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Abstract: This paper focuses on modeling a disordered system of quantum dots (QDs) by using
complex networks with spatial and physical-based constraints. The first constraint is that, although
QDs (=nodes) are randomly distributed in a metric space, they have to fulfill the condition that
there is a minimum inter-dot distance that cannot be violated (to minimize electron localization).
The second constraint arises from our process of weighted link formation, which is consistent with
the laws of quantum physics and statistics: it not only takes into account the overlap integrals but
also Boltzmann factors to include the fact that an electron can hop from one QD to another with a
different energy level. Boltzmann factors and coherence naturally arise from the Lindblad master
equation. The weighted adjacency matrix leads to a Laplacian matrix and a time evolution operator
that allows the computation of the electron probability distribution and quantum transport efficiency.
The results suggest that there is an optimal inter-dot distance that helps reduce electron localization
in QD clusters and make the wave function better extended. As a potential application, we provide
recommendations for improving QD intermediate-band solar cells.

Keywords: quantum dot; disordered system of quantum dots; complex networks; spatial networks;
quantum transport; quantum dot intermediate-band solar cells

1. Introduction

Low-dimensional nanomaterials are systems that confine quantum particles in at
least one of the Euclidean dimensions (D). As illustrated in Figure 1a, quantum wells,
quantum wires and quantum dots (QDs) confine particles in 2-D, 1-D and 0-D, respec-
tively. Specifically, a QD [1,2] is a “tiny” (shorter than the de Broglie wavelength) 0-D
nanostructure that confines carriers in all three directions in space [1,3,4], mimicking an
“artificial atom”. QDs lead to a delta-like density of states (DOS) [1], which is very different
from those corresponding to the other low-dimensional structures [1] (Figure 1b). Put
simply, a semiconductor QD is a heterostructure [5] formed by a small piece (∼10–15 nm
in size) of a semiconductor material (“dot material” (DM)) embedded inside another with
a higher bandgap (“barrier material” (BM)). This leads to the formation of confinement
potentials (CPs) that confine particles, as illustrated in Figure 1c. This creates discrete or
bound energy levels for carriers and modifies both the electronic and optical properties [3]
when compared to those of both bulk and other nano-materials [1].

All these properties would not be useful if there were no techniques to manufacture
a high density of QDs. The most successful methods are the self-assembled QD (SAQD)
growth technologies [6] illustrated in Figure 1d. In the Stranski–Krastanow (SK) mode [7],
the deposition of the DM starts with the formation of a very thin 2-D wetting layer, and
when a critical amount of strained dot material has been deposited, the formation of
(usually) pyramidal QDs occurs by relaxing strain. Conversely, sub-monolayer (SML)-
QDs [8] can be formed as disks or spherical QDs [7]. SML-QDs exhibit some advantages
over SK-QDs, such as a smaller diameters (5–10 nm), a higher dot density (∼5× 1011 cm−2),
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and better control of QD size [8,9]. SAQD technologies are crucial for implementing
devices such as QD-based light-emitting diodes (LEDs) [10], QD-lasers [11–14], QD-infrared
photodetectors [7,15,16], QD-solar cells [17], or QD-memories [4,18]. A key point for all
these devices is that the position of carrier level(s) can be tuned by controlling the dot
size [1], this being achieved by modifying the growth conditions [5,8,9,19].
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From this perspective, since QDs are able to create discrete energy levels, they 
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physically means. It is known that the reduction in dimensionality from a bulk 

semiconductor to a thin layer confines electrons (or holes) to this layer. This causes 

outstanding changes in some of the carrier properties. This is the case, for example, of a 

QW, which currently is the best known and more used low-dimensional structure 

[Sh99]. But more exciting modifications in electronic and optical properties can be 

achieved by a further reduction in the dimensionality of the carrier surroundings from a 

two-dimensional (2D) QW to a one-dimensional (1D) quantum wire, and finally, to a 

zero-dimensional QD. This process of reducing dimensionality has artistically been 

represented in Fig. 4.10. 

 

Fig. 4.10. Representation of the three different kinds of low-dimensional structures: 
quantum well (two-dimensional heterostructure), quantum wire (one-dimensional) and 
quantum dot (zero-dimensional). 
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Fig. 4.12. Illustration of the inhomogeneous broadening of the carriers spectra (b) 
because of the dot size fluctuations in the SAQD array. Figure (a) shows the band 
structure of one of these dots. If the dot size is designed so that the sub-gap EL is greater 
than about three times the longitudinal acoustic phonon energy, the radiative 
recombination from the CB to the IB has the chance of becoming dominant. As the hole 
inter-level separation is small, the hole-phonon interaction cannot be de-coupled, and 
therefore holes relax easily. Consequently, the three electron gasses in (c) could be 
achieved. 

 

 

 

 

We expect to exploit the phonon bottleneck effect to keep the electron gasses in 

the CB and the IB completely separated by properly designing the QD size. Although in 

an actual SAQD array, there is an inhomogeneous broadening that tends to widen the 
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100-200 meV, we expect that relaxation through electron-phonon interaction becomes 

much lower than that of the electron-photon one, and consequently: 
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1) The electron gas in the CB is completely separated from that in the 

intermediate level in the dots, and therefore both gasses can be described by its own 

respective quasi-Fermi levels, EFC and EFI. 
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Figure 1. (a) Illustration of low-dimensional nanostructures. (b) Corresponding density of states (DOS). (c) Simplified
quantum dot (QD). (d) Different classes of growth in self-assembled QDs. (e) Three electron gases in an intermediate-band
solar cell. (f) QD and energy levels. (g) Distribution of QDs (=nodes). (h) Allowed electron hopping situation. (i,j)
Forbidden electron hopping cases. (k) Link generation in the spacial node distribution in (g) according to the processes
illustrated in (h,i). See the main text for further details.

Thanks to the aforementioned QD size control, QDs have made it possible to put into
practice innovative photovoltaic concepts such as intermediate-band solar cells (IBSCs) [20].
These contain an intermediate band (IB) inside the semiconductor gap EG (Figure 1e) that
allows the additional absorption of sub-bandgap photons, increasing the photocurrent
without degrading the voltage. The IB (or possibly a collection of intermediate levels)
is obtained by using arrays of QDs like the one in Figure 1f), leading to the quantum
dot intermediate-band solar cell (QD-IBSC) [21]. This is the first device on which it has
been possible to experimentally prove the concepts that the IBSC is based on [22–25]. A
sufficiently dense, ordered array of QDs would lead to an IB material and would allow
the electron wave function to be extended, thus favoring radiative recombination to the
detriment of non-radiative recombinations. Nonetheless, although SAQD technologies
allow a high density of QDs to be obtained, such QDs are neither identical nor perfectly
ordered. Disorder and electron localization in QD clusters in excessively highly dense
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layers could degrade the efficiency. In particular, the absorption of sub-bandgap photons
pumping electrons from the IB to the conduction band (CB) has been found to be too weak,
possibly because it involves the gradient of a confined state at an intermediate level and an
extended state in the CB. Disorder could affect not only the operation of the QD-IBSC but
also that of QD-infrared photodetectors since both involve inter-sub-band or intra-band
transitions (between Ee,1 and Ee,2 in Figure 1f)).

With this motivation in mind, our object of study is a special kind of disordered system
of QDs. We speak of disorder in two senses: on the one hand, QDs are placed randomly
with the only restriction that there is a minimum Euclidean distance (dE,min = rmin) between
dot centers (Figure 1g); on the other hand, QDs are not identical: during the growth process,
each individual QD may have a slightly different size. This makes the electron energy level
vary randomly from one dot to the other (Figure 1h). Our approach consists of considering
the QD system as a complex network (CN), whose novel details are specified in subsequent
paragraphs. A CN is represented by a graph [26], a set of entities called nodes (or vertices)
that are connected (related in some way) to each other by means of links (or edges) [27]. In
our approach, any QD is represented by a node (Figure 1g), while the possible hopping
of an electron from QD i (with energy level εi) to another one j (with energy level εj), as
shown in Figure 1h, is encoded by using a weighted link:

wij = Oij · FB,ij, (1)

where
Oij =

∫
V

ψ∗QDj
ψQDi dr (2)

is the overlap integral [28] (computed over all volume V) between the electron wave
function ψQDi and ψQDj at nodes i and j, respectively, and

FB,ij = exp
(

εi − εj

kBT

)
(3)

is a Boltzmann factor at temperature T, with kB being the Boltzmann constant. Intuitively,
far QDs with null overlap (Oij = 0 in Figure 1i) or close QDs but with large energy
difference (FB,ij = 0 in Figure 1j) lead to no electron hopping: the weight link is wij = 0.
This is the case for QDs m and n in Figure 1j, between which there is no link.

