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Abstract: In this article, the effect on the vibrational and thermal properties of gradually inter-
connected nanoinclusions embedded in an amorphous silicon matrix is studied using molecular
dynamics simulations. The nanoinclusion arrangement ranges from an aligned sphere array to
an interconnected mesh of nanowires. Wave-packet simulations scanning different polarizations
and frequencies reveal that the interconnection of the nanoinclusions at constant volume fraction
induces a strong increase of the mean free path of high frequency phonons, but does not affect the
energy diffusivity. The mean free path and energy diffusivity are then used to estimate the thermal
conductivity, showing an enhancement of the effective thermal conductivity due to the existence of
crystalline structural interconnections. This enhancement is dominated by the ballistic transport of
phonons. Equilibrium molecular dynamics simulations confirm the tendency, although less markedly.
This leads to the observation that coherent energy propagation with a moderate increase of the
thermal conductivity is possible. These findings could be useful for energy harvesting applications,
thermal management or for mechanical information processing.

Keywords: nanoinclusion; ballistic transport

1. Introduction

Many applications in electronics require materials with tailored mechanical, electronic
or thermal properties. To this end, the appropriate element, alloy, phase, crystallinity or
a combination of them can be chosen. Nanostructuration allows a further improvement
of performances. A wide variety of nanocomposites exists, one of the simplest consisting
of nanoinclusions (NIs) of a different phase or material embedded in a host matrix. Crys-
talline NIs in a crystalline matrix are used for many applications, such as thermoelectric
generation [1]. For the same application, crystalline NIs in an amorphous matrix have also
been proposed [2]. This last possibility takes advantage of the low thermal conductivity of
the amorphous matrix while retaining some electronic transport properties of the added
crystal.

However, the NIs and matrix influence each other [3,4], notably their vibrational and
thermal properties. A better understanding of the interaction of the nanoinclusions and
matrix is crucial to further improve the performances of these nanocomposites.

To study the heat dissipation through an amorphous/crystalline nanocomposite, one
should understand both the physics of the amorphous material and that of the crystalline
nanoclusters. The modern understanding of thermal transport in glasses was laid by Allen
and Feldman [5,6]. They introduced an intermediary transport regime between the local-
ization and the propagation of vibrational modes: the diffusive regime. They established a
distinction between propagative and non-propagative modes. In the former, the phonon
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gas model can be applied, but not in the latter, due to strong scattering. However, some non-
propagative modes still contribute to the thermal conductivity through energy diffusion.
However, the distinction between propagative and diffusive modes is still under discussion;
some authors argue that each mode has to be distinguished individually [5,7] and others
use a frequency limit to discriminate between propagative and diffusive modes [8,9]. The
used frequency limit is often set by the Ioffe–Regel criterion. This criterion relies on the
comparison between the mean free path (MFP) and the wavelength [10]. The sometimes
blurred boundary between propagative and diffusive modes has led other authors to claim
that a clear distinction between the two is not meaningful [11].

The introduction of NIs in a solid matrix modifies the behavior of the material. For
instance, a particle array can act as a low-pass filter, scattering the higher frequencies [4].
Different parameters have different effects: the rigidity contrast impacts the scattering
and eventually pins the energy [12]. A higher surface to volume ratio is known to de-
crease the effective thermal conductivity [13]. Less instinctively, it has been shown in the
same study that the relative crystalline orientation between the particles also modifies the
thermal conductivity of the material, banning or promoting the phonon percolation. The
size distribution of the NIs has also been proposed to reduce the thermal conductivity
of crystal–crystal nanocomposites [14]. Finally, the presence of NIs can cause an antici-
pation of the transition from propagative to diffusive regime in amorphous/crystalline
nanocomposites [15].

Many approaches have been proposed to model the effective properties of multiphase
materials, such as amorphous crystalline nanocomposites [16]. These models generally
use the bulk properties of the materials and can include some variation to take size and
interface effects into consideration. However, at the nanoscale, the intrinsic properties
of the materials can change, for instance with their size [17]. These variations render
the predictions based on the bulk properties difficult; for instance, in the case of orienta-
tion [13], the effective medium approach proposed [18] fails and the microstructure has to
be explicitly considered.

