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Abstract: Due to their simplicity of synthesis, stability, and functionalization, low toxicity, and
ease of detection, gold nanoparticles (AuNPs) are a natural choice for biomedical applications.
AuNPs’ unique optoelectronic features have subsequently been investigated and used in high-tech
applications such as organic photovoltaics, sensory probes, therapeutic agents, the administration
of drugs in biological and medical applications, electronic devices, catalysis, etc. Researchers have
demonstrated the biosynthesis of AuNPs using plants. The present study evaluates 109 plant species
used in the traditional medicine of Middle East countries as new sources of AuNPs in a wide variety
of laboratory environments. In this study, dried samples of bark, bulb, flower, fruit, gum, leaf,
petiole, rhizome, root, seed, stamen, and above-ground parts were evaluated in water extracts. About
117 plant parts were screened from 109 species in 54 plant families, with 102 extracts demonstrating
a bioreduction of Au3+ to Au0, revealing 37 new plant species in this regard. The color change of
biosynthesized AuNPs to gray, violet, or red was confirmed by UV-Visible spectroscopy, TEM, FSEM,
DLS, and EDAX of six plants. In this study, AuNPs of various sizes were measured from 27 to 107 nm.
This study also includes an evaluation of the potency of traditional East Asian medicinal plants
used in this biosynthesis of AuNPs. An environmentally safe procedure such as this could act as a
foundation for cosmetic industries whose quality assessment systems give a high priority to non-
chemically synthesized products. It is crucial that future optimizations are adequately documented
to scale up the described process.

Keywords: gold nanoparticle; green synthesis; medicinal plant; folkloric medicine; water extract;
Middle East

1. Introduction

As defined by the European Commission (EC), nanomaterials are particles that have
at least 50% of their number, which is measured in one or more external dimensions, with
a size distribution of less than 100 nm. In other words, nanomaterials are particles of
one or more dimensions of 1–100 nm [1]. Green nano-biotechnology aims to construct
nanoparticles (NPs) in environmentally safe methods. This approach has attracted the
interest in researchers in many related fields such as medicine, biology, and microbiol-
ogy [2–4]. Among NPs, metallic NPs (MNPs) such as Au, Ag, Zn, Cu, etc. have been widely
studied by many researchers for their phenomenal properties [5–8]. Gold nanoparticles
(AuNPs), among these, are an exciting topic to research because of their stability and
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biocompatibility, oxidation resistance [9], Surface Plasmon Resonance (SPR) [10,11], low
toxic activities [12], and application in medicine and agriculture in drug and agrochemical
delivery systems [13,14], sensory probes [15], and diagnostic tools [16,17]. The SPR is a
unique behavior in AuNPs that has made them valuable in the medical and biological
sciences such as in cancer nanotherapy [18], X-ray Computed Tomography (CT), and
magnetic resonance imaging (MRI) [19]. In addition, the electrokinetic behavior of the
AuNPs has caused it to be a valuable formulation for cosmetic purposes [20]. Numerous
techniques, including chemical, physical, and biological, are used to produce NPs [21].
The chemical and physical methods have been reported to have adverse environmental
impacts and harmful effects on human health [22]. As a result of the non-safe and detri-
mental consequences of the methods mentioned above, the biosynthesis of NPs by many
biological agents including plant (phytonanotechnology) [23,24], bacteria [25], fungi [26],
and algae [27] as a nontoxic, simple, and cost-effective method is taken into consideration
as greener syntheses [28,29]. By reducing biomolecules found in these organisms, they
convert metal ions into MNPs [30]. The easy availability, cultivability, and possibility
of the large-scale production potential of plants makes them the preferred candidates in
nano field studies [31,32]. Various bioactive molecules found in plants, including proteins,
carbohydrates, organic acids, vitamins, alkaloids, and secondary metabolites have been
reported to act as bioreductive, capping, and stabilizing agents for chloride and nitrate
precursors within the biosynthesis of specific NPs [33,34]. For example, several alkaloids in
Areca catechu such as arecoline, arecaidine, arecolidine, guvacine, guvacoline, isoguvacine,
norarecaidine, and norarecoline belong to the pyridine group and play a prominent role in
this reduction process [35]. All of these bioactive molecules can cause a reduction of Au3+