Many approaches have been proposed to study systems with extremely different
natures as almost all systems can be modeled as sets of entities that interact with each
other [27]. Because of this versatility, CN Science has become a multidisciplinary approach
to study structural relationships in many systems [29,30], ranging from human-made
systems (power grids [31,32], the Internet [33], and transportation networks [34], etc.) to
natural systems (ecosystem [35], vascular networks [36], metabolic networks [37], and
others [27]). The extensive set of CN mathematical tools [38,39] helps us to understand
epidemic processes [40] such as COVID-19 [41], information spreading [42,43], or cascading
failures in technological networks [44,45]. Although CN Science has been applied to a vast
variety of macroscopic systems, it has been used to a much lesser extent to study quantum
nanosystems and, when this has been performed, it has been used in a conceptually
different way from the approach we propose in this paper, as shown in Section 2.

The novelty of our proposal, especially in relation to that in [46], is threefold. First,
although we consider that the QDs are randomly distributed in a metric space (spatial
network (SN) [34,47]), they have to fulfill the condition that there is a minimum inter-dot
distance that cannot be violated (to avoid localization effects, as described below). Second,
our model allows nodes with different attributes—in particular, different energy levels—
to be considered. Third, the link formation and weighting process that we propose are
consistent with the laws of quantum physics and statistics: it not only takes into account
the overlap integral but also Boltzmann factors to include the fact that an electron can hop
from one QD to another with a slightly different energy level.
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The rest of this paper has been structured as follows. After reviewing of the current
state of the art in Section 2, Section 3 provides a theoretical background that, based on
the quantum Lindblad master equation, naturally leads to the use of Boltzmann factors.
Section 4 briefly introduces the QD system that we want to study and how the correspond-
ing network could be generated. The experimental work in Section 5 allows us to predict
inner features of the system such as the system quantum state, its time evolution, or to
what extent quantum transport is important. The main results suggest that there is an
optimal inter-dot distance that helps to reduce electron locations in QD clusters and make
the wave function better extended. Section 6 discusses a potential application in QD-IBSCs
with the aim of increasing the weak absorption of photons causing electron transitions
from intermediate states in QDs to the conduction band. Finally, Section 7 completes the
paper with a summary and the main conclusions.

2. Related Work

There are some works that apply CN concepts to explore nanosystems governed
by the laws of Quantum Mechanics (QM) [48] and not by those of classical physics. A
representative example is the system studied in [49]: any atom trapped in a cavity is
represented by a node, while the photon that the two atoms (nodes) exchange is encoded
by a link between them. This and other papers have in common the fact of studying
quantum properties on networks using the concept of quantum walk (QW). This is because
the quantum dynamics of a discrete system can be re-expressed and interpreted as a single-
particle quantum walk [50,51]. This is the reason why quantum walks have been used to
study the transport of energy through biological complexes involved in light harvesting in
photosynthesis [52]. Quantum walks have also been used to explore transport in systems
described by CN with different topologies [53,54]. Specifically, continuous-time quantum
walks (CTQW)—a class of quantum walks in continuous time and discrete space [55]—
have been used extensively to study quantum transport (QT) on CN [54] and are also used
in our work. There are several works that have studied QT over regular lattices [54,56,57],
branched structures [58,59] (including dendrimers [59]), fractal patterns [60], Husimi
cacti [61], Cayley trees [62], Apollonian networks [63], scale-free networks [64], small-
world (SW) networks [65], and start graphs [66,67], leading to the conclusion that QT
differs from its classical counterpart. Having a quantitative measure of the efficiency of QT
in a CN has been found to be important for practical and comparative purposes. In this
regard, in [68], bounds were found that allow for the measurement of the global transport
efficiency of CN, defined by the time-averaged return probability of the quantum walker.
QT efficiency can undergo abrupt changes and can have transitions from localization (no
QT) to delocalization (QT appears). In this respect, the authors of [69] have studied the
localization–delocalization transition of electron states in SW networks. The SW feature
is interesting because it makes it easy to navigate a network as SW networks exhibit a
relatively short path between any pair of nodes [70,71]: the mean topological distance
or average path length ` is small when compared to the total number of nodes N in
the network (` = O(ln N) as N → ∞). The usual techniques of rewiring [70] or adding
links [72] in macroscopic, non-quantum CN to create SW networks have also been extended
to quantum systems [65,67] to enhance QT. In [65], SW networks have been generated from
a one-dimensional ring of N nodes by randomly introducing B additional links between
them. The dynamics of quantum particles have been modeled by CTQW, computing
the averaged transition probability to reach any node of the network from the initially
excited node. Finally, the strategy of adding new links has been explored in star networks
with the aim of enhancing the efficiency of quantum walks to navigate the network [67].
Please note that all these key works have focused their research on the perspective of the
topological properties; in particular, the topological (geodesic) distance between two nodes
i and j, d(i, j), is the length of the shortest path (geodesic path) between them—that is, the
minimum number of links when moving from one node to the other [73]. The distance
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between two nodes i and j that are directly linked is d(i, j) = 1, regardless of where they
are located in physical space.

A conceptually different approach has recently been proposed in [46], as it focuses
on modeling a disordered ensemble of QDs as Random Geometric Graphs (RGG) with
weighted links, with these being the overlap integral (or electron probability amplitude)
between the QDs (=nodes) involved. These are networks in which the nodes are spatially
embedded [74] or constrained to sites in a metric space, usually, the Euclidean distance dE.
This particular subset of networks is called the spatial network (SN) [34,47] or spatially
embedded CN [75]. A particular class of SNs are Random Geometric Graphs (RGGs) [76],
which have successfully been used to model wireless sensor networks [77] and ad hoc
networks [78].

3. Theoretical Framework

As mentioned in Section 1, the quantum system studied here is made up of many
quantum dots embedded in a (barrier) semiconductor. The problem at hand can be con-
sidered in the framework of open quantum systems [79]. The quantum dot subsystem,
called S from now on, is an open system that exchanges energy with its environment. The
total or global system is assumed to be closed or isolated. Usually, the dynamics of an
open quantum system are described in terms of the reduced density operator, which is
obtained from the density operator of the total system by tracing over the variables of the
environment [79]. With the aim of tackling this problem, the use of a number of approxi-
mations leads to an equation of motion for the density matrix of the open system, as shown
in Section 3.2. Before that, it is necessary to delve into the key concept of density operator,
which is briefly introduced in Section 3.1 using the notation presented by Cohen–Tannoudji
in [28].

3.1. The Density Operator

There are quantum systems about which we have incomplete information. In quantum
mechanics, such incomplete information usually appears as follows: the state of the system
may be either the state |ψ1〉with a probability p1, or the state |ψ2〉with a probability p2, · · · ,
and so on. These probabilities fulfill p1 + p2 + · · · = ∑k pk = 1. In this general case, it is
said that we are dealing with a statistical mixture of states |ψ1〉, |ψ2〉, · · · , with probabilities
p1, p2, · · · . Note that the simplest case is that in which the state of the system is perfectly
known (all the probabilities pk are zero, except one). The system is then said to be in a pure
state [28].