Most of the theoretical studies of NIs’ impact on the vibrational and thermal properties
assume that NIs are spherical [4,12,13,15]. However, NIs can have multiple shapes [19].
The shape influences the properties, for instance, NIs with a high surface to volume ratio
increase the electrical conductivity in polymers [20]. This ratio similarly increases the heat
transport in nanofluids [21]. Moreover, when the mass fraction of NIs is high enough, the
NIs can form a percolating network [22]. For Si NIs in a SiO2 matrix, the percolation can be
controlled and modifies the properties of the material [23,24].

A percolating network of NIs is similar to a nanomesh embedded in an amorphous
matrix. Embedded nanowire (NW) meshes are already used in polymers to increase their
thermal conductivity [25]. More generally, Car et al. showed that it is possible to obtain
single crystalline nanowire meshes (NW-M) [26]. These NW-M, in 2D or 3D, are also
known to have a low thermal conductivity compared to bulk material [27,28]. Finally, a
crystalline/amorphous nanocomposite is comparable to nanocrystalline materials. For
these materials, studies exist about the transmission of phonons, across a single inter-
face [29] or across multiple grain boundaries [30]. The grain size and grain-size distribution
also impact the transport [31].

The purpose of this paper is to gain a better understanding of the effect of the gradual
interconnection of crystalline NIs on thermal conductivity and ballistic transport.

To this end, several structures are studied, using equilibrium molecular dynamics
(EMD) to compute their thermal conductivity and the wave packet propagation method to
distinguish propagative and diffusive contributions. After the description of the configura-
tions used, the different analysis methods are presented. First, the qualitative impact of
the inclusion at different frequencies is considered, and then the vibrational properties of
the different configurations are studied. These properties are used to estimate the thermal
conductivity, via the kinetic theory of gases framework, and then this thermal conductiv-
ity is compared to the results obtained with the EMD methodology. Finally, the impact
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of ballistic transport and NIs’ interconnections on the effective thermal conductivity are
discussed.

2. Materials and Methods
2.1. Studied Configurations

The nanocomposites studied here are composed of crystalline Si (c-Si) NIs embedded
in an amorphous Si (a-Si) matrix. The NIs’ shapes and interconnections are varied to study
their impact on the effective thermal conductivity and on the ballistic transport. The NIs are
gradually interconnected, from an array of spherical NIs to a 3D nanowire mesh. The host
matrix is an amorphous Si cube of side 11.9 nm, containing 84× 103 Si atoms for a density
of 2.32 g cm−3, cut out of a larger sample obtained in a previous study [15]. This length is
adapted to get an integer number of crystalline primitive cells and thus a monocrystal in
case of structural percolation. Periodic boundary conditions are used in all directions.

The nanocomposites are formed in the following manner: the NI shape is first hol-
lowed out of the matrix, and then filled by crystalline Si (c-Si). The added crystal has the
〈100〉 direction aligned with the x axis. In order to avoid the superposition of atoms when
the crystalline phase is added, the holes are larger than the NIs themselves by 0.1 Å. The
created NIs have the same volume, so that all configurations have the same crystalline
fraction (30% of crystalline phase overall). There are 26× 103 crystalline atoms out of
the 84× 103 total; the exact number of atoms varies by a few hundred in the different
configurations. Four shapes of NIs are considered: a sphere (S) with a radius of 5 nm
(see Table 1, second column); a sphere with six conical extremities pointing in the Cartesian
coordinate directions without reaching the edges of the simulation box (see Table 1, third
column) that is referred to as sphere with cones (SC); the third is similar to the former
but has longer conical extremities that reaches the simulation cell boundaries (see Table 1,
fourth column) and is referred to as sphere with truncated cones (STC); a 3D crossing of
three nanowires of 2.5 nm in radius aligned with the Cartesian coordinates (see Table 1,
last column) that is referred to as nanowire mesh (NW-M). The box size was set around
this last NI shape. All NIs are centered in the host matrix. For the SC configuration, the
central sphere has a radius of 4.6 nm. The added cones have an opening angle of 100◦