in the process of biosynthesis of nanoparticles. The extraction of most plant parts, including
leaves, flowers, undergrounds (root), and seeds, can act as regenerative agents [36]. Since
ancient times, medicinal plants in the Middle East countries have been widely used [37].
These plants are crucial resources in folkloric medicine and provide valuable capital for
modern medical science to develop natural drugs; however, investigating medicinal plants
would help discover their hidden and phenomenal potentials [38,39]. Their use in ancient
remedies of diseases [40] and their application to biosynthesize NPs would expand their
bioactivity beyond known boundaries. In such a school of thought, green nanomaterials
may manifest as new natural bioresources to be the platforms in many scopes of nan-
otechnology. In recent years, there has been a rising awareness of the discovery of the
potential of plants as major bioresources for NPs biosynthesis and their application in
phytonanotechnology as AuNPs [41,42]. The biosynthesis of AuNPs via phytonanotech-
nology approaches is supported as an uncomplicated, rapid, and affordable method and is
considered a biocompatible, nontoxic method with a large-scale application [24].

Historically, for the first time, Gardea-Torresdey et al. [43] reported the capability of
plants to produce AuNPs. They used live alfalfa (Medicago sativa) as the reducing agent for
AuNPs biosynthesis. Subsequently, many scientists investigated the ability of plant extracts
for bioreduction AuNPs. These assessments are documented by several reviews [44–47].
In the most recent reports, several investigators showed the biosynthesis of AuNPs using
Limnophilarugosa [48], Linumusitatissimum [49], Opuntiapycnacantha [42], Nigella sativa [50],
Nothapodytesfoetida [51], Persicariasalicifolia [52], Garcinia kola [53], Citrus aurantifulia [54],
Salvadorapersica [55], and Hibiscus syriacus [56]. Karmous et al. 2020 studied the feasibility
and advantages of plant-based synthesized NPs in the prevention, diagnosis, and therapy
of cancer [57,58]. Interestingly, they revealed the mechanism by which their plant-based
NPs interacted with constituents of cancerous cells. Authors concluded that green NPs
can act as novel tools for prognostic biomarkers in diagnosis of cancer and targeted drug
delivery in tumor cells. They also expressed that biosynthesized NPs either reach the
damaged tumor cells or protect healthy cells via the antioxidative and antitumor agents
found in plants.
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In the present survey, we report 27 medicinal plant species (in 18 families) of the
Middle East to be new bioresources in the biosynthesis of AuNPs. This assessment was
performed using plant water extracts in a simple, green, and cost-effective procedure.
Despite the progressive growth of reports on the introduction of potent plants in the
biosynthesis of AuNPs, there is a wide range of unknown valuable medicinal plants that
have not yet been evaluated for the biosynthesis of AuNPs. To minimize such a gap of
information, we aimed to (1) Screen common medicinal plants, which can mediate the
biosynthesis of AuNPs; (2) Evaluate 117 plant parts from 109 plant species of 54 families
for their ability to reduce Au3+ to Au0; and (3) Perform an instrumental characterization of
six biosynthesized samples of AuNPs by UV-Visible spectroscopy, TEM, FSEM, DLS, and
EDAX.

2. Materials and Methods
2.1. Collection of Plant Materials and Preparation of Water Extracts

The 117 healthy and dried plant parts of 109 species were obtained from the Laboratory
of Plant Systematics, College of Agriculture, Shahid Bahonar University of Kerman, Iran to
prepare herbal water extracts. The plant samples were pulverized using a mortar and pestle.
Each plant powder was soaked in distilled water at a 1:100 ratio (w/v), shaken continuously
for 5 min, and kept at ambient temperature. After 12 h, plant water extracts were filtered
through Whatman filter paper No. 1. For more clarity, filtrates were centrifuged using
a low-speed bench centrifuge at 5000 rpm for 20 min. The supernatant samples were
collected and refrigerated before use.

2.2. Biosynthesis of AuNPs

The biosynthesis of AuNPs was performed according to Guo et al. [59]. Tetrachloroau-
ric acid (HAuCl4) was purchased from Sigma-Aldrich (Saint Louis, Missouri, USA).
A 0.1 M solution of AuNPs was prepared in deionized water (DW). For the reduction
of Au3+ ions to Au0, the water extracts were used as regenerative agents. The purified
plant extracts were mixed with 2 mL of 0.1% HAuCl4 solution to produce Au3+ ions con-
centrations of 0.05 M, and the solution was incubated overnight at ambient temperature.
A continuous shaking of the tubes was performed during this time in order to speed up
biosynthesis and prevent aggregation. A control treatment consisted of mixing 2 mL of
each water plant extract with 2 mL of deionized water and treating as described above. A
biosynthesis of AuNPs was examined 20–24 h after the mixtures were formulated.

