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Abstract: Two-dimensional CuFeSe2 nanosheets have been successfully obtained via solution-phase
synthesis using a sacrificial template method. The high purity was confirmed by X-ray diffraction and
the two-dimensional morphology was validated by transmission electron microscopy. The intense
absorption in the 400–1400 nm region has been the basis for the CuFeSe2 nanosheets’ photothermal
capabilities testing. The colloidal CuFeSe2 (CFS) nanosheets capped with S2− short ligands (CFS-
S) exhibit excellent biocompatibility in cell culture studies and strong photothermal effects upon
808 nm laser irradiation. The nanosheets were further loaded with the cancer drug doxorubicin and
exposed to laser irradiation, which accelerated the release of doxorubicin, achieving synergy in the
therapeutic effect.
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1. Introduction

CuFeSe2, a ternary chalcogenide in the I–III–VI2 group, features a narrow bandgap of
0.16 eV in bulk [1]. The material has a metallic character at room temperature; however, in
nanoparticle form, it shows a direct optical band gap energy of 0.95 eV, [1] much wider than
the bulk CuFeSe2, and this enables applications in cancer phototherapy, which requires a
near-infrared (NIR) absorber.

Several reports relay that CuFeSe2 nanoparticles are biocompatible and effective as
photothermal agents. CuFeSe2 nanoparticles with a 5 nm diameter reported recently exhibit
good biocompatibility, high photothermal conversion efficiency, and colloidal stability [2].
The deposition of CuFeSe2 nanocrystals in bioactive glass scaffolds (BG-CFS) led to com-
posites with excellent photothermal performance, which ablate bone tumor cells in vitro
and significantly inhibit bone tumor tissue growth in vivo [3]. Lai et al. demonstrated that
the CuFeSe2@diethylenetriaminepenta acetic acid (DTPA)-Gd nanomaterial is adequate for
CT and MRI T1WI/T2WI three-mode imaging, and could be employed as a multimodal
contrast agent [4]. Recently, the unique optoelectronic properties and chemical resilience of
two-dimensional (2D) materials opened new horizons regarding their use in optoelectron-
ics, energy generation and storage, sensing, and biomedical applications, including cancer
phototherapy [5–13]. A 2D morphology is highly desired in phototherapy, since 2D mate-
rials’ increased light absorption enhances their ability to generate heat, while their large
surface area and atomic thickness increase their loading capacity for drugs or biomacro-
molecules [7,14,15]. A high photothermal conversion efficiency and anticancer efficacy
were reported for 70 nm CuFeSe2 nanosheets [16]. Hierarchical assemblies of CuFeSe2
nanosheets, prepared through a cation exchange method, were recently reported [17].

In this study, 2D CuFeSe2 nanosheets have been successfully obtained via solution-
phase synthesis using a sacrificial template method. Synchrotron X-ray characterization and

Nanomaterials 2021, 11, 2008. https://doi.org/10.3390/nano11082008 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-8605-5947
https://orcid.org/0000-0001-9898-7349
https://orcid.org/0000-0002-8931-5601
https://doi.org/10.3390/nano11082008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11082008
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11082008?type=check_update&version=2


Nanomaterials 2021, 11, 2008 2 of 11

Raman spectroscopy show high material purity. The as-synthesized CuFeSe2 nanosheets
were subjected to a ligand exchange process, leading to CuFeSe2 nanosheets capped with
S2− (CFS-S). In vitro toxicity tests on two different cell lines demonstrated the excellent
biocompatibility of the capped-nanosheets. Despite the good photothermal effect, previous
reports utilized polymer-coated CFS nanosheets, which are further functionalized to facili-
tate drug loading [16]. Herein, the CFS-S nanosheets are stand-alone and readily dispersible,
and are thus suitable to be administered directly into tumors. A remarkable decrease in
survival rate for cancer cells was observed when the cells treated with CFS-S nanosheets
were exposed to 808 nm NIR laser irradiation, demonstrating CFS-S’s photothermal effect.
Upon treatment with doxorubicin-loaded CFS-S (CFS-S-DOX), a synergistic therapeutic
effect was measured. Each photothermal therapy study entailed corresponding control
experiments, including cells treated with CFS-S without irradiation, free DOX treatment
control, and CFS-S-DOX cells treated without laser irradiation.