and a height of 3.0 nm. The base of the cones (circle) correspond to the intersection of the
sphere by a plane 2.9 nm away from the center of the sphere/host a-Si matrix. The apexes
of the cones are 0.3 nm away from the simulation box edges and the bases of the cones
are prolonged until they intersect with the central sphere. This results in a neck of 0.6 nm
between two inclusions. For the STC configuration, the central sphere has a radius of
4.2 nm. The cones have a radius of 1.0 nm at their junction with the box boundary. Their
opening angle is of 67◦ and total height of 3.0 nm. Again, the base of the cones (circle)
correspond to the intersection of the sphere by a plane 2.9 nm away from the center of the
sphere/host a-Si matrix. Thus, only the STC and the NW-M have a continuous crystalline
path across their simulation box; this continuous crystalline path across the structure is
referred to as crystalline structural percolation. This structural percolation has a minimum
diameter of 2 nm for the STC and of 5 nm for the NW-M. Additionally, we study a porous
sample, with spherical pores of the same diameter as the S system (see Table 1 first column),
and a fully amorphous sample is also studied for the sake of comparison. This porous
configuration contains 58× 103 atoms. In Table 1, the different NIs are represented in 3D
in the first row, and in the second row a cross-section at the middle of the corresponding
nanocomposite is depicted. These representations are obtained thanks to OVITO [32].
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Table 1. Freestanding nanoparticles (first row) and a cross-section of NIs embedded in an a-Si matrix
(in dark gray) cross-section (second row). In each case, the NI represents 30% of the volume of
simulation cell.

Pore Sphere SC STC NW-M

After the geometrical construction, the different configurations are annealed in the fol-
lowing manner. The atomic positions are relaxed using a conjugated gradient (CG) method,
then the system is annealed at 100 K for 1 ps and finally a second conjugated gradient force
minimization is performed. (At this point, we should mention that the relaxation induces
small reconfigurations at the surface of the NIs. This interfacial reconfiguration causes
a reduction of up to 3% of the crystalline fraction and can slightly change the surface to
volume ratio of the NIs. To take this into account, when computing the surface to volume
ratio, only the particles recognized as diamond structure and first and second neighbors
by a modified common neighbor analysis [33] are considered.) All modeling and MD
simulations are carried out using the open-source software LAMMPS [34].

We used a modified Stillinger–Weber potential [35] for its more realistic modeling of
the interfaces between c-Si and a-Si in terms of interfacial energy and of atomic energies
inside the two phases [36].

2.2. Equilibrium Molecular Dynamics

The equilibrium molecular dynamics (EMD) method is used to estimate the thermal
conductivity (κ) of the configurations previously described. This method relies on the
fluctuation dissipation theorem linking the decay of the fluctuation of an internal variable
to its response function. Here, the flux auto-correlation integral is linked to the thermal
conductivity using the Green–Kubo formula [37]:

καβ = (VkBT2)−1
∫ ∞

0
〈Jα(0)Jβ(t)〉dt (1)

with α and β the directions, V the volume of the system, kb the Boltzmann constant and
Jβ(t) the thermal flux in the direction β computed at a time t. The thermal flux is computed
by LAMMPS using atomic energy for the convective part and the “group” atomic stresses
for the virial contribution [38]. A discretized version is [39]:

καβ = ∆t(VkBT2)−1
M

∑
m=1

(m− p)−1
p

∑
n=1

Jα(m + n)Jβ(m) (2)

with ∆t the time step between two successive flux computations, M the total number
of time steps and p the number of time step over which the auto-correlation function is
averaged.

Before computing the flux auto-correlation function, the configurations (one inclusion
in the amorphous cube as represented in the bottom row of Table 1) are first heated at 50 K,
using a random initial velocity distribution. After that, the temperature is increased from
50 to 600 K at constant pressure in 0.05 ns, that is 1× 105 time steps. Then, the system



Nanomaterials 2021, 11, 1982 5 of 25

is annealed at 600 K with a Nosé–Hoover thermostat for 0.25 ns (5× 106 time steps) to
ensure better temporal stability. To insure the absence of recrystallization, it is checked
that this annealing does not impact the radial distribution function at 300 K. After this
annealing, the temperature is decreased to 300 K at constant pressure in 0.05 ps and then
equilibrated at 300 K for 2 ns (4× 107 time steps). The flux auto-correlation function is
finally measured during 10 ns (2× 108 time steps) in a constant energy simulation, using a
velocity Verlet integration scheme. For all simulations, a time step of 5× 10−7 ns is used.
For the computation of the auto-correlation, the flux is sampled every 1× 10−5 ns and
the flux auto-correlation decay is computed over 0.04 ns. These simulations are repeated
5 times, with a different initial velocity distribution for each repetition, to get better statistics.
The final value is the mean κ across the simulations and the uncertainty range is defined by
the highest and lowest values of the individual runs.