2.3. Instrumentation Analyses of AuNPs
2.3.1. Visual Color Grading

The first indicator for the biosynthesis of NPs is the color change of the mixture
solutions [60]. In the process of biosynthesis of AuNPs, the regeneration of the Au3+ to Au0

causes a color change from yellow or colorless to gray, violet, or red. The color changes of
reaction mixtures occur following the collective oscillations of electrons on the surface of
AuNPs [61]. In order to rank each sample according to the degree of color change, colors
were compared to a control and rated from 0 to 4, which indicates no, slight, moderate,
intense, and very drastic color changes, respectively.

2.3.2. Selected Samples for Instrumental Analysis

Six plant samples were selected for further laboratory testing from vast samples
that indicated color changes. The selected criteria included red to violet color intensity,
better clarity and least turbidity, minimum sedimentation, and low aggregation. The
selected plants include Rosa damascena (Rosaceae), Juglans regia (Juglandaceae), Urticadioica
(Urticaceae), Areca catechu (Arecaceae), Caccinia macranthera (Boraginaceae), and Anethum
graveolens (Apiaceae).
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2.3.3. UV-Visible Spectroscopy

The UV-visible spectroscopic analysis can verify the bioreduction of Au3+ to Au0

accurately [23]. An AuNP’s absorbance spectrum ranges from 350 to 600 nm, which
is determined by its morphological properties, distribution, and optical properties [61].
This experiment involved analyzing selected extracts at room temperature with a UV-Vis
spectrophotometer (Varian Cary 50 Bio UV/Visible Spectrophotometer). A blank was
prepared in all samples using water extracts of relevant plants without Au ions.

2.3.4. TEM Analyses

To understand the morphology of the biosynthesized colloidal AuNPs, transmission
electron microscopy (TEM) was conducted using an LEO 912 AB TEM operating at an
accelerating voltage of 30 to 100 kV. Each sample was diluted with deionized water prior
to testing. Then, a drop of each was applied to the carbon-coated copper grids. After 2 min,
the excess of each solution sample was removed by absorbing it to the edge of a filter paper
and kept for air drying. For each sample, several electron micrographs were taken.

2.3.5. FSEM Analyses

Field emission scanning electron microscopy (FSEM) was adapted to facilitate the
study of the topography and geometry of AuNPs. FSEM analysis is a standard method
for the surface and morphological characterization of NPs [62]. Biosynthesized AuNPs
were evaluated by an FSEM (FESEM TESCAN MIRA 3, Czech), and appropriate electron
micrographs were prepared for all six samples. To prepare the specimens for imaging, a
small quantity of each colloidal AuNPs was deposited on separate glass coverslips and
allowed to dry at the ambient temperature. Then, coverslips were mounted on aluminum
sputters and were examined by FSEM. Several FESEM electron micrographs were taken
for each sample. Applied magnification and voltage were implanted on the corresponding
electron micrographs.

2.3.6. DLS Analyses

Dynamic light scattering (DLS) is a precise, standardized technique for investigating
size in NPs. It provides insight into information on the means of particle sizes and particle
size distribution [63]. A DLS analyzer (HORIBA SZ-100, HORIBA, Japan) was applied to
measure the size of biosynthesized AuNPs for all six samples. In addition to particle size
distribution, DLS provides insight into the synthesized nanoparticles’ polydispersity index
value (PI). PI is a dimensionless index that exhibits the uniformity or non-uniformity of the
NPs ranging from 0 to 1. Values greater than 0.7 indicate a broad particle size distribution
and their high polydispersity, while values less than 0.05 indicate the high monodispersity
of NPs [64,65].

2.3.7. EDAX Analyses

Energy-dispersive X-ray analysis (EDAX) is a practical method for detecting the ma-
terials’ spectra. This technique is a key analysis in nano-based research to confirm the
presence of the relevant element [66]. EDAX detects the elements based on character-
istic emitted X-rays by the sample atoms via the incident beam electrons [67]. In this
regard, EDAX elemental analysis of six biosynthesized AuNPs was performed using a field
emission scanning electron microscope (FESEM TESCAN MIRA 3, Czech).