Let us assume that the system state is a statistical mixture. The density operator is
defined as [28]

ρ̂ = ∑
k

pk |ψk〉 〈ψk| , (4)

with its dynamics ruled by the von Neumann equation (also known as the Liouville–von
Neumann equation),

d
dt

ρ̂ =
i
h̄

[
ρ̂, Ĥ

]
. (5)

To fully understand the physical meaning of the density operator ρ̂, it is convenient to
examine its matrix elements. Let {|un〉} be an orthonormal basis of the vector space. The
diagonal elements of the density matrix are

ρnn = 〈un| ρ |un〉 , (6)

meaning that, by substituting Equation (4) in (6), we obtain that

ρnn = ∑
k

pk 〈un|ψk〉 〈un|ψk〉∗ = ∑
k

pk| 〈un|ψk〉 |2. (7)
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This means that if the state of the system is |ψk〉, then | 〈un|ψk〉 |2 is the probability
of finding (in a measurement) the system in the state |un〉. ρnn represents the average
probability of finding the system in the state |un〉. This is the reason why ρnn is called the
population of the state |un〉: if the same measurement is carried out N times under the same
initial condition, if N is a large number, then a number of Nρnn systems will be found in
the state |un〉 (see [28] for details).

On the other hand, the off-diagonal elements, again using Definition (4), are

ρnm = 〈un| ρ |um〉 = ∑
k

pk 〈un|ψk〉 〈ψk|um〉 , (8)

where the cross-term 〈un|ψk〉 〈ψk|um〉 represents interference effects between the state
|un〉 and |um〉, which can occur when the state ψk is a coherent linear superposition of
these states.

Note in (8) that ρnm is a sum of complex numbers. If ρnm = 0, this means that the
average in (8) has canceled out any interference effect between |un〉 and |um〉. On the
contrary, if ρnm 6= 0, a given coherence subsists between these states. This is the reason
why the non-diagonal elements of the density operator in ρ̂ are usually called coherences.

The distinction between population and coherences depends on the basis chosen
{|un〉} in the state space. Since ρ̂ is Hermitian, then it is always possible [28] to find an
orthonormal basis {|χq〉} where ρ̂ is diagonal. As a consequence, ρ̂ describes a statistical
mixture of the states |χq〉 with the probabilities πq,

ρ̂ = ∑
q

πq |χq〉 〈χq| . (9)

Since ρ̂ is positive and tr(ρ̂) = 1, then 0 ≤ πk ≤ 1 and ∑k πk = 1.
In the particular case in which the kets belonging to the orthogonal base {|un〉} are

the eigenvectors {|φn〉} of the Hamiltonian H,

Ĥ |φn〉 = En |φn〉 , (10)

the corresponding matrix elements for the von Neumann Equation (5) are [28]{ d
dt ρnn(t) = 0

d
dt ρnp(t) = i

h̄ (En − Ep) ρnn(0)
(11)

This leads to a solution for the von Neumann equation as follows:{
ρnn(t) = constant

ρnp(t) = e
i
h̄ (Ep−En)tρnp(0)

(12)

This solution for the von Neumann equation shows that the populations are constant,
while the coherences oscillate at the Bohr frequencies of the quantum system [28].

3.2. Electron Dynamics of the Open Quantum System S

As introduced in Section 1, let us now consider our quantum mechanical system
formed by a layer of N QDs embedded inside a barrier bulk semiconductor. This quantum
mechanical system S is an open system [79] that is in thermodynamic equilibrium with
an environment (E), reservoir, or heat bath at a given temperature T. The environment
E models the bulk barrier material into which the QD layer is embedded. Sometimes,
the environment of the open system is called a reservoir to denote an environment with
an infinite number of degrees of freedom. If the reservoir is in thermal equilibrium, one
usually speaks of a heat bath [79].
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Furthermore, an open quantum system is a quantum mechanical system S with
Hilbert space HS which is coupled to another system E, the environment, with Hilbert
space HE. Thus, we can view S as a subsystem of the total system S + E residing in the
spaceHT = HS ⊗HE. A relevant and useful feature of an open system is the fact that all
observables Â of interest refer to this system. Any of these observables can be written in
the form Â⊗ 1E, where Â acts in HS, the Hilbert space of the open system S [79]. If the
state of the total system S + E is described by some density operator ρ̂, then the expectation
value of the observable Â is

〈Â〉 = trS{Â ρ̂S}, (13)

where
ρ̂S = trE ρ̂T (14)

is the reduced density matrix operator and ρ̂T(t) is the density operator of the total system.
In Equations (13) and (14), trS and trE stand for, respectively, the partial traces over the
degrees of freedom of the open system S and of the environment E. The reduced density
matrix is of key practical importance for exploring open quantum systems [79].

Depending on the strength of the coupling between the system and the environ-
ment, the dynamics in S could change from quantal to classical [54]. Regarding this, the
Hamiltonian of the total system ĤT is

ĤT = ĤS + ĤE + ĤS−E, (15)

where ĤS and ĤE are the Hamiltonians of S and E, respectively, and ĤS−E is the Hamil-
tonian for the coupling between the system and the environment. Note that the total
system belongs to a Hilbert spaceHT = HS ⊗HE with a huge dimension (because of the
many degrees of freedom of the environment) [54]. This problem can be overcome thanks
to quantum mechanical formulations [80–82] that prove that there exists an equilibrium
Hilbert subspaceHeq for which any initial state approaches equilibrium within a very short
time. In particular, in [82], the electron reaches its stationary state extremely quickly, with a
time in the order of the Boltzmann time, τB ∼ 1.6× 10−13 s at T ∼ 300 K.

As we are interested in the electron dynamics in the QD system, we have adopted an
approach that consists of tracing over the environmental degrees of freedom to obtain the
reduced density matrix operator of the system [80–83], as stated in Equation (14).

The dynamics of ρ̂S(t) can be studied by using the quantum Lindblad master equation
(LME) [83] because it preserves the density matrix positivity [84]. Under weak coupling
between the system and the environment, the LME can be expressed as

dρ̂S(t)
dt

=
i
h̄

[
ρ̂S(t), ĤS

]
︸ ︷︷ ︸
unitary part

+∑
k

γk

(
Âk ρ̂(t)Â†

k −
1
2

{
Â†

k Âk, ρ̂(t)
})

︸ ︷︷ ︸
incoherent part

, (16)

where the anticonmutator {·} is defined as {a, b} .
= ab + ba, while Âk and Â†

k are the jump
or transition operators. They account for the transitions between state pairs in S (induced
by system–bath interactions) with rates γk. The incoherent part (IP) of the LME can be
rewritten [83] using the notation stated in [84] as

IP ≡ ∑
k>j

γk→j

(
Âjk ρ̂(t)Â†

jk −
1
2

{
Â†

jk Âjk, ρ̂(t)
})

+ ∑
k≤j

γk→j

(
Âkjρ̂(t)Â†

kj −
1
2

{
Â†

kj Âkj, ρ̂(t)
})

(17)

where each transition operator is defined as [84]

Âjk = |φj〉 〈φk| . (18)
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Note that the ket |φn〉 is the eigenstate of the Hamiltonian ĤS

ĤS |φn〉 = εn |φn〉 , (19)

with εn being the energy corresponding to state |φn〉. {|φn〉} is the corresponding orthonor-
mal basis ofHS.

To advance further in computing the matrix elements, we apply the operation 〈φn| •
|φn〉 on Equation (16) (where • represents the operator), and after this, we apply 〈φn| • |φm〉
on Equation (16).

On the one hand, when applying 〈φn| • |φn〉 on Equation (16), we reach

d 〈φn| ρ̂(t) |φn〉
dt

≡ d
dt

ρnn(t) = ∑
j

(
γn→j pj(t)− γj→n pn(t)

)
. (20)

This expression is similar to that obtained in [84]. Note in Equation (20) that pi is the
electron probability at state |φi〉 under the Boltzmann distribution

pi =
1
Q

exp
(
− εi

kBT

)
, (21)

where Q is the canonical partition function. Note that the canonical ensemble represents
the possible states of system S in thermal equilibrium with the heat bath E at a fixed
temperature T (S exchanges energy with the heat bath E).