2.3. Thermal Conductivity from the Kinetic Theory

The thermal conductivity of the different configurations can also be evaluated using
their vibrational properties; for this, the method initially developed by Tlili et al. [15] for
spherical NIs is used. The contribution of the propagative and the diffusive modes are
separated. The propagative contribution (κP) is estimated with the following integral [40]:

κP = ∑
η

∫ νmax

0
mηC(ν, T)v2

η(ν)τη(ν)gη(ν)dν (3)

with C(ν, T) the heat capacity at the temperature T and frequency ν, vη(ν) the group
velocity, τη(ν) the phonon lifetime, gη(ν) the density of state at the frequency ν and mη the
degree of freedom associated to the polarization η (longitudinal or transverse). νmax is the
frequency for which the group velocity is zero or ill-defined.

The contribution of the diffusive part (κD) can be estimated through [41]:

κD =
∫ νmaxD

0
3C(ν, T)g(ν)D(ν)dν (4)

with D(ν) the diffusivity at the frequency ν. νmaxD is the frequency at which the diffusivity
is considered negligible, that is 15 THz for the configurations studied. The heat capacity,
using the Debye model [40], is given as follows:

C(ν, T) =
Nkb
V

(
2πνh̄
kbT

)2
exp ( 2πνh̄

kbT )

(exp ( 2πνh̄
kbT )− 1)2

(5)

with kb the Boltzmann constant, h̄ the Planck constant, V the volume and N the number of
atoms. The methods for the estimation of other components of Equations (3) and (4) are
detailed in Section 2.4.

The global thermal conductivity is taken as the sum of the diffusive and propaga-
tive contributions. Here, as both propagative and diffusive behaviors appear at most
frequencies, both contributions are considered over the whole spectrum.

2.4. Wave Packet Propagation

The wave packet (WP) method is used to study the different aspects of the phononic
contribution to the thermal conductivity [42]. This method enables the estimation of the
MFP and diffusivity in a dual wave/particle description of phonons. These quantities are
estimated thanks to the excitation of different vibrational modes and the measure of their
decay rate according to space and time.

First, the media in which the WP propagates is obtained from the repetition of the
cubes described in Section 2.1. They are repeated 6 times in the x direction. Indeed,
a sufficiently long sample is needed to study the spatial decay of the WP. Before the
excitation, the atomic velocities are set to 0 and the position of the atoms are relaxed using



Nanomaterials 2021, 11, 1982 6 of 25

a CG method to minimize the force so that any movement of the atoms is caused by the
WP. Then, an excitation is applied in a central slice of 0.2 nm between two repetitions of the
initial configuration. This excitation is a Gaussian windowed sinusoidal force impulsion,

f = A sin[2πν(t− 3τ)] exp
[
− (t− 3τ)2

(2τ2)

]
. (6)

The amplitude A is chosen to be sufficiently low to avoid anharmonic effects (here
3.773× 10−4 eV/Å). The Gaussian window width τ balances between spatial extension of
the WP compared to the nanocomposite length, and the resolution in the frequency space,
here 36× 10−4 ns. The studied frequencies range from 1 THz, which is the limit of the
resolution due to the τ used, to 15 THz by increments of 1 THz.

The force f can be applied parallel to the principal dimension, creating longitudinal
(L) waves or perpendicular to it creating transverse (T) waves. Alternatively, the force
can be applied in a random direction, different for each atom, preventing the formation
of a coherent wave. This random excitation with a uniform angle distribution is used to
compute the energy diffusivity [8]. After the impulsion, the kinetic energy as a function of
position over the x axis is recorded every 1× 10−5 ns from the creation of the impulsion
until the wave fronts reach the periodic boundaries. The resolution along x is of 0.72 nm.
Additionally, the position and kinetic energy of every atom are recorded every 3× 10−4 ns,
in order to get a spatially resolved energy distribution. For these simulations, a velocity
Verlet integration scheme was used with a time step of 1× 10−6 ns.

The MFPs of the propagating modes are estimated from the decay rate of the envelope
of the WP as a function of the distance to the excited slice. The envelope of the WP is
defined as the maximum value of the kinetic energy at each point along the propagation
path (see Figure 1). The envelope of a WP traveling ballistically follows a Beer–Lambert
law (exponential decrease) [42]. Due to the presence of the NIs, the envelope may contain
plateaus and sharp decreases; thus, to get a meaningful value of the exponential decay fit,
the portion on which the least square fit is made has to be chosen appropriately. Moreover,
as shown in Figure 1, in the vicinity of the excited slice a diffusive part is visible; this part
is not included in the MFP computation. The propagation takes place in both x positive
and x negative directions, and the final value of the decay rate is the average of the two.

