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Abstract: A graphene metamaterial and strontium titanate (STO)-based terahertz absorber with
tunable and switchable bifunctionality has been numerically investigated in this work. Through
electrically tuning the Fermi energy level of the cross-shaped graphene, the bandwidth of the
proposed absorber varies continuously from 0.12 THz to 0.38 THz with the absorptance exceeding
90%, which indicates the functionality of broadband absorption. When the Fermi energy level of the
cross-shaped graphene is 0 eV, the proposed absorber exhibits the other functionality of narrowband
absorption owing to the thermal control of the relative permittivity of STO, and the rate of change of
the center frequency is 50% ranging from 0.56 THz to 0.84 THz. The peak intensity of the narrowband
absorption approximates to nearly 100% through adjusting the Fermi energy level of the graphene
strips. The calculated results indicate that it is not sensitive to the polarization for wide incidence
angles. The proposed absorber can realize tunable bifunctionality of broadband absorption with a
tunable bandwidth and narrowband absorption with a tunable center frequency, which provides an
alternative design opinion of the tunable terahertz devices with high performance for high-density
integrated systems.

Keywords: terahertz absorber; dynamically tunable; switchable bifunctionality; excellent absorptance

1. Introduction

Metamaterials, artificially engineered by subwavelength electromagnetic materials,
show some optical properties that differ from natural materials. The resonance frequency
can be arbitrarily customized in a large frequency range in the microwave [1,2], terahertz
(THz) [3–5], and near-infrared regions [6]. Metamaterial-based absorbers (MMAs) have
attracted great interest due to their scalable properties and a wide variety of potential appli-
cations, for example solar and thermophotovoltaic energy conversion [7,8], cloaking [9,10],
sensors [11], and thermal emitters [12,13]. Conventional MMAs are composed of a sand-
wich structure with a dielectric spacer, which acts as a divider between the subwavelength
metallic patterns and a continuous metallic ground plane. Since the first perfect MMA
was proposed and investigated [14], MMAs with single- [15,16], dual- [17], multi- [18,19],
and broad-band [20–22] absorption have been proposed and investigated. However, the
absorption performance of MMAs influenced by the geometric parameters of unit cells
cannot be dynamically adjusted anymore once the fabrication is completed.

To enrich the functionalities, active materials are introduced into metamaterial de-
vices, such as vanadium dioxide [23], phase-change materials [24], liquid crystals [25],
liquid metals [26], and especially graphene [27,28]. Due to its extraordinary physical prop-
erties [29,30], such as high electron mobility, flexible tunability [31], relatively low loss,
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and tight field confinement, graphene has become a very promising material for many
technologies [32–34]. Due to the visibility of monolayer graphene being much stronger in
reflection than that in transmission [35], optical reflection microscopy is more frequently
used to identify the layers, size, and position of graphene, which directly determines the
quality of the graphene-based devices. Many methods, such as using a thick substrate
with a sizeable oxide layer [35], imaging ellipsometry [36], spin-coating with polymethyl-
methacrylate (PMMA) [37], and surface plasmon resonance reflectance [38], have been used
to detect and characterize the graphene on different substrates. Notably, two-dimensional
(2D) polymers (2DPs), in addition to graphene, have been successfully prepared in the
experiment, which shows an alternative approach for future electronics and energy-related
applications [39]. Strontium titanate (STO) material is a typical functional ceramic dielectric
material that shows many special physical properties [40,41], such as low dielectric loss,
superior insulation, good chemical stability, and thermal control of the dielectric constant,
among which the most interesting one is that its dielectric permittivity can be dynamically
changed through controlling the external environment temperature. Recently, tunable
devices with multiple functionalities have been investigated including the bifunctional
absorbers transforming from broadband absorption to narrowband absorption. However,
the absorption cannot maintain a stable intensity when the operating bandwidth or center
frequency fc is adjusted in a large range of frequencies. A comparison of the tunability
of the bifunctional absorber and other terahertz devices with correlative functionalities
are shown in Table 1. The parameters for comparison include the bandwidth (BW), center
frequency fc, and rate of change (ROC, dividing the change in operating bandwidth or
frequency by the original BW or fc, respectively).

Table 1. Comparison between our work and other terahertz absorbers with correlative functionality.