2. Materials and Methods
2.1. Materials

All chemicals used in this work were used as received, without further purification.
Copper(II) chloride dihydrate (CuCl2·2H2O, 99.999, 1-dodecanethiol (1-DDT, ≥98%), Fe(III)
2,4-pentanedionate (Fe(acac)3, 97%), oleylamine (OLA, 70%), and selenium (99%) were
purchased from Sigma-Aldrich (Saint Louis, MI, USA); ACS grade chloroform (99.8%)
and ethanol (99.5%) from VWR International (Radnor, PA, USA); sodium sulfide (Na2S,
anhydrous) and formamide (FA, 99%) from Alfa Aesar (Tewksbury, MA, USA), ACS-
reagent-grade nanopure water from Ricca chemical company (Arlington, TX, USA), and
doxorubicin hydrochloride salt (DOX, >99%) from LC Laboratories (Woburn, MA, USA).
Cells Counting kit-8 (CCK-8) was purchased from GLPBIO Technology Inc (Montclair, CA,
USA). The Gibco Cell Culture Media and F-12K nutrient mixture were bought from Thermo
Fisher (Waltham, MA, USA), and Dulbecco’s phosphate-buffered saline (DPBS) from Lonza
Bioscience (Walkersville, MD, USA). The HeLa cervical cancer cells were purchased from
the Antibody Research Corporation (Saint Charles, MO, USA), and the Green Fluorescence
Protein (GFP)-modified lung cancer cells (A549GFP) from MyBioSource, Inc (San Diego,
CA, USA).

2.2. Preparation of CuFeSe2 Nanosheets

The synthetic pathway involves the formation of templating FeSe2 nanosheets through
a reported procedure [8], followed by the addition in situ of a copper precursor. In a typical
synthesis, copper(II) chloride dihydrate (0.67 mmol, 114 mg) and 5 mL OLA were added
to a 25 mL glass flask to prepare the Cu precursor. Separately, Fe(III) 2,4-pentanedionate
(0.5 mmol, 177 mg) and 10 mL of OLA were loaded into a 100 mL 2-neck round-bottom
quartz flask to obtain the Fe precursor. Se precursor was prepared by combining 1 mmol
selenium (78.96 mg) with 2.5 mL of 1-DDT in 3 mL of OLA. Both Fe and Se precursors
were stirred at room temperature for 30 min under vacuum, while the Cu precursor
was degassed at 100 ◦C for 30 min. The dark-brown Fe precursor was heated to 140 ◦C
under argon atmosphere, followed by the immediate injection of the Se precursor. The
reaction mixture was heated to 220 ◦C and kept at the same temperature for 30 min to
form FeSe2 nanosheets. Afterward, the Cu precursor was rapidly injected into the formed
FeSe2 solution and then held at 220 ◦C for 1 h. The reaction mixture was cooled to room
temperature by removing the heating source. To purify the product, first, OLA (8 mL) and
1-DDT (1 mL) were added to remove residual Se [8]. Second, a mixture of chloroform and
ethanol (V:V, 1:3) was used to wash the CuFeSe2 nanosheets (NSs) product; this step was
repeated three times. The precipitate was dried overnight under vacuum.

2.3. Functionalization of CuFeSe2 NSs with S2− (Ligand Exchange)

In total, 20 mL of CuFeSe2 NS as a chloroform suspension (5 mg/mL) was mixed
with a 20 mL Na2S–formamide solution (10 mg/mL) and stirred until the dark CuFeSe2
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NSs transferred to the formamide phase. The resulting transparent chloroform layer was
removed and the dark CuFeSe2 capped with S2− (CFS-S) was precipitated and washed
three times with 40 mL of ethanol and nanopure water (V:V, 1:1). The final product was
dried under vacuum.