3. Results
3.1. Screened Plants

Relevant information for the evaluated medicinal plants, including their scientific,
family names, voucher numbers, and parts of assayed plants are presented in Table S1. Fur-
thermore, the resultant colors of reaction mixtures and the color intensity of biosynthesized
AuNPs of the tested plants have been documented for each specimen. Based on visual
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analyses, the color intensity of reaction mixtures was rated in four scores (from 0 to 4),
which represent no, slight, moderate, intense, and very intense color changes, respectively.

3.2. Instrumentation Analyses of AuNPs
3.2.1. Visual Color Grading

Visual color grading was performed by comparing biosynthesized AuNPs samples
with blanks (plant extracts without Au3+). The sample plants that resulted in the biosyn-
thesis of the AuNPs are presented in Figure S1. The color change due to the reduction of
Au3+ to Au0 includes spectra of no color, pale-yellow, gray, violet, and red.

3.2.2. UV Visible Spectroscopy

UV-Vis spectra indicated preliminary confirmation of biosynthesized AuNPs. The
sharp peaks were observed at 525–545 nm. A peak of absorption was observed for the six
AuNPs related to bioactive samples (Figure 1), whereas there was none for the blanks.
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3.2.3. TEM Analyses

TEM analysis confirmed the presence of AuNPs. As illustrated by the digital elec-
tron micrograph analysis of TEM images of six biosynthesized AuNPs via six medicinal
bioactive plants, AuNPs resembled amorphous shapes (Figure 2).

3.2.4. FSEM Analyses

FSEM analysis images confirmed the formation of colloidal AuNPs. The SEM electron
micrograph images of six AuNPs biosynthesized by six water extracts of medicinal plants
are indicated in Figure 3.
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3.2.5. Particle Size Distribution

Particle size distribution histograms of the AuNPs were determined from FSEM
electron micrographs with the Sigma Scan Pro software (SPSS Inc., Version 4.01.003). In
the present study, the average particle size range of biosynthesized AuNPs is shown in
Figure 4.

Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 3. Scanning electron micrographs of biosynthesized AuNPs by six bioactive medicinal plant extracts. Each image 
was presented for its related sample. (a–f) indicate SEM images mediated by water extract of Rosa damascena, Juglansregia, 
Caccinia macranthera, Urticadioica, Areca catechu, and Anethum graveolens, respectively. 

3.2.5. Particle Size Distribution 
Particle size distribution histograms of the AuNPs were determined from FSEM elec-

tron micrographs with the Sigma Scan Pro software (SPSS Inc., Version 4.01.003). In the 
present study, the average particle size range of biosynthesized AuNPs is shown in Figure 
4. 

 
Figure 4. Particle size distribution histograms of the biosynthesized AuNPs via six aqueous extracts of medicinal plants 
used in folkloric medicine in the Middle East. Each image was presented for its related sample. (af) indicated the particle 
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used in folkloric medicine in the Middle East. Each image was presented for its related sample. (a–f) indicated the particle
size distribution of Rosa damascena, Juglansregia, Urticadioica, Areca catechu, Caccinia macranthera, and Anethum graveolens,
respectively.

3.2.6. DLS Analyses

The DLS results of analyzed samples revealed that the diameters of distribution of
particles sizes are in the range of 27.2 to 107.6 nm (Figure 5). However, the water layer
surrounding NPs results in the detection of particles in a larger size [68,69]. Of the six sam-
ples analyzed, the smallest particle size belonged to Juglansregia and the largest belonged
to Urticadioica with the average size of ≈27 and ≈107 nm, respectively. Additionally, PI
values indicate acceptance dispersity (less than 0.7) for the samples [64].
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3.2.7. EDAX Analyses

Biosynthesized samples were confirmed to contain Au elements through EDAX analy-
ses (Figure 6). Each sample is represented in a table on the related diagram indicating its
detected elements. Note that some of the elements that occur in plant extracts are derived
from other molecules.
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and Anethum graveolens respectively.
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3.2.8. New Bioactive Plants

Among the 109 species tested, 27 species are described for the first time according to
literature surveys, as shown in Table 1.

Table 1. Newly identified plant species for the synthesis of AuNPs used in folkloric medicine.