Ref. Functionality

Dynamically Tunable Ability

BW (THz) ROC of BW fc (THz) with Absorptance >
90% ROC of fc

[42] Narrowband absorption \ \ Tunable from 1.395 to 1.381 1%
[43] Narrowband absorption \ \ Tunable from 5.0 to 5.6 12%

[44] Broadband absorption Tunable 0.66 to 0.81
with BW > 80% 22.7% Tunable from 1.325 to 1.555 17%

[45] Broadband absorption Fixed \ Fixed \

[46] Broadband and
narrowband absorption Fixed \ Broadband: fixed

Narrowband: fixed \

[47] Broadband and
narrowband absorption

Tunable from 0.725
(about) to 1.3 with

BW > 90%
80%

Broadband: nearly fixed;
Narrowband: tunable from

1.1 to 1.4 (about)
27% for narrowband

This work Broadband and
narrow-band absorption

Tunable from 0.12 to
0.38 with BW > 90% 216.6%

Broadband: tunable from 0.8
to 0.97; Narrowband: tunable

from 0.56 to 0.84

21% for broadband;
50% for narrowband

In this study, a graphene metamaterial and STO-based absorber with switchable
and tunable bifunctionality is proposed in the terahertz regime. Through controlling the
Fermi energy level of the cross-shaped graphene, a tunable broadband absorption of the
bifunctional absorber can be obtained, and its bandwidth can realize a variation in the range
of frequencies from 0.12 to 0.38 THz with excellent absorptance of over 90%. The relative
impedance as well as the field analyses are investigated to reveal its absorbing mechanism.
When the Fermi energy level of the cross-shaped graphene is 0 eV, a narrowband absorption
with tunable center frequencies can be achieved utilizing thermal control of the relative
permittivity of STO. Furthermore, the effects of the geometrical parameters and various
incidence angles for different polarization on absorption performances are also discussed.
The bifunctional absorber inspires the design of dynamically tunable devices with multiple
functionalities in the terahertz regime.
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2. Materials and Methods

The structural schematic and polarization configuration of the incident wave of the
bifunctional absorber is shown in Figure 1a, which is composed of a cross-shaped graphene
metamaterial layer, an insulating spacer (polyethylene cyclic olefin copolymer, Topas) [48],
a 1.9-µm-thick STO layer covered by strip-shaped graphene metamaterial, and a bottom
gold film with conductivity of 4.56× 107 S/m used as the continuous metallic reflector. The
thickness of the gold film is 0.5 µm, which is much greater than the maximum skin depth
conductivity of the gold film. Topas, a transparent and stiff amorphous thermoplastic
copolymer, shows superior optical properties such as high stability, excellent heat resis-
tance, negligible absorption coefficient, and constant refractive index in the THz range [49].
The relative permittivity of Topas is 2.35 with negligible loss and dispersion in this
work [50]. Thicknesses of the insulating spacer hg and hd are 40 µm and 6.4 µm, respectively.
Figure 1b,c shows the upper and lower metamaterial of the bifunctional absorber, respec-
tively. The branch length and width of the cross-shaped graphene is ls = 36 µm and
ws = 6 µm, respectively, and the width of the graphene strips is wr = 42 µm. The periods of
the unit cell for the bifunctional absorber are Px = Py = 60 µm. The side view is depicted
in Figure 1d, where the cross-shaped graphene metamaterial is covered by a 20-µm-thick
electrolyte (poly-(ethylene oxide)/LiClO4) layer with refractive index 1.7 [51].
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The CVD-grown graphene layer is transferred onto the multilayer substrate by a
transfer technique using polymethylmethacrylate (PMMA) supporting layers and is sub-
sequently patterned by photolithography and oxygen plasma etching [52]. The graphene
layer can be modeled as a surface current defined as J = σgEt according to Ohm’s law,
where Et is the tangential electric field, and σg is the complex conductivity of graphene. The
surface conductivity of graphene from Kubo formula is determined by the combination of
intraband and interband contributions [53]:

σg ≈
je2

4π} ln
[

2|µc| − (ω + j/τ)}
2|µc|+ (ω + j/τ)}

]
+ j

e2kBT
π}2(ω + jτ−1)

[
µc

kBT
+ 2 ln

(
exp

(
− µc

kBT

)
+ 1
)]

(1)

where ω is the incident angular frequency, kB ≈ 1.381 × 10−23 J/K is the Boltzmann
constant, e ≈ 1.602 × 10−19 C is electron charge, h̄ ≈ 1.055 × 10−34, J·s is the reduced
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Planck constant, and T is temperature in kelvin. The values of chemical potential µc
and Fermi energy level Ef are equal when kB < µc. The relaxation time τ can be given
by τ = µE f e−1υF

−2, where the Fermi velocity υF is 106 m/s, µ is the carrier mobility
assumed as 1310 cm2V−1s−1 for the graphene strips and 26,250 cm2V−1s−1 for the cross-
shaped graphene, and the corresponding relaxation time is 0.105 ps and 2.1 ps with
Ef = 0.8 eV, respectively.