2.4. Characterization

X-ray diffraction (XRD) measurement of the product were performed on a Rigaku
MiniFlex600 (Rigaku, Tokyo, Japan) equipped with Cu Kα radiation (λ = 1.5405 Å). A
WITec alpha 300 Raman spectroscope (WITec, Ulm, Germany) equipped with an Ar laser
source (λ = 532 nm) was used to confirm the structure of the prepared FeSe2 and CuFeSe2
powders. Transmission electron microscopy (TEM) images were obtained on a Thermo
Fisher Talos F200x scanning/transmission electron microscope (S/TEM) (Thermo Fisher
Scientific, Waltham, MA, USA) to investigate the morphology of the product. A field emis-
sion scanning electron microscope assembled with energy dispersive X-ray spectroscopy
(SEM-EDS) (JEOL 6330F, Peabody, MA, USA) was used to determine the morphology and
elemental distribution of the prepared CuFeSe2 nanosheets and CFS-S. The redox states of
elements for the prepared CuFeSe2 nanosheets and CFS-S were determined by X-ray pho-
toelectron spectroscopy (XPS) in a VG Escalab 220i-XL (VG Scientific, Waltham, MA, USA)
equipped with an Al Kα source. The UV–Vis–NIR spectra of CuFeSe2 nanosheets were
collected using a UV-3600 plus spectrophotometer (Shimadzu, Kyoto, Japan). The thermal
stability of the CuFeSe2 nanosheets was determined using a TA Instrument SDT-Q600 (TA
Instruments, New Castle, DE, USA). Dynamic light scattering (DLS, Malvern Panalytical,
Malvern, UK) was used to determine the hydrodynamic diameter, size distribution and
zeta potential of CFS-S and CFS-S-DOX. An 808 nm NIR laser (RLDH808–1200-5, Roithner
Laserthchnik Gmbh, Vienna, Austria) was used for the photothermal therapy study. The
temperature of the solution was recorded with a TH-5 Thermalert Clinical Monitoring
Thermometer (Physitemp Instruments, Clifton, NJ, USA). A heated stage insert (World
Precision Instruments Inc.) was used to hold the cell culture plates at 37 ◦C.

2.5. Photothermal Effect

To explore the photothermal effect of CFS-S, a series of CFS-S aqueous solutions
(250 µL) with concentrations from 2.5 µg/mL to 160 µg/mL were irradiated with an 808 nm
NIR laser with an output power density of 1 W/cm2 for 10 min. The temperature of each
solution was measured by a thermocouple linked to a digital thermometer and recorded
every 10 s. Additionally, a CFS-S aqueous solution with a fixed concentration of 20 µg/mL
was irradiated by an 808 nm NIR laser for 10 min over five on–off cycles to investigate
the photothermal stability of the materials. The photothermal conversion efficiency of the
CFS-S was evaluated using a reported equation (Supplementary Materials) [18,19].

2.6. Drug Loading

The 4 mg CFS-S nanosheets were dispersed into 4 mL nanopure water using probe
sonication, then mixed with the chemotherapy drug doxorubicin (DOX) in different ratios.
The mixture was stirred at room temperature for 24 h and then centrifuged to collect the
precipitates and supernatant. After centrifugation and washing with nanopure water,
the precipitates were dispersed into 4 mL of nanopure water to obtain the CFS-S-DOX
(1 mg/mL) stock solution. Meanwhile, the DOX in the supernatant was investigated by
UV–Vis–NIR spectroscopy to evaluate the amount of unloaded DOX, so as to determine
the optimal ratio of CFS-S to DOX, and the loading efficiency was calculated according to
the literature (SI) [20].

2.7. In Vitro Drug Release

In a typical measurement, 4 mL of CFS-S-DOX aqueous solution (400 µg/mL) was
irradiated with an 808 nm NIR laser (1 W/cm2) for 10 min. Meanwhile, an equal volume of
the 400 µg/mL CFS-S-DOX aqueous solution was held at room temperature without laser
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irradiation. The amount of free DOX in these two solutions was determined by UV-Vis
spectroscopy at intervals of 1 h, 2 h, 4 h, 24 h, and 48 h after irradiating with an NIR laser.