0 5 10 15 20 25 30 35
x (nm) 
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100
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e k
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Figure 1. Representation of the propagation of an 8 THz longitudinal impulsion in the NW-M, with
the energy distribution at different time steps (colored lines), the envelope defined as the maximal
value of the kinetic energy at a given position (black solid line) and the exponential fit used to
compute the MFP (dashed black line).
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At high frequencies, the exponential decay can be ill-defined. This is the case for con-
figurations without NIs above 12 THz for the longitudinal polarization and for frequencies
above 7 THz for the transverse polarization. In those cases, the decay does not follow
an exponential attenuation. The penetration length is then used instead of the MFP. The
penetration length is defined as the distance to the excitation point for which the energy as
been divided by e [43]. This corresponds to the MFP in the case of a perfect exponential
attenuation.

The energy diffusivity is estimated with the method described by Beltukov et al. [8].
This is done after a random force excitation, to cancel the propagative (coherent) part. The
average square distance to the diffusion front for each frequency is computed as:

R2(t) =
1

Etot

N

∑
i=0

x2
i Ei, (7)

with N the number of slices, i the slice index, xi the distance to the excitation and Ei the
kinetic energy of the ith slice. The diffusivity is linked to the time dependence of R2 by the
equation of one-dimensional diffusion,

R2(t) = 2D(ν)t. (8)

In each case, D(ν) is computed through a least square fit of R2(t).

2.5. Lifetime Estimation and Temperature Effect

The computation of the thermal conductivity through Equation (3) relies on the
estimation of the phonon lifetime as a function of frequency and polarization. The lifetime
is considered to be limited by two phenomena: interfaces or defect scattering and the
phonon–phonon scattering. The former is assumed to be geometry dependent only and is
estimated thanks to the MFP and the group velocity:

τ−1
geom =

vη(ν)

Λη(ν)
(9)

with Λη(ν) the MFP at frequency ν.
When the wave-packet propagation simulation takes place at 0 K, the reduction of

lifetime due to anharmonicity is underestimated. To compensate for this, a lifetime due to
phonon–phonon interactions is introduced. This lifetime is estimated with the empirical
relation described in the Callaway model as a function of temperature and frequency [44].

τ−1
ph−ph = P(2πν)2T exp(−CU/T) (10)

with P and CU empirical scattering parameters; the used values are those of crystalline
bulk silicon found in the work of Yang et al. [45].

The global lifetime used in Equation (3) is then estimated using Matthiesen summation
rule:

τ−1 = τ−1
geom + τ−1

ph−ph. (11)

2.6. Group Velocity through the Dynamical Structure Factor

The dynamical structure factor (DSF) is a spatial and temporal Fourier transform of
the atomic displacements used to characterize the vibrational properties of a system. This
is very similar to what can be measured by X-ray or neutrons scattering experiments [46].
It is defined as:

S(q, ω) =
2

NT

∣∣∣∣∣Nat

∑
i

exp(−iq · ri)
∫ τ

0
ui(ri, t)mηexp(iωt)dt

∣∣∣∣∣
2

(12)
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with q the wave vector, ui and ri the displacement and position of the ith atom, mη the
polarization vector (parallel or perpendicular to q), T the temperature and N the total
number of atoms [4].

The resolution of the wave vector is given by 2π/L with L the length of the simulation
box in the direction of the wave vector. The direction of the vector q can be chosen
arbitrarily to match the different direction in the reciprocal lattice space (here that of c-Si).

The atomic trajectories used for the computation of S(q, ω) are obtained in the follow-
ing manner: the sample is heated at 100 K and equilibrated at this temperature for 5× 10−3

ns using a Nosé–Hoover thermostat. After this, the atomic trajectories are recorded during
a 1× 10−2 ns long constant energy simulation. An example of DSF is displayed in Figure 2.

L. T.

Figure 2. Dynamical structure factor computed through Equation (12) for the NW-M in the ΓX direction for the longitudinal
(left) and transverse polarization (right).