The complex relative permittivity of STO material is sensitive to the temperature,
which can be expressed as follows [40,54]

εSTO = ε∞ +
f

k2
0 − k2 − ikγ

(2)

where k is the wave number of the incident wave, ε∞ = 9.6 is the high-frequency bulk permit-
tivity, k0 =

√
31.2(T − 42.5) cm−1 is the wave number of the soft mode, f = 2.3 × 106 cm−2

represents the oscillator strength, and γ = −3.3 + 0.094T cm−1 is the damping parameter
of the soft mode. The external temperature T is set as 400 K in this work except when
stated otherwise.

In order to gain deep insight into the temperature-dependent property of STO, the
real and imaginary parts of the permittivity as a function of frequency are calculated
with various temperatures, as shown in Figure 2a,b, respectively. Both the real part and
the imaginary part decreases with the increasing temperature. However, the value of the
imaginary part is much smaller than that of the real part. The resonance frequency is mainly
affected by the real part, and the imaginary part characterizes the losses. Therefore, the
resonance frequency caused by the STO material can be significantly shifted by adjusting
the environment temperature, while the intensity of the absorption changes little.
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Figure 2. The simulated absorption spectra of (a) the individual upper metamaterial, and (b) the individual lower metamaterial.

3. Results and Discussion

The electromagnetic absorptance(A), i.e., the intensity of absorption, can be defined
as A = 1 − T − R, in which transmittance T = |S21|2 and reflectance R = |S11|2 can be
obtained from S-parameters in the simulation results calculated by COMSOL Multiphysics.
When the Fermi energy level of graphene strips Ef2 is set as 0.8 eV and that of the cross-
shaped graphene Ef1 is adjusted from 0.4 to 0.8 eV, the proposed absorber shows a tunable
broadband absorption, as depicted in Figure 2. The bandwidth with the absorptance
above 90% is 0.38 THz in the frequency range from 0.78 to 1.16 THz. As Ef1 decreases to
0.4 eV, the bandwidth grows narrower and reaches the minimum 0.12 THz. The absorption
broadband disappears and divides to become two absorption bands when Ef1 continues
to decrease, as depicted in Figure 3 by the dashed curves. Therefore, the bandwidth can
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be dynamically and continually tuned in the range of frequencies from 0.12 to 0.38 THz
through controlling Ef1.
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Figure 3. The absorption spectra with continuously tunable bandwidth. The Fermi energy level Ef1
changes from 0.1 to 0.8 eV.