2.8. Cell Culture and Cytotoxicity of CFS-S In Vitro

The in vitro cytotoxicity of CFS-S was assessed using the Cell Counting Kit-8 (CCK-
8), GLPBIO Technology Inc. (Montclair, CA, USA). in HeLa and A549GFP cells. Cells
were seeded into 96 well plates (8000 cells/well) in Ham’s F-12K medium at 37 ◦C and
in a 5% CO2 atmosphere for 24 h. Then, 25 µL of CFS-S aqueous dispersion at different
concentrations (0, 2.5, 5, 10, 20, 40, 80, 160, 200 µg/mL) was added into each well, which
contained 225 µL fresh medium. After an additional 24 h of incubation at 37 ◦C, the culture
CFS-S-containing medium was replaced with 10 µL CCK-8 in 100 µL fresh medium, and
each well absorbance was measured (450 nm) in five replicates for each concentration.

2.9. In Vitro Photothermal Ablation of Cancer Cells

HeLa and A549GFP cells were seeded into 96-well plates (8000 cells/well), followed
by incubation at 37 ◦C for 24 h, and then we replaced the culture medium with a mixture
of 225 µL fresh medium and 25 µL CFS-S or CFS-S-DOX solution at 0, 2.5, 5, 10, 20 and
40 µg/mL. The plate was incubated at 37 ◦C for 2 h to allow the drug solution to mix, and
then subjected to laser treatment for 10 min, followed by an additional 24 h incubation
(37 ◦C). The cell viability was evaluated by the CCK-8 assay. Each treatment was done in
5 replicates.

3. Results and Discussion

FeSe2 nanosheets, prepared through a reported procedure [8], show a diffraction
pattern corresponding to an orthorhombic FeSe2 structure (PDF#: 65-2570, Space group:
Pnnm) (SI, Figure S1a). Raman spectroscopy (Figure S1b) validated the compound’s
identity. The FeSe2 (TEM image, Figure S1c) is ultrathin and exhibits a large lateral size of
700–800 nm.

The CuFeSe2 nanosheets derived from the formed FeSe2 nanosheets have a tetragonal
structure (space group P42c, a = 5.521 Å, c = 11.026 Å) confirmed by XRD (Figure 1a), and
maintain the 2D morphology of the FeSe2 template (Figure 1d). The full XRD pattern of
as-synthesized CuFeSe2 nanosheets in Figure S2 measured by synchrotron X-ray also corre-
sponds to the tetragonal structure of the space group P42c, showing the excellent purity of
the nanosheets. After co-refining the powder diffraction data of the CuFeSe2 collected at
several energies across the Cu and Fe K-edges and a resonant diffraction experiment, we
concluded that the synthesized CuFeSe2 crystal is consistent with a tetragonal structure
with a slight structural disorder and an Fe-rich composition, as shown in Figure 1b and
Table S1. Furthermore, the dominant peak (192.6 cm−1) in the Raman spectrum (Figure 1c)
is consistent with the tetragonal crystal structure of eskebornite CuFeSe2. The STEM-EDS
measurement, as shown in Figure 1e–h, shows the uniform distribution of Cu, Fe, and
Se elements within the CuFeSe2 nanosheets. The TGA plot in Figure S3 shows that the
synthesized CuFeSe2 nanosheets start to decompose at 524 ◦C. The weight loss in the range
of 100–524 ◦C is around 3%, corresponding to the evaporation of the residual moisture and
the organic ligand originating from the solution-phase synthesis.

In this work, the oleylamine orientates to the surface of the CuFeSe2 crystal through the
polar headgroup NH2, and the non-polar alkene chain of oleyamine impedes the dispersion
of CuFeSe2 nanosheets in water [21,22]. As such, an inorganic ion S2− was employed to
replace the oleylamine on the surface of the CuFeSe2 nanosheets via a ligand exchange
process in formamide, resulting in S2--terminated CuFeSe2 nanosheets (CFS-S). Typically,
nanomaterials prepared through colloidal synthesis usually exhibit metal cation enrichment
at their surface, and thus, anionic X-type ligands (-O2CR, -Cl, -SR, etc.) are generally used to
maintain charge neutrality [23–25]. In this work, through colloidal synthesis, the surfaces of
the prepared CuFeSe2 nanosheets are rich with undercoordinated metal cations, providing
numerous electrophilic sites, in turn helping the negatively charged S2− to bind to the
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surfaces via an ion pair [25]. The negative charging of the CuFeSe2 nanosheets after
ligand exchange was confirmed with zeta potential. The CFS-S could be dispersed in polar
solvents such as water, since it is water-dispersible, as shown in Figure 2a. Compared to the
FTIR spectrum (Figure 2b) of the synthesized CuFeSe2 nanosheets (blue line), the spectrum
of the CFS-S nanosheets (red line) does not show characteristic bands at around 2925 cm−1