The stationary state in Equation (20) is reached when γn→j pj(t)− γj→n pn(t) = 0; that
is, when γn→j pj(t) = γj→n pn(t). This means that the transition rates should be related by
the detailed balance condition

γn→j

γj→n
= exp

(
εj − εn

kBT

)
≡ FB,ij, (22)

which also makes the incoherent part of Equation (16) zero, and thus Equation (20) becomes

d
dt

ρnn(t) = 0. (23)

On the other hand, when we now apply 〈φn| • |φm〉 on Equation (16), we obtain

d 〈φn| ρ̂(t) |φm〉
dt

≡ d
dt

ρnm(t) =
i
h̄
(En − Ep) ρnn(0) + 0. (24)

The zero value that we have explicitly written on the right side of Equation (24)
corresponds to the incoherent part and arises from the fact that, when applying 〈φn| • |φm〉
on Equation (17), 〈φn| IP |φm〉 always has (in all its addends) sums of the type

∑
k,j

γkj 〈φn|φj〉 〈φk|φk〉 〈φj|φm〉 = 0. (25)

This is because, when j = n then 〈φn|φn〉 = 1 but 〈φn|φm〉 = 0, and when j = m, then
〈φn|φm〉 = 0 and 〈φm|φm〉 = 1.

Finally, considering the results (23) and (24), we reach the stationary state ruled by{ d
dt ρnn(t) = 0

d
dt ρnp(t) = i

h̄ (En − Ep) ρnn(0)
(26)
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which leads to the solution {
ρnn(t) = constant

ρnp(t) = e
i
h̄ (Ep−En)tρnp(0)

(27)

This is the same solution given by Equation (12), corresponding to the solution of the
von Neumann equation in an isolated quantum system.

Please note that the fact that the incoherent part of the LME (16) vanishes has been
obtained under a set of assumptions: (1) weak coupling between the system and the
environment [83,84]; (2) at t = 0, the system and the environment are uncorrelated and
have a separable state in the form ρT(0) = ρS(0)⊗ ρE(0) [83]; (3) the initial state of the
environment is thermal, meaning that it is described by a density matrix in the form
ρE(0) = exp(−HE/(kBT))/tr(exp(−HE/(kBT))) [83]; and (4) γn→j pj(t)− γj→n pn(t) =
0 [84]. Under this strict set of assumptions, the incoherent part of the system approaches
zero, which suggests that the electron dynamics are coherent.

The detailed balance argument leading to Equation (22) is the reason why we have
considered Boltzmann factors FB,nj in Equation (3) to form links. The electron system S, the
QD system under study, is an open system in thermodynamic equilibrium with a much bigger
bath E at temperature T: when the electron makes a transition from a QD with energy εn to
another with energy εj > εn, the energy difference is ∆E = εn − εj, which is supplied by
the environment. The opposite is also true using the detailed balance concepts presented in
Equation (22).

4. Approaching the QD System by a Network with Spatial and Physical-Based Constraints

Before describing the system S, which consists of many QDs, it is convenient to
consider some important properties of a single, isolated QD (Section 4.1), which will assist
us in better describing the system S in Section 4.2.

4.1. A Single QD

We begin our reasoning by considering a single quantum dot. We compute the electron
wave function of a bound state and its corresponding energy. This wave function will be
useful to understand how different dots interact with each other. To do this, we consider a
set of simplifying hypotheses.

We first assume that the single-band effective mass equation of electrons in the enve-
lope approximation [85] is a proper description of the dot and barrier materials. This is
because a QD size of 10 to 20 nm is much larger than the lattice constant of the material
involved, and thus it seems reasonable to consider that only the envelope part of the elec-
tron wave function is affected by the confinement potential. This is the so-called envelope
function approximation. Its name arises from the conclusion that the physical properties
can be derived from the slowly varying envelope function ψ rather than the total wave
function [1],

Ψ ≈ ψ(r) · uC(r) (28)

where uC(r), the periodic part of the Bloch function in the CB, is rapidly varying on the
scale of the crystal lattice. uC(r) is also assumed to be independent of the wave-vector (k)
of the reciprocal crystal lattice.

We also assume spherical QDs of radius RQD. The center of any QD i is given by a
position vector ri in the metric space. We consider that its associated confinement potential
is spherically symmetric (depending only on the radial co-ordinate r), finite, and square [86]
(Figure 1c):

UQD =

{−VC , if r < RQD
0 , if r > RQD,

(29)

where the subscript “QD” means that we have only one isolated QD.
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The time-independent Schrödinger’s equation (ĤQDψ = EQD · ψ) for an electron of
effective mass m∗e in the the central energy potential UQD is

ĤQD ψ
.
=

(
− h̄

2m∗e
+ UQD

)
ψ = EQD · ψ. (30)

This equation is separable [86,87] and the envelope functions for bound states in a
QD characterized by the spherical three-dimensional energy potential UQD are described by

ψnlm(r, θ, ϕ) = Rnl(r)Y(r, θ, ϕ), (31)

where Y(r, θ, ϕ) are the spherical harmonics and Rnl(r) is the radial function [87]. This, for
l = 0—to illustrate the objective of our work, it is enough to consider only one electron
bound level; i.e., the ground state (GS)—allows us to write Equation (30) in the form

− h̄
2m∗e

(
1
r2

d
dr

(
r2 d

dr

)
+ UQD

)
R(r) = EQD · R(r), (32)

where

m∗e =

{
m∗D , if r < RQD
m∗B , if r > RQD,

(33)

is the electron effective mass within the dot (D) and the barrier (B) materials, respectively.
This again simplifies the problem as it avoids the formulation of continuity boundary
conditions at the dot–barrier interface.

The aforementioned simplifying hypotheses allow the time-independent Schrödinger’s
Equation (30) to be solved analytically [86–88]. In addition, the continuity of the logarith-
mic derivative of the electron envelope function, ψ, at the dot–barrier interface has been
considered together with the boundary condition ψ → 0 as r → ∞ [87]. The envelope
function corresponding to this GS (n = 0 and l = 0) is

ψQD ≡ ψ(r) =

{
Aj0(αr) , if r < RQD

Bh(1)0 (iβr) , if r > RQD,
(34)

where j0(r) is the Bessel’s spherical function of zero order, h(1)0 (r) is the Hankel’s spherical
function of zero order, and α and β are [87,88], respectively,

α =

(
2m∗D(E−U0)

h̄

)1/2

(35)

β =

(
2m∗BE

h̄

)1/2
(36)

The number of bound states in a QD depends on VC · (2RQD)
2 (see [86,87]): there

is a range of values of VC · (2RQD)
2 for which there is only one energy level. Solving

the equation
α(E) · cot

(
α(E) · RQD

)
= −β(E), (37)

restricted to the condition [86]

π

2
<

(
2m∗D

h̄2 VCR2
QD

)(1/2)
<

3π

2
, (38)

leads to one odd bound state, whose energy E depends on RQD.
We have solved the problem for a single, isolated QD with −VC = 0.68 eV using

electron effective masses typical in the InAs/AlGaAs material system for different values
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of the QD radius, RQD, as shown in Figure 2a, together with the corresponding square
modulus of the electron wave function (Figure 2b) for RQD = 8 nm.
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Figure 2. (a) Position of the electron energy level (eV) below the CB (EC = 0 is assumed to be as the energy reference origin)
as a function of the quantum dot radius RQD. (b) Square modulus of the electron wave function for RQD = 8 nm.

In the simulations that follow, we have considered RQD = 8 nm, leading to an energy
level E = −0.4 eV ≡ EQD ≡ EI . Its associated wave-function is a 1s−orbital [5,88].
Figure 2b shows its corresponding square module, |ψQD|2, on the axes x and y.

4.2. The Quantum System S

Let us consider the quantum mechanical system S formed by a set of N QDs that are
randomly distributed and srestricted to the condition that there is a minimum Euclidean
inter-dot distance (dE,min = rmin) between QD centers (Figure 1g).