To understand how the absorption broadbands are formed, the influences on absorp-
tion spectra of the individual upper and lower metamaterials are calculated, respectively.
The absorption performance of the individual cross-shaped graphene with Ef1 varying
from 0.1 eV to 0.8 eV is shown in Figure 4a. When Ef1 increases, the center frequency
shows a monotonous blue-shift. The absorption enhancement starts to increase, then
decreases, and achieves the maximum absorptance with Ef1 = 0.3 eV. Thus, Ef1 not only
affects the location of the center frequency, but also the intensity of absorption. As shown in
Figure 4b, the absorption intensity of the individual lower layer of STO combined with
graphene strips is changed through adjusting Ef2, while the variation of the center fre-
quency is very small, which indicates that Ef2 only influences the intensity of the absorption.
The impedance-matching theory can be used as a physical explanation the effect of Fermi
energy level on the absorption intensity of the individual upper and lower metamaterials.
Consequently, due to the impedance matching between the free space and the proposed
absorber, the upper and lower metamaterials combined effectively, which contributes to
the stable high absorptance and the wide operating bandwidth, as depicted in Figure 2 by
the solid curves.
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The distributions of the amplitude of electric field |E| and the z-component of electric
field Ez for the individual upper metamaterials are depicted in Figure 5a,b, respectively, at
the resonance frequency of 0.78 THz with Ef1 = 0.3 eV. The amplitude of |E| concentrates
mainly around the ends and edges of the horizontal branches for the cross-shaped graphene.
The distribution of Ez shows that opposite charges accumulate at both ends of the horizontal
branches, which indicates a typical electric dipole resonance. Figure 5c describes the
distributions of magnetic field |H| as well as the surface current (black arrows) for the
individual lower metamaterial at the resonance frequency 0.85 THz with Ef2 set as 0.7 eV.
The directions of the currents of the unit cell without the bottom gold block are marked
by black arrows, while the magnetic field is concentrated below the STO layer, which
demonstrates that there are induced currents on the gold layer. Then, a strong magnetic
resonance is caused by these parallel surface currents with opposite direction. Therefore, the
resonance absorptions of the individual upper and lower metamaterials can be attributed
to the electric dipole resonance and the magnetic resonance, respectively.
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The amplitude distributions of electric field and magnetic field at the resonance fre-
quencies under normal TM polarized incidence are shown in Figure 6 to further investigate
the merging of its upper and lower layer of metamaterials. When Ef1 is 0.7 eV and Ef2 is
0.8 eV, the first resonance frequency is 0.88 THz, and the second resonance frequency is
1.06 THz. The electric dipole resonance and the magnetic resonance coexist to originate the
broadband absorption. For the cross-shaped graphene, the electric dipole resonance at the
second resonance is much stronger than that at the first resonance, as shown in Figure 6a,b.
Figure 6c,d shows that the magnetic resonance below the STO layer at 0.88 THz is more
concentrated than that at 1.06 THz. Consequently, the upper metamaterial contributes
more to the broadband absorbing performance at the second resonance, while the lower
metamaterial contributes more to the broadband absorption at the first resonance.
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To comprehend the influence of the geometrical parameters on the broadband absorb-
ing properties, the absorption spectra that vary with various parameters are simulated.
The absorption spectra that vary with the thickness hd of the Topas layer between STO and
the metallic ground is shown in Figure 7a. The location of the first resonance clearly shows
a red-shift and the bandwidth grows wider gradually, which can be attributed to the fact
that the increasing hd will affect the magnetic resonance below the STO layer. It is evident
that the red shift of the second resonance frequency changes slightly and the bandwidth
remains almost unchanged with the increase of the insulating spacer hg because the upper
metamaterial contributes more to the broadband absorption at the second resonance, as
shown in Figure 7b. When the thickness of the STO material layer hSTO varies from 1.7 µm
to 2.1 µm, the first absorption resonance has red shift, which results in the increment of
bandwidth, as shown in Figure 7c. The absorption spectra of the branch length ls increasing
from 34 µm to 38 µm is shown in Figure 7d. It is obvious that the second resonance has
red shift with the increment of ls. That is because the resonance frequency varies inversely
to the effective length of the patterned structure on the basis of the LC circuit model.
Figure 7e shows that the bandwidth with an absorptance over 90% decreases slightly when
the width of the graphene strip wr changes from 31 µm to 53 µm. The absorption spectra
show quite a change when the temperature is lower than 375 K, which can be attributed to
the influence of temperature on the conductivity of the STO material, as the impedance
matching is destroyed with the drop in temperature, as shown in Figure 7f.

Furthermore, Figure 8a shows that the first absorption peak decreases with the decline
of Ef2, while the location of the absorption peak remains unchanged. The Fermi energy
level of the graphene strips only influences the flatness of the broadband absorption, and
the impedance matching theory can be used to explained this phenomenon. The intensity
of the absorption can reach the maximum when the relative impedance is 1. Figure 8b,c
denotes the real and imaginary parts of the relative impedance Zr with Ef1 changing in
the range of 0.4–0.8 eV. When Ef2 is set as 0.8 eV, the real part of Zr approaches 1, and
the imaginary part of Zr approaches 0, respectively, in the frequency range from 0.78 to
1.16 THz, which indicates that the impedance matching of the proposed absorber and the
free space, i.e., the maximum absorption intensity, can be achieved. The range of matching
frequencies falls as the Fermi energy level decreases. The absorption bandwidth reaches
the minimum as the Fermi energy level decreases to 0.4 eV.

