs are shown in Figure 4a. It is noteworthy that
all samples have high optical absorption in the wavelength range below 400 nm, which
can be attributed to the CT process between the O2− and Ti4+, related to the electronic
excitation from the valence band (VB) to the conduction band (CB) [42]. In addition, a
redshift of the absorption edge toward the visible region was observed for all Nd-TiO2
samples compared with pure TiO2, which can be explained by the CT process between
the TiO2 valence band and Nd3+ ion f electrons [43]. Moreover, pure TiO2 does not absorb
in the visible light region (wavelength higher than 400 nm), but Nd-TiO2 samples exhibit
outstanding absorption properties and have four characteristic absorption peaks at 527,
586, 762, and 804 nm, which are attributed to the 4f shell electron transition of Nd3+ from
4I9/2 ground to excited states 2K13/2 and 4G7/2, 2G7/2 and 4G5/2, 4S3/2 and 4F7/2, and 4F5/2
and 2H9/2, respectively [41]. The optical band gap (Eg) of samples can be obtained by
Tauc’s formula [44]:

αhν = A
(
hν − Eg

) 1
2 ,

where A is a constant characteristic of the material, ν is frequency, α is absorption coefficient,
and h stands for Planck’s constant. The bandgap is determined by plotting the relationship
between (αhν)2 and photon energy (hν) and extrapolating the line to the X-axis. As shown
in Figure 4b, the band gap values of TiO2 and Nd-TiO2 NPs were recorded as 3.20, 3.16,
3.15, 3.14, 3.14, 3.17, and 3.16 eV. The results show that Nd doping can narrow the bandgap
of TiO2, but the bandgap shows less change with the increase in doping concentration. Nd
doping can improve the optical absorption property and SERS performance of TiO2 NPs
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substrates, which is attributed to morphology, defects, and incorporation of impurities
during synthesis in nanomaterials [29,32,45].
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3.5. SERS Activity and Mechanism

To research the optimum doping concentration of SERS substrates, the Nd-TiO2 NPs
(0%, 0.5%, 1%, 1.5%, 2%, 2.5%, and 3%) were measured with laser lines of 532 nm, 10−2 M
4-Mpy ethanol solution was used as probe molecules adsorbed on SERS substrates, as shown
in Figure 5a, and the Raman peaks were located at 991, 1046, 1201, and 1614 cm−1. The strong
bands at about 991 and 1046 cm−1 are assigned to ring breathing and pyridine ring C-H
in-plane bending. Other weak bands at about 1201 and 1614 cm−1 are attributed to the CH
deformation and NH stretching modes, and the pyridine ring C=C stretching mode. They are
consistent with those previously reported for 4-Mpy on TiO2 NPs [46–48]. Figure 3b shows
the relationship between the SERS intensities of the 991, 1046, and 1201 cm−1 bands of 4-Mpy
and the Nd3+ concentration. The SERS signals are enhanced after Nd3+ doping and reach a
maximum at 2% doping, which is attributed to the CT mechanism.
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For the SERS substrates of semiconductor materials, the frequency of LSPR is located
in the infrared region, far away from the 532 nm laser source [49]. It can be calculated
as follows:

ωp =

(
4πne2

ε∞me

) 1
2
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where n is the electron transmission density, and me is the electron mass. Therefore, it can be
judged that the chemical enhancement mechanism plays a major role in SERS enhancement
for this system. Chemical enhancement is primarily due to the charge-transfer between the
probe molecule and semiconductor SERS substrates.