We generated the dot centers as follows: first, N dot centers were randomly generated
with a uniform distribution on a square with side L and finite area A = L2. Second, the
minimum distance between any two centers in the finite square with area A was computed.
Let d(A) be such a distance. Third, a uniform (isotropic) scaling was carried out. The scale
factor was α = rmin/d(A) so that if

(
x(A)

i , y(A)
i

)
were the coordinate of a center i in the

square with area A, then
(

α x(A)
i , α y(A)

i

)
≡ ri would be the center of the corresponding QD

i in a square with area (αL)2. This square was a finite area located in the metric space R2.
Let us now assume that the Hamiltonian of the system formed by N QDs can be

approximated by a special case of a tight-binding (TB) Hamiltonian based on the very weak
superposition of wave functions for isolated QDs, as in the Hückel model [89]

ĤS = ĤQD +
N

∑
rn 6=0

VQDn(r− rn) = ĤQD + ∆U(r), (39)

where ∆U(r) is a very small perturbation over the Hamiltonian of the isolated QD located
at r = 0.

Using this approach, the solution ψ to the time-independent single electron Schrödinger’s
equation is approximated by a linear combination of wave functions ψQD(r − rn), with
n = 1, . . . , N, in a similar approach to that of the Linear Combination of Atomic Orbitals
(LCAO). Note that ψQD(r− rn) is simply the wave function of the single electron stated by
Equation (34), but located at r = rn.

From now on, we adopt Dirac’s notation, meaning that ψQD(r− ri) ≡ |i〉. Thus, the
electron state is a linear combination of the state vectors or kets,

|ψ〉 =
N

∑
i=1

ci |i〉 , (40)
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where the coefficients ci are computed by normalizing to unity:∫
V

d3r ψ∗ψ ≡ 〈ψ|ψ〉 = 1, (41)

where V refers to the entire volume. Note that in the TB approach 〈i|i〉 = 1, while

〈i|j〉 ≡ Oij =
∫

V
d3r ψ∗QD(r− ri) ψQD(r− rj)� 〈i|i〉 . (42)

This weak-overlap hypothesis was numerically checked to validate our model and, as
shown in Section 5.2, its order of magnitude was less than 10−2.

With this in mind, the TB Hamiltonian can be formally written as

ĤS = ∑
i

εi |i〉 〈i|+ ∑
ij,j 6=i

tij |i〉 〈j| , (43)

where εi is the on-site energy in QDi and tij is a factor that controls the hopping of an
electron between QDs i and j.

Finally, using the second quantization approach, the Hamiltonian reads as

ĤS,SQ = ∑
ij,j 6=i

tij |i〉 〈j| . (44)

4.3. Generating the Network Associated to S System

With the aim of generating the network associated to the proposed quantum system,
S, we have first to identify nodes and links. S consists of a number of elements (QDs) that
are interconnected with each other (when the electron is allowed to hop between QDs).

Each QD in the system represents a node in the network. To simplify the notation, we
encode any node i by using its corresponding electron state vector |i〉.

While discerning what a node is has been easy (QD↔ node↔ ket), more physical
intuition is required to determine how the links are formed in such a way that they have
physical meaning. A link can be formed if the electron is allowed to hop from one node to
the other. If the involved nodes have the same energy, it is required that their wave functions
overlap enough for the electron to tunnel between them. If the nodes have different energy,
it is additionally necessary to include Boltzmann factors. It is convenient to keep in
mind that, when considering the quantum system S in thermodynamical equilibrium at
temperature T with the huge reservoir E, the energy interchange between them is the
fact that allows electron hoppings between QDs j and n with small energy differences
εj − εn. As explained in Section 3, the transitions rates γn→j and γj→n in a stationary state
have to fulfill the detailed balance condition (22), which causes (1) Boltzmann factors to
arise naturally, and (2) the incoherent part of the LME to vanish. This suggests that using
coherent quantum dynamics makes physical sense. With this in mind, the possible hopping
of an electron from QD i (with energy level εi) to j (with energy level εj), as shown in
Figure 1h, is encoded by using a weighted link. We generate the link between two nodes
(sites, kets), |i〉 and |j〉, located at ri and rj (with, in general, different energy levels, εi and
εj), by computing to what extent their respective wave functions overlap and by computing
the corresponding Boltzmann factor so that the weight is

wij = Oij · FB,ij, (45)

where Oij can be computed in terms of the wave functions in the QDs using Equation (42),
while FB,ij arises from Equation (22).

To advance in our model, it is necessary to introduce some essential network concepts.
The first arises from the very interaction between nodes. When two nodes are directly
connected by a link, they are said to be “adjacent” or neighboring. The adjacency matrix A
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encodes the topology of a network; that is, whether or not there is a link (aij = 1 or aij = 0)
between any two pairs of nodes i and j. Sometimes, this binary information encoding
whether or not a node is connected to another is not enough, and it is necessary to quantify
the “importance” of any link (the strength of a tie between two users in a social network,
or the flow of electricity between two nodes in a power grid [31]) by assigning a weight to
each link. In that case, the matrix that encodes the connections is called a weighted adjacency
matrix W [90].

The adjacency matrix corresponding to our system of N QDs is an N × N weighted
adjacency matrix W whose matrix elements are

(W)ij =

{
0 , if i = j

Oij · FB,ij , if i 6= j (46)

Once we have defined W in (46), we now have enough knowledge to represent the
system as a network by using the undirected, weighted graph G ≡ G(N ,L, W), where N
is the set of nodes (card(N ) = N) and L is the set of links. We have specified the matrix
W in the triplet G ≡ G(N ,L, W) to emphasize the fact that the connections between the
nodes are made using the W matrix and not, for example, a conventional adjacency matrix
A (aij = 1 if i and j are directly linked; 0 otherwise), which would result in different results.
Note that, because of the way we have generated the links, the weighted adjacency matrix
W quantifies connections that have physical meaning according to quantum and statistical
physics and explicitly includes the spatial structure of the system.

W helps us to obtain Laplacian matrices that will assist us in studying electron dynam-
ics using CTQW, quantum walks that are continuous in time and discrete in space; see [55]
for a very illustrative discussion on CTQW and their use in the simulation of quantum
systems. There are several classes of Laplacian matrices [39,91].

The first type of Laplacian matrix, the (combinatorial) Laplacian—or simply Laplacian
matrix—is defined as

L = D−W, (47)

where D is the diagonal degree matrix, whose elements Di are the sum of weights of all
links directly connecting node i with others: Di = ∑i 6=j(W)ij .

Note that the Laplacian matrix L computed using the weighted adjacency matrix W
is different from the one used in other works [54,67,92]. In these approaches, the matrix
elements of L are assumed to be equal γij ≡ γ = 1. In our approach, the matrix elements
take different values as they depend on the involved overlap integrals and Boltzmann
factors (0 ≤ wij < 1) and, as shown throughout the paper, they play a natural role in
the probability for an electron to hop from one node to another. The Laplacian acts as a
node-to-node transition matrix so that the Hamiltonian of the CTQW can be written as
H = L [50,58,60,65,67,68,93–98].

In particular, in our proposal, L = HS,SQ, the matrix form of the TB Hamiltonian in the
second quantization—Equation (44)—with tij = wij. Thus, the the unitary time evolution
operator in quantum mechanics

Û(t) = e−iHS,SQt/h̄ (48)

is equivalent to
Û(t) = e−iLt/h̄. (49)

The second very useful Laplacian is the normalized Laplacian matrix [93], LN =
D−1/2LD−1/2, a Hermitian operator that allows the generation of the corresponding
unitary CTQW [93] of an electron on our graph G ≡ G(N ,L, W) as

ÛLN (t) = e−iLN ·t (50)
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Note that, in the time evolution operator generated by LN in (50), the imaginary unit
makes ÛLN unitary [58]. As in other CN approaches [57,59,99,100], we assume h̄ ≡ 1,
meaning that time and energy can be treated as dimensionless. We use ÛLN (t) to study the
temporal evolution of our quantum system.