In addition, the broadband absorber can be transformed into a narrowband absorber
when the Ef1 is fixed as zero, as depicted in Figure 9. Attributed to the thermal control
relative permittivity of STO, the center frequency is clearly blue-shifted from 0.58 THz to
0.88 THz when the external temperature rises from 200 to 400 K with Ef2 = 0.8 eV, as shown
by the dashed curves in Figure 9. The absorptance can be further improved through tuning
Ef2. The peak absorption intensity is over 96% at various temperatures with Ef2 = 0.3 eV,
as shown by the solid curves. Thus, a perfect narrowband absorber with a dynamically
tunable center frequency can be achieved.
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Figure 7. Absorption spectra varying with (a) the thickness hd of the spacer between the STO and the metallic ground,
(b) the thickness hg of the spacer between the cross-shaped graphene metamaterial and the metallic ground, (c) the thickness
hSTO of STO, (d) the length of the graphene cross ls, (e) the width of the graphene strip wr, and (f) the temperature of STO.
An absorptance of 90% is indicated by the white contour curves.
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Figure 8. (a) The absorption spectra with various Fermi energy level of the graphene strips. (b) Real part and (c) imaginary
part of the relative impedance Zr with various Fermi energy levels of the cross-shaped graphene.

The effects of oblique incidence under both transverse electric (TE) and transverse
magnetic (TM) waves on the absorption performance of the bifunctional absorber are finally
investigated. The refraction angle θm in layer m with the incident angle θi can be expressed
as θm = arcsin(n1sin(θi)/nm) based on Snell’s law, where n1 and nm are the refractive index
of the first and m-th layers. It is noteworthy that the refraction angle is a complex value
when the m-th medium is a lossy material, which reflects that the refracted wave in the lossy
material is a non-uniform plane wave [55]. Therefore, the overall reflection of the proposed
absorber is then the superposition of the multiple reflections at different interfaces.
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Figure 9. The absorption spectrum for a narrowband absorber with various temperatures. The
dashed curves indicate the absorptance at Ef2 = 0.8 eV, and the solid curves illustrate the absorptance
at Ef2 = 0.3 eV.

As shown in Figure 10a, when the bifunctional absorber acts as a broadband absorber,
for the TE wave, more than 80% absorptance can be achieved for the incidence angle is up to
55◦, and the center operating frequency remains unchanged. The closer the incidence angle
to 90◦, the smaller the absorptance. For TM polarization, the absorptance remains over 80%
for the incidence angle up to 80◦, as depicted in Figure 10b. When the incidence angle is
over 40◦, the center frequency shows blue shift clearly. The influence on absorption spectra
is attributed to the change in zero-reflection condition under various incidence angles.
For the narrowband absorption, the temperature is fixed at 400 K, and Ef2 is set as 0.3 eV.
As shown in Figure 10c,d, the absorptance remains above 80% with the incidence angle
smaller than 80◦ for both TE and TM waves. With the increase in the incidence angle, the
center frequency remains unchanged for the TE wave, while a clear blue shift is observed
for TM polarization, which is consistent with the results in Figure 10a,b. Consequently, the
bifunctional absorber is not sensitive to the polarization for wide oblique incidence angles.
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Figure 10. The spectrum of the broadband and narrowband absorption with various incidence angles for the TE wave
(a,c) and the TM wave (b,d), respectively.
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4. Conclusions

In summary, a bifunctional absorber based on a graphene metamaterial and STO
is designed with dynamically tunable and switchable properties. Compared with some
other’s previous work, the bifunctional absorber presents excellent tunable ability. When
Ef1 varies from 0.4 eV to 0.8 eV, a broadband absorption is achieved, and its bandwidth
varies from 0.12 THz to 0.38 THz with the intensity exceeding 90%. The results indicate that
the broadband absorption benefits from the combination of graphene metamaterial and
STO material. For the broadband absorption, the rate of change of the bandwidth is 216.6%,
and that of the center frequency is 21%. The broadband absorber can be transformed into
a narrowband absorber, when Ef1 is set as 0. The center frequency of the narrowband
absorption can be adjusted from 0.56 THz to 0.84 THz by controlling the temperature of
STO. The peak intensity of the narrowband absorption is approximately 100% when Ef2
is set as 0.3 eV, and the rate of change of the center frequency is 50%. The bifunctional
absorber is not sensitive to polarization for large incidence angles. Hence, the proposed
absorber may be suitable for many potential applications, for example sensing, optical
cloaking, and some other switchable devices.
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