The CT mechanism for SERS of TiO2 and Nd-TiO2 NPs with 4-Mpy is illustrated in
Figure 6. From the previous literature, the lowest unoccupied molecular orbital (LUMO)
levels and the highest occupied molecular orbital (HOMO) of 4-Mpy are −9.77 and −6.34 eV,
respectively [50]. The minimum conduction band (CB) and maximum valence band (VB) of
TiO2 are −7.72 and −4.52 eV, respectively [33]. Ess is the surface state energy level, which is
generated by the binding of the electron at surface defects (such as surface oxygen vacancies)
of TiO2 NPs, and Ess is located at about 0.5 eV below the CB [51].
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As shown in Figure 6a, with a 532 nm (ca. 2.33 eV) laser, the electrons can be excited
from VB of TiO2 to the Ess, then transferred to the LUMO of 4-Mpy, and return to the CB of
TiO2, to release Raman scattered photons. As the pure anatase TiO2 SERS substrate has only
a few oxygen vacancies, the SERS intensity is very low. Ess acts as an intermediary in the
CT transition of TiO2 to 4-Mpy. As shown in Figure 6b, through Nd doping, (1) Nd3+ will
diffuse into the TiO2 lattice to replace part of the Ti4+, narrow the bandgap, and generate
more oxygen vacancies, thereby increasing the concentration of defects of TiO2 (more Ess
generated), so that increasing numbers of Ess can promote the CT process of TiO2 to 4-Mpy
and enhance the SERS signal; (2) in addition, the characteristic energy level of Nd3+ can be
introduced into the bandgap of TiO2 by doping, and the locations of the electronic ground
state (4I9/2) and excited state energy levels (4F5/2+2H9/2, 4S3/2+4F7/2, and 2G7/2+4G5/2)
of Nd3+ can be calculated with the Dorenbos model [33,52,53], which are at −8.72, −7.17,
−7.09, and −6.55 eV, respectively. With a 532 nm laser, the 4f electrons of Nd3+ can be
excited from the ground state (4I9/2) to the excited states (4F5/2+2H9/2, 4S3/2+4F7/2, and
2G7/2+4G5/2), then transferred to the LUMO of 4-Mpy, and return to the ground state of the
Nd3+, to release Raman scattered photons. The above two CT processes after Nd doping
work together to enhance the SERS signal and eliminate the fluorescent background.

The CT process between Nd-TiO2 and 4-Mpy was further validated by SERS analysis
using 638 and 785 nm laser wavelengths. As shown in Figure 7, the SERS signal intensity
was dramatically reduced with a certain degree of background fluorescence (the intensity
curves show an upward trend) with 638 nm (ca. 1.94 eV) laser irradiation, which is due
to the inability of the laser energy to transfer the electrons from the ground state (4I9/2)
to the excited state (2G7/2 + 4G5/2). However, under the irradiation of the 785 nm laser
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(ca. 1.58 eV), the SERS signal intensity decreased significantly and was accompanied by
a strong background fluorescence signal, and the characteristic peak of 4-Mpy could not
be observed on the TiO2 substrate, which may be because the laser energy at 785 nm can
only transfer the electrons from the ground state (4I9/2) to the excited state (4F5/2 + 2H9/2).
The above two SERS analyses under 633 and 785 nm lasers are sufficient to verify the
unique CT process of this work. Meanwhile, 2% Nd is used as the optimum doping
concentration for TiO2 NPs SERS substrates since high levels of defects caused by high
doping concentrations lead to the recombination of electron–holes and bind electrons for
the CT process of Nd-TiO2 to 4-Mpy [54].
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laser excitation.

3.6. SERS Performance

To evaluate the reproducibility of the Nd-TiO2 SERS substrates, the SERS spectra of
4-Mpy were acquired from ten different spots on the substrate. As shown in Figure 8a, the
intensity of the main characteristic peaks at 991 cm−1 showed high consistency. Figure 8b gives
information about the relative standard deviation (RSD) of the peak intensity at 991 cm−1.
The RSD is about 5.31%, which indicates excellent reproducibility of the SERS substrates for
practical applications.
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To analyze the SERS sensitivity and the limit of detection (LOD) of the Nd-TiO2
NPs substrates, the SERS spectra of 4-Mpy with different concentrations (10−2 to 10−7 M,