5. Simulation Work

5.1. Methodology

As mentioned in the introduction, the S system contains two types of disorder. The
first of them is determined by the fact that the QDs are located in a random way by means
of the algorithm described in Section 4.2 to fulfill the minimum inter-dot distance condition.
The second type of disorder has its origin in the fact that, in real QD layers, there are
thermodynamic fluctuations in the dot size, leading to nodes with different energy levels.
We have assumed the energy level distribution to be a Gaussian distribution with mean
µ = EQD = 0.4 eV and standard deviation σ = 10−3 eV. Thus, each QD (node) i is described
by its corresponding εi energy level, a sample from theN (µ, σ). This energy level εi acts as
an attribute called the hidden variable or fitness (see [47] for details in the context of SN).

With the aim of obtaining statistical values, we generated ensembles of networks with
a sufficiently large number of networks. In the experiments, this led us to the conclusion
that it was sufficient to generate 50 realizations of each complex network.

5.2. Testing the Weak Overlap Hypothesis

We begin this experimental section by aiming to verify whether the small overlapping
hypothesis (stated by (42)) is true or false. In this respect, Figure 3 shows the mean value of
the overlaps as a function of the normalized distance between dot centers (dE,ij/RQD) in
two cases. The first one, in Figure 3a, corresponds to networks in which rmin = 20 RQD.
All possible overlaps are Oij < 10−1, at least 1 order of magnitude lower than 〈i|i〉 = 1.
Figure 3b represents the study case in which rmin = 40 RQD and shows how all the overlaps
are Oij < 10−2, at least 2 orders of magnitude below 〈i|i〉 = 1. These experimental results
confirm that the overlapping integrals are small enough for the proposed model to be valid.
We have also marked in Figure 3 the normalized distance dE,ij/RQD = 80 for which the
overlap isOij ≤ 10−4. In our model, we consider that no link is formed for longer distances.
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Figure 3. (a) Mean value of the overlap as a function of the normalized inter-dot distance dE,ij/RQD

in the case in which rmin = 20 RQD. (b) Mean value of the overlap as a function of dE,ij/RQD in the
case in which rmin = 40 RQD.

5.3. Influence of the Minimum Inter-Dot Distance on Quantum Transport

As mentioned in the introduction, the motivation for this work is to understand what
happens in a disordered QD system that is constrained to spatial (there is a minimum
distance between dot centers to avoid localization in clusters) and physical restrictions
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(related to overlap integrals and Boltzmann factors). A first approach to this goal is to
explore how an electron evolves in the generated network with time. Regarding this, we
can characterize the network’s transport efficiency by using the average return probability
(ARP), α(t), defined as [68]

α(t) =
1
N

N

∑
j=1
| 〈j| ÛLN (t) |j〉 |2, (51)

where the operator ÛLN (t), presented in Equation (50), is the unitary time evolution op-
erator governing the evolution of the probability amplitudes. Please note that, as shown
in a number of papers [50,58,60,65,67,68,93–98], the Hamiltonian of the network is the
Laplacian matrix (also called the connectivity matrix in some contexts). We have also
shown that L = HS,SQ, the matrix form of the TB Hamiltonian in the second quantization—
Equation (44)—with tij = wij, meaning that the unitary time evolution operator in quantum
mechanics is equivalent to ÛLN (t).

High values of α(t) suggest inefficient transport since the quantum particle tends
to remain at the initial node [68]. On the contrary, α(t) � 1 means that the electron
localized at the initial node in t = 0 tends to be delocalized, with different (although
similar) probability components on each node.

With this concepts in mind, we define the quantum transport efficiency (QTE) as [46]

ηQT(t) = 1− α(t). (52)

Figure 4a shows the mean value (computed over 50 networks) of the quantum trans-
port efficiency ηQT stated by (52) as a function of the minimum inter-dot or exclusion radius
rmin normalized by RQD.

Figure 4a provides interesting information: there is a value of the minimum normal-
ized inter-dot distance (rmin/RQD) for which the efficiency reaches a maximum value:
ηQT = 0.95 for rmin/RQD = 50. For practical purposes, we have marked a “working
interval” in which the mean value of the QTE is ηQT ≥ 0.90. The global behavior of
ηQT can be explained as follows. For small values of rmin/RQD, ranging from 20 to 40,
increasing the minimum allowed inter-dot distance leads to a progressive reduction of QD
clusters. The smaller the number of clusters, the higher the QTE. On the contrary, for high
values of the minimum inter-dot distance (>60 RQD), the overlaps begin to be so small that
the electron tends to be localized again. In particular, when approaching the maximum
distance rMAX ≡ 80RQD—at which the proposed method no longer allows the formation
of links (Oij ≤ 10−4)—then ηQT → 0. This is because the QDs are so far apart that there is
no interaction between them, or equivalently, the network nodes are disconnected.
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These results can be expressed in terms of the QD density, as shown in Figure 4b. The
interval of normalized inter-dot distances rmin/RQD ∈ (40, 60) for which ηQT ≥ 0.90 leads
to a QD density that ranges between 3.3× 1010 cm−2 and 4.9× 1010 cm−2, which would
require a very precise control of the QD density.

Figure 5 is an example of the electron probability components, | 〈n|ψ〉 |2, on each of
the kets |n〉 of a network with N = 100 nodes. In this example, the electron was localized in
node |10〉 at t = 0 (initial state), and after applying the unitary evolution operator (50) for
t = 500, it evolved to an extended wave function whose probability components | 〈n|ψ〉 |2
were distributed over the N = 100 nodes. We have considered two study cases that differ in
the value of rmin. The first one corresponds to rmin = 20RQD (Figure 5a), while the second
one corresponds to rmin = 60RQD (Figure 5b). These figures corroborate the previous
results shown in Figure 4a. On the one hand, Figure 5a corresponds to a situation in which
the excessive proximity between QDs (rmin = 20RQD) makes some of the dots localize the
electron wave function more than others. On the other hand, in Figure 5b, corresponding
to rmin = 60RQD, for which ηQT = 0.90, the probability components are better distributed
than in study case (a), although not perfectly (as this would correspond to a crystalline
solid). Note in this respect that the variance of the study case (b) is approximately 2.7 times
smaller than that of case (a). This means that the electron wave function in the system
with rmin = 60RQD is more evenly distributed among the sites. This may have beneficial
properties in photon absorption, requiring that the overlaps between the wave functions
of the initial and final states be large. We present this discussion later in Section 6 as it
requires some preliminary reasoning.

Figure 6 represents the ARP as a function of time (ARP-t) with t ∈ (100, 1000) in two
study cases. In both cases, the methodology is as follows. First, a network is generated
and the ARP is computed for each time t ∈ (100, 1000). Second, the first step is repeated
for 50 instances of networks. Third, the final result is the average of the ARP-t over
the 50 networks. The first study case in Figure 6a corresponds to 50 networks with
rmin = 20RQD, while the second one corresponds to 50 networks with rmin = 60 RQD
(Figure 6b). The analysis of these figures confirms again the beneficial properties of
having minimum inter-dot distances in the “working” interval for which QTE ηQT ≥ 0.90.
Specifically, the variance of ARP–t for rmin = 60RQD is 7 times less than that corresponding
to the case with rmin = 20RQD. In addition, the mean value of the ARP in (b), the ensemble
of 50 networks with rmin = 60RQD, is very small, σ = 0.0001077. This means again that the
probability for an electron to hop through the network be high, preventing it from being
localized in QD.
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Figure 5. (a) Electron probability components, | 〈n|ψ〉 |2, on each of the kets |n〉 of a connected network with N = 100 nodes.
(a) Probability components for networks with rmin = 20RQD. (b) Probability components for networks with rmin = 60RQD.
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Figure 6. Average return probability (ARP) as a function of time (adimensional). As we have assumed h̄ ≡ 1, then time and
energy can be treated as dimensionless. Each value has been obtained as the mean value of the ARP over 50 networks with
N = 100 nodes each. (a) ARP for an ensemble of networks with rmin = 20RQD. (b) ARP for an ensemble of networks with
rmin = 60 RQD.