No. Scientific Name Family VN 1 PP 2

1 Pistacialentiscus Anacardiaceae ANAC120 Gu
2 Heracleumpersicum Apiaceae APIA43 Fr
3 Artemisia cina Asteraceae ASTE18 Se
4 Pyrethrum roseum Asteraceae ASTE60 Fr
5 Echiumamoenum Boraginaceae BORA23 Fl
6 Cacciniamacranthera Boraginaceae CACC64 Le
7 Nasturtium officinalis Brassicaceae BRAS49 Ab
8 Lepidiumsativum Brassicaceae BRAS66 Se
9 Eugenia caryophyllata Caryophyllaceae CARY47 Fl

10 Fraxinus excelsior Fraxinaceae FRAX111 Fr
11 Erodium sp. Geraniaceae GERA3 Ab
12 Teucriumpolium Lamiaceae LAMI24 Ab
13 Astragalusadscendens Leguminosae LEGU103 Gu
14 Astragalus fasciculifolius Leguminosae LEGU108 Gu
15 Allium schoenoprasum Liliaceae LILI92 Se
16 Allium stipitatum Liliaceae LILI8 Bu
17 Allium schoenoprasum Liliaceae LILI85 Le
18 Sesamum indicum Pedaliaceae PEDA37 Se
19 Oryza sativa Poaceae POAC82 Se
20 Rheum ribes Polygonaceae POLY65 Le
21 Rumexalpinus Polygonaceae POLY76 Fr
22 Rheum palmatum Polygonaceae POLY114 Rh
23 Ranunculus sp. Ranunculaceae RANU63 Ab
24 Cydoniaoblonga Rosaceae ROSA11 Fr
25 Amygdaluscommunis Rosaceae ROSA94 Se
26 Prunuscerasusavium Rosaceae ROSA104 Fs
27 RubiaTinctorum Rubiaceae RUBI51 Fr
28 Valerianaofficinalis Valerianaceae VALE20 Ab

1 VN: Voucher number of plants stored in Laboratory of Plant Systematic, College of Agriculture, Shahid Bahonar
University of Kerman, Iran; 2 PP: Part plants used for biosynthesis of AuNPs (Ab: above-ground parts, Ba: bark,
Bu: bud, Fl: flower, Fr: fruit, Fs: fruit stalk, Gl: glumes, Le: leaf, Pe: petioles, Rh: rhizome, Ro: root, Se: seeds, Sm:
flower stamen and Wh: whole plant).

4. Discussion

Nano-based science, nanotechnology, is a rapidly growing interdisciplinary field that
has attracted the attention of numerous scientific disciplines because of its widespread use
in diverse areas.