Nanomaterials 2021, 11, 2063 10 of 13

ethanol solutions) were recorded and are shown in Figure 9a. It can be seen that the SERS
intensity of the main characteristic peaks decreased as the concentration decreases. The
correlation between Raman intensity at 991 cm−1 and the concentration of 4-Mpy are
listed in Figure 9b. The linear relationship equations are y = 1947.55 + 283.15log(x) in the
concentration range 10−7 to 10−4 M and y = 7781.62 + 1749.16log(x) in the concentration
range from 10−4 to 10−2 M. The correlation coefficients (R2) are 0.982 and 0.992, respec-
tively. It can be seen that at a low concentration range, the Raman signal intensity changes
drastically as the concentration of the probe molecule changes, while in a relatively high
concentration region, its intensity changes slowly (the logarithm values of concentration
were set as the X-axis so that the slopes in the equation in the low-concentration region
were smaller than those in the high-concentration region). This linear phenomenon has
also been reported in Qin and Cheng’s previous works [55,56], and is due to the multi-layer
adsorption of probe molecules at high concentrations, which weaken the enhancement
effect. However, at low concentrations, the probe molecules will directly act on the surface
of the SERS substrate, resulting in a significant enhancement with a high correlation coeffi-
cient. The LOD was calculated as 10−6 M, which is much lower than other semiconductor
SERS substrates. These results show excellent SERS sensitivity and ultra-low LOD on the
Nd-TiO2 substrates.
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To quantitatively investigate the enhancement ability, the enhancement factor (EF) for
as-prepared SERS substrate can be calculated by the following equation:

EF =

(
ISERS
IBulk

)(
NBulk
NSERS

)
where ISERS and IBulk are the Raman intensities of 4-Mpy in the SERS spectra and standard
Raman spectra and NSERS and NRaman present the numbers of 4-Mpy molecules adsorbed
on the SERS substrate and in the bulk condition, respectively.

The ratio of intensities (ISERS/IBulk) can be obtained by 4-Mpy in the SERS spectra
and standard Raman spectra (Figure S2), and is 37.57. The NBulk and NSERS are 7.83 × 1010

and 7.79 × 107, respectively (the detailed calculation process is shown in the Supporting
Information). Therefore, the EF of Nd-TiO2 NPs SERS substrate at the main characteristic
Raman band of 991 cm−1 can reach about 3.79 × 104, which is higher than the other
reported semiconductor SERS substrates [32,57].

4. Conclusions

In conclusion, Nd-TiO2 NPs were synthesized with different atomic ratios of Nd
by the sol–gel method and 4-Mpy was used as a probe molecule to investigate its SERS
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properties and the CT process in chemical enhancement mechanisms. The results indicated
that the enhanced intensities of SERS signals by Nd3+ doping could be summarized as,
on the one hand, increased defect concentrations promoting the CT process between TiO2
and 4-Mpy while, on the other hand, the introduction the 4f orbital energy level of Nd3+

created a unique CT process between Nd3+ and 4-Mpy. Moreover, it is innovative to use a
rare-earth element (Nd) and the Dorenbos model to study the CT mechanism of SERS. The
SERS analysis was validated under different excitation wavelengths. Meanwhile, the SERS
substrate has high reproducibility of SERS signals, and the LOD can be expanded to 10−6 M
with the EF to 3.79 × 104, which is superior to other semiconductor SERS substrates. This
work provides new ideas for the selective detection of different probe molecules, which
will attract more attention in the field of application.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11082063/s1, Figure S1: Characterization analysis of the TiO2 NPs. (a) SEM and (b)
TEM images; (c) HRTEM image showing lattice space; (d) SAED pattern mainly showing the (101),
(004), (200), (105), and (213) crystal faces; the element mapping of (e) O and (f) Ti; (g) EDS spectrum,
Figure S2: SERS spectra of 4-Mpy on Nd-TiO2 NPs substrate (blue line) and in bulk condition
(green line).
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