6. A Prospective Application

The modeling of the light absorption in semiconductors can be found in a number of
works [101–103]. In this work, we have followed the most general point of view explained
in [101]. It models the light absorption from the perspective of considering the system to
be divided into two sub-systems: first, the electron system that consists of a set of quantum
states and its corresponding energies; second, the photon system. We have also adopted
this formulation and applied it to our QD system.

The absorption and emission of photons that cause electron transitions are essentially
scattering events between initial electron states |i〉 and final states | f 〉. The electromagnetic
radiation is the perturbation that induces these events. We refer to the Hamilton operator
that describes the electron–photon interaction as He−pt. Following Fermi’s Golden Rule,
the transition rate from an initial electron state |i〉 to a final state | f 〉, $i→ f , is given by
the expression

$i→ f ≡
1
τ
=

2π

h̄ ∑
f
| 〈 f | Ĥe−pt |i〉 |2 δ(E f − Ei ± h̄ω) (53)

where τ is the lifetime that characterizes the transition, and the δ−function explicitly
contains the photon energy h̄ω. The upper sign of the ± labels the emission of this photon,
and the lower sign shows its absorption.

As mentioned above, under the envelope approximation, any wave function Ψ can
be expressed as Ψ = ψ uB, where ψ is the envelope function and uB is the periodic
part of the corresponding Bloch function for a B band. Therefore, the matrix element in
Equation (53) becomes

〈 f | Ĥe−pt |i〉 = 〈u f | Ĥe−pt |ui〉cell 〈ψ f |ψi〉+ 〈u f |ui〉cell 〈ψ f | Ĥe−pt |ψi〉 . (54)

In inter-band transitions (see Figure 1e,f) between states in the conduction and valence
bands (or between states derived from these bands by means of confinement potentials in
low-dimensional structures), the second term on the right-hand side of the matrix element
in (54) is zero. This is because the periodic part of the Bloch functions in two different bands,
uC(V), at the same point in the Brillouin zone, are orthogonal: 〈u f |ui〉 ≡ 〈uC|uV〉 = 0. Note
that this means that the overlap integral 〈ψ f |ψi〉 determines which transitions are allowed
and which are forbidden.

On the contrary, in inter-sub-band or intra-band transitions, the first term on the
right-hand side of the matrix element in Expression (54) is zero. The physical reason
for this is that the envelope functions ψ f and ψi are both eigenfunctions of the same
Hermitian operator (the Conduction Band Hamiltonian), with different eigenvalues, and,
as a consequence, ψ f and ψi are orthogonal: 〈ψ f |ψi〉 = 0.
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Thus, the matrix elements of He−pt can be written more compactly as

〈 f | Ĥe−pt |i〉 =
{
〈u f | Ĥe−pt |ui〉cell 〈ψ f |ψi〉 , inter− band
〈u f |ui〉cell 〈ψ f | Ĥe−pt |ψi〉 , intra− band

(55)

In the case of an isolated QD in Figure 1f, we can expect the intra-band transition from
the CB discrete level (the electron intermediate level Ee,1 within the dot) up to a high energy
state in the CB continuum to be weak because it would take place between a localized
(discrete) state and a delocalized (continuum) state. In contrast, the photon absorption
via an inter-band transition between a discrete energy level (Eh,1) in the valence band
confinement potential (VB-CP) and a discrete energy level (Ee,1) in the CB confinement
potential (CB-CP) can be significant because, aside from selection rules, the overlap occurs
in the same region of space: the QD region. This is why the recombination between a
confined electron (Ee,1) and a confined hole (Eh,1) within a QD can be radiative in nature,
thus making the existence of QD lasers possible [13,14].

Different works using non-periodic QD distributions have been able to demonstrate
the principles of operation of the QD-IBSC [22–25] but with the problem of a weak intra-
band absorption (Ee,1 → Ee.2). With the aim that the intermediate states could be trans-
formed into a band in which the wave function is completely delocalized, it has always
been considered from a theoretical point of view that a sufficiently dense array of QDs
would allow electrons to be coupled and delocalized enough to have strong absorption,
causing transitions from the intermediate states to the CB states.

However, in the present work, we have shown that a very high density may not
always be the best solution. Our work suggests that there is an optimal inter-dot distance
(and consequently, an optimal dot density) for which the QTE is maximized, with the
electron probability components at the dots becoming more uniform. However, in a very
embryonic stage, we can have an intuition as to why this happens if we remember that the
matrix elements of the electron–photon Hamiltonian [101,102] fulfill

〈 f | Ĥe−pt |i〉intra ∝ 〈ψ f | ê · 5 |ψi〉 . (56)

where ê · 5 is the gradient caused by the photon polarization vector ê. In the case of
frontal sunlight illumination, ê has only components in x and y. If the wave function in the
initial intermediate state |ψi〉 is very confined in a QD (or in a few QDs), then the gradient
ê · 5 |ψi〉 varies strongly in that zone and very little in the rest. Consequently, the overlap
of ê · 5 |ψi〉 with the final wave function |ψ f 〉 (which is extended) is expected to be very
small. Note that a final state within the CB is an extended function that is more similar to
uC (the periodic part of the Bloch function in the CB) than ê · 5 |ψi〉.

For illustrative purposes, Figures 7 and 8 assist in explaining these ideas intuitively.
Figure 7 shows the gradient of the electron wave function, ê · 5 |ψi〉, in a dot located at
(0, 0). Note that ê · 5 |ψi〉 → 0 when approaching the dot center. This is expected to
produce a small overlap with the final extended function in the CB continuum. Figure 8
shows the gradient in two illustrative cases. The first one, represented in Figure 8a, shows
the gradient of an initial state in which the probability components are very unbalanced.
The overlap with an extended final function on the continuum is expected to be very small.
Figure 8b illustrates the gradient of an initial state in which the probability components are
unevenly distributed. The overlap with an extended final function on the continuum is
expected to be higher than in the previous case.
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Figure 8. Gradient of electron wave function, ê · 5 |ψi〉, in two cases. (a) Gradient of an initial state in which the probability
components are very unbalanced. Its overlap with an extended final function on the continuum is expected to be very small.
(b) Gradient of an initial state in which the probability components are unevenly distributed. Its overlap with an extended
final function on the continuum is expected to be greater than in the case (a).

Thus, if the wave function in the initial state is better balanced throughout the QD
layer (as shown in Figure 5)—avoiding the existence of clusters with dots that are too close,
which tend to confine the electron—then its gradient is expected to be smoother and better
distributed and, consequently, a higher overlap with the fully extended final wave function
is expected. Regarding this conclusion, which needs to be reinforced in more complex
future work, special care should be taken in growth processes to ensure that there are no
areas in which there is a high density of QDs to the detriment of others where the density
is lower.

7. Summary and Conclusions

This paper has proposed the modeling of a quantum system, S, made up of N disor-
dered quantum dots (QDs), by using complex networks (CN) with spatial and physical-
based constraints. The disorder is twofold: on the one hand, the QDs are randomly
distributed; on the other hand, the sizes of the QDs may vary slightly. While discerning
what a node is seems easy (QD ≡ node), more care and physical intuition is required when
determining how the links between QDs are formed in such a way that they have physical
meaning. In this respect, the novelty of our model is threefold: first, although we have
considered the QDs (=nodes) to be randomly distributed in a metric space, they have to
fulfill the key condition that there is a minimum distance between dot centers (rmin) that
cannot be violated (to prevent the electron from being localized in some QDs in detriment
of others); second, our model allows nodes with different attributes to be considered—in
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particular, with different energy levels; third, the link formation and the weighting process
that we have proposed are consistent with the laws of quantum physics and statistics.

Put simply, given two QDs i and j with the same energy level, the probability of
an electron tunneling between them is related to the corresponding overlap integrals. If,
additionally, the dots have slightly different energy levels, the probability of the electron
hopping between them is related to Boltzmann factors. We have tested the consistency
of our approach in the theoretical framework stated by the Lindblad master equation
(LME). The LME allows the study of the quantum dynamics of the reduced density matrix
operator of our open quantum system S, which is in thermodynamic equilibrium with a
much bigger environment or reservoir E at a given temperature T. The electron stationary
state is reached under detailed balance conditions that make the LME incoherent part
vanish, from which the Boltzmann factors naturally arise: when an electron hops from a
QD with energy εn to another with energy εj > εn, the energy difference ∆E = εn − εj is
supplied by the environment. The opposite is also found to be true using the mentioned
detailed balance concepts in the canonical ensemble. The fact that the incoherent part
vanishes allows us to consider coherent quantum dynamics.