and 1540–1710 cm−1, which are ascribed to the C–H stretching vibration and N–H bending
band of oleylamine, respectively, indicating the organic ligand was completely removed.
The SEM-EDS analysis of the synthesized CuFeSe2 in Figure S4a demonstrates the uniform
elemental distribution of Cu, Fe, and Se throughout the nanosheets, and the SEM-EDS
map of CFS-S in Figure S4b further proves the presence of the sulfur element in the CFS-S
nanosheets. The elemental composition of the synthesized CuFeSe2 nanosheets and the
S2− terminated CuFeSe2 nanosheets (CFS-S) was further examined using XPS. As shown
in Figure S5, the XPS spectra of both as-synthesized CuFeSe2 nanosheets and the CFS-S
nanosheets exhibit Cu 2p with two peaks at 932.4 eV and 952.3 eV, and Fe 2p with two
peaks at 711.1 eV and 724.8 eV, suggesting the redox states of Cu and Fe elements to be +1
and +3, respectively [26,27]. Structures related to Se 3d and Se 3p can be observed at around
54 eV, 160.2 eV and 165.8 eV, which is in good agreement with the peaks of Se2− [26,28].
The S 2p with a peak at 162.7 eV presented in the XPS spectrum of CFS-S corresponds to S
2p1/2, which is consistent with a valence of −2, proving the presence of S2− in the CFS-S
nanosheets [12], where the content of S2− in CFS-S was evaluated to be around 14.6% in
atomic percentage.
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Figure 1. (a) XRD pattern. (b) Crystal structure. (c) Raman spectrum. (d) TEM images of the synthesized CuFeSe2 nanosheets.
(e–h) STEM-EDS of the synthesized CuFeSe2 nanosheets.

Figure 2c presents the UV–Vis–NIR absorption spectra of the synthesized CuFeSe2
nanosheets and the ligand-exchanged CFS-S. A large absorbance band in the range of
400–1400 nm is observed, which could be attributed to the electronic transitions from
the valence band (VB) to the empty intermediate band (IB), where the IB band is mainly
composed of Fe 3d orbitals [1,29–31]. Furthermore, the extinction coefficient was evaluated
by measuring the absorbance of CFS-S with different concentrations at 808 nm (Figure S6),
where the absorbance linearly increased with concentration. The calculated extinction
coefficient α is 18.38 L g−1 cm−1.