The synthesis of AuNPs is achieved through chemical, physical, and biological ap-
proaches. High energy demand, high cost, the difficulty of processing, and the use of toxic
reagents have led to fundamental limitations in non-biological methods [70]. In contrast,
the high speed, cost-effectiveness, and environmental compatibility of biological methods
have led to greater acceptance of these methods. In addition, in biological methods, the
bioreagents by capping the NPs play a central role in stabilization and non-aggregation [71].
Among these, phytonanotechnology, which is based on using plants as the regenerative
agents for the biosynthesis of AuNPs, is the faster, easier, and cheaper technique compared
with the biosynthesis of AuNPs using other bioresources such as bacteria, fungi, and
algae [72]. In this context, medicinal plants play a valuable investment role due to their
bioactive compounds [73]. Recent works have documented the phytochemical importance
of medicinal plants and their bioactive compounds [74–77]. The biological characteristics
of medicinal plants play a pivotal role in the characterization of NPs [78,79]. The medicinal
plants have bioactive molecules for use in folkloric medicine and are considered an invest-
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ment for the biosynthesis of MNPs, such as AuNPs. For instance, the Hygrophila auriculata
plant as a medicinal plant in Asia and Africa has been shown to have bioactivity in the
regeneration of Au3+ to Au0 [80]. Uzma et al. [81] biosynthesized AuNPs using Commiphora
wightii and proved their anticancer effect on breast cancer. Similarly, Thymus vulgaris was
an efficient plant source to produce AuNPs [82]. We would like to express that special
attention must be devoted to the choice of plant species for the toxic phytocompounds
present in some plants, as we noticed the presence of cobalt with Rosa damascena, iron with
Juglans regia, and calcium with Anethum graveolens, Juglans regia, and Caccinia macranthera
(Figure 6). However, special attention should be paid to the increase in metal or release
of trace elements from metal oxide and metal biosynthesized NPs, which can result in
elevated oxidative stress that is related to a higher risk of cancer onset. In other words, the
selection of the plant species, organs, and extracts is very crucial, since some plants can be
toxic to healthy cells. There are several reports on the beneficial action of AuNPs to treat
cancers [83–85]. An interesting criterion of green NPs is that their surfaces selectively ad-
sorb biomolecules while coming into contact with complex biological fluids, progressively
forming a halo circumference or corona that reciprocally interacts with biological systems.
These circumference layers bear additional efficacy over nude biological NPs [86]. Hence,
biological NPs are more efficient due to the association of bioactive ingredients on the sur-
face of biosynthesized NPs from the biological origins, such as micro-organisms and plants.
Especially in folkloric medicinal plants, there exist vast metabolites with pharmacological
activities that are believed to bind to the biosynthesized NPs, exhibiting further benefit
by promoting the efficacies of the NPs [24]. At present, in spite of advancements and the
curative action of AuNPs, implemented nanomaterial cannot be eliminated from patients’
blood. Shahidi Bonjar in 2013 [87] made an experimental recommendation by describing a
“Nanogold detoxifying machine” for the filtration of idle AuNPs from the blood of treated
cancer patients. The device similar to a “hemodialysis machine” would help to increase
safety in AuNPs therapy of some cancers and prevent the accumulation of AuNPs in
non-target tissues or organs after therapy. It has been reported that the main mechanism
of biosynthesis of NPs by plants can be related to the reduction of ions by biomolecules
such as organic acids, proteins, amino acids, vitamins, and secondary metabolites [24].
Through capping, these reducing agents enhance the colloidal stability of NPs and prevent
aggregation [88].

An approach using phytonanotechnology to synthesize AuNPs led us to understand
the bioactivity of many medicinal plants. This approach is fast, easy, environmentally
friendly, and inexpensive. Through this biosynthetic process, we screened 117 plant parts
of 109 species of medicinal plants for their capabilities in the biosynthesis of AuNPs.

It was determined that among the 117 plants used in folkloric medicine of Middle
East countries, 102 plants were able to produce AuNPs. Twenty-seven plant species were
reported as new bioresources in the biosynthesis of AuNPs. However, no inference can be
drawn about these plants’ biological activity and curative behavior in traditional medicine.
In the present research, 11 species of 12 Lamiaceae (11 out of 12), 8 Leguminosae (8 out of
9), 8 Asteraceae (8 out of 8), and 7 Apiaceae (7 out of 8) showed the most bioactivity in the
biosynthesis of AuNPs.

According to our results, medicinal plants can be considered biological candidates
for future applications in nanomaterials’ biosynthesis and more agricultural and medical
applications. We should conduct more research to get a better understanding of nanoma-
terials’ environmental effects in order to accomplish this goal. Indeed, the assessment of
antifungal and antibacterial activities of AuNPs against plant and human pathogens would
further add to the knowledge on the efficiency of AuNPs in different sciences and the
bioactivity of medicinal plants in biological processes. Evaluation of the therapeutic and
diagnostic effectiveness of these biosynthesized AuNPs can help improve our knowledge
of their future uses.
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5. Conclusions

This study (a): screened 117 medicinal plant parts for the biosynthesis of AuNPs, (b)
ranked plants’ performances according to their bioactivity in related families, (c) found
that 102 plant parts could reduce Au3+ to Au0, (d) noticed 27 plant species are reported for
the first time, and (e) revealed that the most bioactive species belong to Lamiaceae, Legu-
minosae, Asteraceae, and Apiaceae respectively. We believe that their mechanism for bioac-
tivity should be thoroughly investigated. Finally, based on the spectacular achievement
of nanotechnology and wide application of AuNPs in various fields, it can be concluded
that the synthesis of AuNPs in line with phytonanotech goals will be a launching pad for
science in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11082033/s1, Table S1: Screening of medicinal plants used in folkloric medicine of
Middle East countries for bioreduction Au3+ to Au0, Figure S1: Pictorial results of biosynthesis of
colloidal AuNPs by water extracts of 102 medicinal plant parts used in folkloric medicine of Middle
East countries.
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