Our method to generate links leads to a weighted adjacency matrix whose elements
contain overlap integrals and Boltzmann factors. The corresponding Laplacian matrix L,
which assists in computing continuous time quantum walks (CTQW) on the associated
network, is different from the model used in other works [54,67,92]. In these approaches,
the matrix elements of L are assumed to be equal γij ≡ γ = 1. In our approach, the
matrix elements take different values since they depend on the involved overlap integrals
and Boltzmann factors, and, as shown throughout this paper, they play a natural role
in the probability for an electron to hop from one node to another. Specifically, in our
approach, the matrix form of the tight-binding (TB) Hamiltonian in the second quanti-
zation is HS, SQ = L, meaning that the corresponding time evolution unitary operators
are equivalent.

The simulation work we have carried out focused on two key points. Firstly, we tested
the weak overlap hypothesis that is necessary for the TB to be used. We studied the mean
value of the overlap integrals for different values of rmin, the minimum distance between
centers. Networks with rmin ∈ (40RQD, 60RQD) have overlap integrals Oij < 10−2 that are
at least 2 orders of magnitude below 〈i|i〉 = 1. These experimental results confirm that the
overlapping integrals are small enough for the proposed model to be valid.

The second group of simulation work aimed to explore the influence of the minimum
inter-dot distance rmin on the quantum transport efficiency (QTE) and on the electron
probability distributions. The main result was that a value was found for the minimum
normalized inter-dot distance (rmin/RQD ≈ 50) for which the mean value (over 50 net-
works) of the QTE is maximum: ηQT = 0.95. There is also a “working interval” for
rmin ∈ (40RQD, 60RQD) for which ηQT ≥ 0.90. In this interval, the electron probability
components have been found to be more smoothly distributed than in those cases in which
QDs are allowed to be very close. We have explained the global behavior of ηQT as follows.
For small values of rmin/RQD, ranging from 20 to 40, increasing the minimum allowed
inter-dot distance leads to a progressive reduction of QD clusters. The smaller the number
of clusters, the higher the QTE. On the contrary, for high values of the minimum inter-dot
distance (>60 RQD), the overlaps begin to be so small that the electron tends to be localized
again. In particular, when approaching the maximum distance rMAX ≡ 80RQD—for which
the proposed method no longer allows the formation of links (Oij ≤ 10−4)—then ηQT → 0.
This is because the QDs are so far apart that there is no interaction among them, or equiv-
alently, the network nodes are disconnected. These results can be expressed in terms of
the QD density. The interval of rmin/RQD ∈ (40, 60), for which ηQT ≥ 0.90, leads to a QD
density ranging between 3.3× 1010 cm−2 and 4.9× 1010 cm−2, which would require a very
precise control of the QD density.

The existence of a value interval for rmin in which the QTE is high and the electron
wave function is distributed in a smoother way (although not perfectly) over the QDs could
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have consequences on light absorption processes. In particular, the model could explain
why the photon absorption causing transitions from levels at the QDs to the conduction
band (CB) has been found to be weak in quantum dot intermediate-band solar cells (QD-
IBSCs). This is because the matrix elements of the electron–photon Hamiltonian ruling
these transitions is proportional to 〈ψ f | ê · 5 |ψi〉, where ψi and ψ f are, respectively, the
envelope wave functions for the electron in the initial state (in the bound state in the dot)
and the final state (in the CB continuum), and ê · 5 is the gradient operator caused by
the photon polarization vector ê. In the case of frontal sunlight illumination, ê has only
components in x and y. If the wave function in the initial intermediate state |ψi〉 is very
confined in a QD (or in a few QDs), then the gradient ê · 5 |ψi〉 varies strongly in that zone
and very little in the other areas. Consequently, the overlap of ê · 5 |ψi〉 with the final
wave function |ψ f 〉 (which is extended) is expected to be very small. We think that if the
wave function in the initial state is better balanced throughout the QD layer—avoiding
the existence of QD clusters that are prone to confine the electron—then its gradient in
x and y is expected to be smoother and better distributed. As a consequence, a higher
overlap with the fully extended final wave function in the CB is expected. Regarding this
thought experiment, which needs to be proved in future work, special care should be taken
in growth processes to avoid the formation of clusters.
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Abbreviations
The following abbreviations are used in this manuscript:

0D Zero-dimensional
1D One-dimensional
2D Two-dimensional
ARP Average Return Probability
CB Conduction Band
CN Complex Networks
CP Confinement Potential
CTQW Continuous-Time Quantum Walks
DM Dot Material
GS Ground State
IB Intermediate Band
IBSC Intermediate-Band Solar Cell
LCAO Linear Combination of Atomic Integrals
LME Lindblad Master Equation
QD Quantum Dot
QD-IBSC Quantum Dot Intermediate-Band Solar Cell
QM Quantum Mechanics
QT Quantum Transport
QW Quantum Walk
RGG Random Geometric Graph
RN Random Network
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SAQDs Self-Assembled Quantum Dots
SML-QDs Sub-Monolayer Quantum Dots
SN Spatial Network
SK Stranski–Krastanow
SW Small World
TB Tight-binding
VB Valence band
VW Volmer–Weber
WL Wetting layer

Nomenclature

1 Identity operator in Quantum Mechanics.
A Adjacency matrix of a graph G.
aij Element of the adjacency matrix A.
α(t) Average return probability.
D Node degree matrix: diag(k1, · · · , kN). It is the diagonal matrix formed from the nodes degrees.
dE(i, j) Euclidean distance between any pair of nodes i and j in a network.
dij Distance between two nodes i and j. It is the length of the shortest path (geodesic path) between them, that is,

the minimum number of links when going from one node to the other.
dE,Lim dE,Lim ≡ dS Euclidean distance limit beyond which there is no link formation.
Ee Energy level of a confined electron in a quantum dot.
Eh Energy level of a confined hole in a quantum dot.
EQD Discrete electron energy in a quantum dot (QD).
ηQT Quantum transport efficiency.
G Graph G ≡ G(N ,L, W), where N is the set of nodes (card(N ) = N), L is the set of links, and W is weighted

adjacency matrix that emerges from our method to link formation.
FB,ij Boltzmann factor.
Ĥ Hamiltonian operator corresponding to the total energy of a quantum system.
H Hamiltonian in matrix form.
h̄ Reduced Planck constant.
H Hilbert space.
Heq Equilibrium Hilbert subspace.
|i〉 Ket vector in the Hilbert spaceH.
〈i| Bra vector in the dual space corresponding to the ket |i〉 ∈ H
` Average path length of a network. It is the mean value of distances between any pair of nodes in the network.
L Set of links (edges) of a network (graph).
L Laplacian matrix of a graph G.
LN Normalizad Laplacian matrix, LN = D−1/2LD−1/2.
me Electron mass.
M Size of a graph G. It is the number of links in the set L.
N Order of a graph G = (N ,L). It is the number of nodes in set N , that is the cardinality of set N : N = |N | ≡

card(N ).
N Set of nodes (or vertices) of a graph.
O2 Laplace operator.
P(k) Probability density function giving the probability that a randomly selected node has k links.
|ψ〉 Ket or vector state in Dirac notation corresponding to the wave function ψ.
RQD Radius of the quantum dot.
ψQD Electron wavefunction in a quantum dot.
τB Boltzmann time.
V̂ Potential energy operator.
−VC Depth of confinement potential.
UC(r) Confining, spherical (depending only on the radial co-ordinate r), finite, and square potential energy.
ÛLN (t) Time evolution operator generated by the normalizad Laplacian matrix LN .
wij Weight of the link between node i and j.
W weighted adjacency matrix.
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