The size of prepared CFS-S was quantified by DLS, and as shown in Figure 2d, the
average hydrodynamic diameter of CFS-S is around 200 nm. The CFS-S aqueous solutions
with different concentrations were irradiated continuously with an 808 NIR laser (1 W/cm2)
for 10 min (Figure 2e). The temperature increments (∆T) increased with the increase in
the CFS-S concentration. For instance, the temperature of the 20 µg/mL CFS-S aqueous
solution could rapidly increase from 20 ◦C to 50 ◦C within 10 min (Figure 2f), a much faster
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rate than pure water. Additionally, there is no noticeable attenuation observed (Figure 2g),
indicating the excellent photostability of CFS-S. Based on previous reports [18,19] and the
in-house-determined temperature–time curve for the 20 µg /mL CFS-S aqueous solution,
the photothermal conversion efficiency (η) of CFS-S was calculated to be 50.84%, as shown
in Figure 2h.
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A commercial chemotherapeutic drug, doxorubicin, was loaded on the surfaces of
CFS-S nanosheets to obtain CFS-S-DOX. DOX was noncovalently loaded onto CFS-S by
simply stirring for 24 h. Several mixed solutions of CFS-S/DOX were prepared toward
maximum loading efficiency, wherein the mass ratios of DOX to CFS-S were 1:1, 1:2, 1:4, 1:8
and 1:16. The amount of DOX grafted on CFS-S nanosheets was estimated by subtracting
the amount of unloaded DOX from the initial mass of DOX; the unloaded amount was
determined from the absorbance of unloaded DOX in the supernatant, using UV–Vis–
NIR spectroscopy. This calculated loading efficiency of DOX is shown in Supplementary
Table S2. The maximum loading efficiency was 48.6% when mixing DOX/CFS-S at a mass
ratio of 1:2. Further loading validation was achieved by UV–Vis spectroscopy and zeta
potential (Figure 3), using the DOX characteristic adsorption band around 500 nm. The
zeta potential dramatically changed from −40.5 mV to 32.2 mV due to DOX loading in the
CFS-S nanosheets. After grafting DOX onto CFS-S nanosheets, the average hydrodynamic
diameter of the resulting CFS-S-DOX increased to around 450 nm, as shown in Figure 3c,
which could be attributed to the aggregation of CFS-S-DOX nanostructures.

The irradiation of CFS-S-DOX(aq) at 808 nm (NIR laser, 10 min) did not cause a change
in the zeta potential value (~32.5 mV for 24–48 h). The DOX release profile (Figure 3d)
shows a change from ~3% with no irradiation to 11% with laser irradiation, within 1 h, and
from 28% to 42% after 24 h, showing the photothermal amplification of DOX release.
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The biocompatibility of the photothermal agent is essential to ensuring minimal
intrinsic toxicity in living cells. A cell viability test (CCK-8 assay) for CFS-S was conducted
on HeLa and A549GFP cells, as shown in Figure 4; more than 80% viability was observed
at concentrations up to 160 µg/mL.
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Figure 4. (a) Viabilities of HeLa cells and (b) A549GFP cells incubated with CFS-S at different concentrations for 24 h.

Optimization experiments showed that increases in laser power density and irradia-
tion time cause cell viability reductions in CFS-S-treated samples, while irradiation alone
maintains 98–100% viability, as shown in Figure S7.

Cell viability assays were conducted for both HeLa and A549GFP cells with various
treatments: CFS-S, DOX, CFS-S with laser irradiation, and CFS-S-DOX with or without laser
irradiation (Figure 5a,b). Irradiation with the NIR 808 nm laser led to a remarkable decrease
in the cell survival rate compared to CFS-S and CFS-S-DOX without irradiation. Based
on the literature, nanoparticles generally enter the cell via the endocytic pathway, which
could be divided into two primary categories, including phagocytosis and pinocytosis.
Phagocytosis encompasses the uptake of large particles with sizes lager than 250 nm, while
pinocytosis is the preferred uptake of small particles with sizes up to 200 nm [16,32–34].
In this study, the prepared CFS-S with an average size of ~200 nm could enter the cell via
pinocytosis; however, the nanoparticles generally must interact with microenvironment
around the cells to form clusters on the surface that lead to an increase of the overall
size. Thus, both the CFS-S and CFS-S-DOX in this work were assumed to enter cells
through phagocytosis. The cell engulfs the CFS-S or CFS-S-DOX nanosheets in the ex-
tracellular matrix via membrane invagination, and then buds off inside the cell to form
endocytic vesicles containing CFS-S or CFS-S-DOX, followed by transporting the vesicles
to specific subcellular compartments [16,32–34]. Nevertheless, it is well known that the
physicochemical properties of nanoparticles, such as size, shape, surface charge, surface
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hydrophobicity/hydrophilicity, and surface functionality, as well as biological factors (such
as the macromolecules in the surroundings) and the cell type, all affect the endocytosis
pathway and intracellular fate [32,34,35]. Therefore, a thorough analysis of the endocytosis
pathway and intracellular fate of CFS-S and CFS-S-DOX needs to be conducted in the
future. Herein, confocal microscopy imaging of A549GFP cells treated with CFS-S-DOX
with laser irradiation was performed to prove the cell uptake of CFS-S-DOX (Figure S8).
The red fluorescence signature of DOX was identified in the cell’s nucleus, indicating the
successful DOX release and efficient uptake of CFS-S-DOX by cells.
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Generally, under NIR laser irradiation, the photothermal agent, CFS-S, generated
localized heat, raising the temperature of its surroundings, which in turn resulted in
cell death due to cell necrosis, apoptosis, and necroptosis at high temperatures (>42 ◦C).
According to published reports, the cell necrosis pathway dominates cell death when
cells experience temperatures above 49 ◦C, while necroptosis and apoptosis are induced at
around 46 ◦C [36,37]. The lower cell survival rate of the CFS-S-DOX-NIR group compared to
CFS-S-NIR could be ascribed to the enhanced cellular uptake, since the strong thermal effect
(>50 ◦C) induced complete cell necrosis, and a mild photothermal effect (~43 ◦C) increases
the fluidity of the cells’ membrane [15]. Finally, the cell viability of HeLa and A549GFP
cells treated with 40 µg/mL of CFS-S-DOX and an 808 nm laser (1 W/cm2) approached
around 46% and 35%, respectively, which is remarkably lower than the survival rate in the
presence of pure DOX, confirming the superior therapeutic efficacy. The ultimate goal of
photothermal therapy (PTT) is using an external IR laser to irradiate specific tumor areas
that are pretreated with nanosheets, in the hope that the CFS-S-DOX nanosheets loaded to
the target tumor sites will provide contribute to the tumor elimination goal.

4. Conclusions

We have developed a facile, scalable method to prepare stand-alone 2D CuFeSe2
nanosheets via the incorporation of Cu2+ cations into FeSe2 template nanosheets. The
purity of eskebornite CuFeSe2 was validated by Raman and XRD, and TEM confirmed
the large lateral dimension of the nanosheets, while TGA and UV–Vis–NIR revealed
that the synthesized CuFeSe2 nanosheets possess relatively high thermal stability and
intense absorption in the range of 400–1400 nm, respectively, rendering them suitable for
photothermal cancer therapy. The ligand exchange led to CuFeSe2 nanosheets capped with
S2− (CFS-S), which possess excellent biocompatibility, further confirming their potential
for biomedical applications. The photothermal therapy with an 808 nm laser using CFS-
S-DOX and CFS-S manifested increases in cancer cell death, compared to laser exposure
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alone, showing a synergistic therapeutic effect. In conclusion, CuFeSe2 nanosheets can be
employed as promising photothermal agents.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11082008/s1, Figure S1: XRD pattern (a, left side) and crystal structure (a, right side),
Raman spectrum (b), and TEM image (c) of the synthesized FeSe2. Figure S2: Synchrotron data
for as-synthesized CuFeSe2 nanosheets. Figure S3: TGA plot of synthesized CuFeSe2 nanosheets.
Figure S4: SEM-EDS map of synthesized CuFeSe2 nanosheets (a) and CFS-S (b). Figure S5: XPS
spectra of (a) as-synthesized CuFeSe2 nanosheets and (b) CFS-S nanosheets. Figure S6: UV-Vis-NIR
absorption spectra of CuFeSe2 solutions in different concentrations (a) and linear fitting curves of
the absorbance at 808 nm (b). Figure S7: (a) Cell survival rate of Hela cells cultured with various
concentrations of CFS-S nanosheets (0, 10, 20 µg/mL) and then exposed to 808 nm laser with different
power density (250 mW/cm2 and 1 W/cm2); (b) Cell survival rate of Hela cells cultured with various
concentrations of CFS-S nanosheets (0 and 10 µg/mL) and then exposed to 808 nm laser (1 W/cm2)
for different time (0, 1, 3, 5, 10 min). Figure S8: Confocal microscope images of A549GFP cells treated
with CFS-S-DOX-NIR (10 µg/mL). Table S1: Crystal structural parameters of as-synthesized CuFeSe2
nanosheets. Table S2: Drug Loading Efficiency of DOX to CFS-S.
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