From the DSF, the phononic dispersion curves can be obtained. First, the DSF is filtered
through a convolution with a typical energy resolution curve of line-width 1.35 meV (as
suggested by Tlili et al. [15]). Then, for a given wave-vector direction, the dispersion
is estimated from the frequency for which S(q, ω) has the highest value for each wave
vector within the acoustic phonons frequency range. This dispersion is finally fitted to
a sine function allowing the analytical derivation of the group velocity as a function of
frequency. The expression of the group velocity contains an arcsin function; thus, when the
frequency is outside of the definition domain, it becomes ill-defined and is considered nil.
To get the appropriate dispersion, q is chosen as the propagation direction of the WP. This
corresponds to the 〈100〉 crystalline orientation in the direct space or to ΓX in the reciprocal
space. An alternative method to estimate both the dispersion relation and the lifetime from
the DSF is discussed in Appendix A.

2.7. Vibrational Density of States

The vibrational density of states (VDOS) of the different configurations is evaluated
with the Fourier transform of the velocity auto-correlation function (VACF) [47]. Before
computing the VACF, the system is equilibrated at 50 K for 0.1 ns with a Nosé–Hoover
thermostat. The VACF averaged over all the atoms is then recorded over the next 0.1 ns
without thermostat. To obtain the final VDOS, the Fourier transform of the VACF is filtered
using a Savitzky–Golay polynomial filter [48].

Additionally, the VDOS of the amorphous Si was computed using the dynamical
matrix [47] on a smaller sample. The square roots of the eigenvalues of this matrix give
the eigenfrequency of the system. By distinguishing the modes that keep the volume of
the Voronoi cell around each atom and those that do not, the transverse and longitudinal
modes can be distinguished [49]. The VDOS is then approximated by series of Chebychev
polynomials [50]. The dynamical matrix was computed for a cubic cell of side 4 nm with
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periodic boundary conditions containing 3159 atoms and the Voronoi cells determined
thanks to the Voro++ open-source software [51].

3. Results
3.1. Ballisticity through Wave-Packet Simulations

A qualitative analysis of the time evolution of the kinetic energy distribution can give
physical insights into the impact of nanostructuration on energy propagation. Table 2
shows the atomic kinetic energy on a cross-section for the different configurations after a
2 THz impulsion. The impulsion is made in the middle of the system and propagates in
both the negative and positive x directions. The two directions being symmetric, only one
direction (x positive) is represented. The first half of the table corresponds to longitudinal
polarization. The main observation for most configurations is that most of the energy travels
through the sample as a plane wave. The NIs do not strongly affect the propagation at this
frequency: the WP travels through the nanocomposites and the a-Si similarly. However,
there is still some scattering visible through the small spots of high energy concentration
after the passage of the WP. These spots are mainly located in a-Si and at the interfaces
between the NIs and matrix. For the porous configuration, a plane wave is also visible,
although its intensity is strongly reduced by the time it reaches the end of the simulation
box. However, more importantly, most of the energy stays in the center and slowly diffuses
through the sample.

For the transverse waves at the same frequency (displayed in the second half of Table 2),
the dispersion is more marked. The vertical red lines, characteristic of plane waves, can
be distinguished in the first few images, but disappear before reaching the simulation
box boundary. The waves are quickly scattered, even for bulk a-Si. In the configurations
containing NIs, the vertical lines materializing the plane waves are distorted. This distortion
of the wave-front is due to the WP traveling more quickly in the crystal than in the glass
matrix. The porous configuration is again the configuration for which the scattering is the
strongest.

To summarize the low frequency WP propagation, one can observe that the shape of
the NIs has no impact on either the longitudinal or transverse waves. The longitudinal
plane-waves preserve their shape for both interconnected and not interconnected NIs,
and the transverse waves are diffused quickly. The situation is quite different for the
nanoporous amorphous silicon, for which the plane waves disappear rapidly for both
polarizations. We stress the fact that an amorphous/crystalline nanocomposite could be
“transparent” to low frequency longitudinal waves.

The behavior of the nanocomposites after a high frequency impulsion is displayed in
Table 3. The first part contains the evolution of a longitudinal WP at 10 THz or two third of
the maximum frequency for which a group velocity can be defined. It appears that there is
no propagation in the amorphous matrix. For all configurations, the energy slowly spreads
through the amorphous matrix.

However, on top of this diffusion, a propagative behavior limited to the crystal also
appears. This is particularly noticeable in the case of structural percolation. In this case, the
wave packet takes an oval shape and travels through the structural percolation. In the absence
of percolation, the propagative part of the WP is scattered at the first crystalline/amorphous
interface.
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Table 2. Cross-sectional view of a WP going through the different systems after a longitudinal excitation at 2 THz (first part
of the table) or a transverse excitation at the same frequency (second part of the table) every 0.9 ps. The first line represents
the geometry of the cross-sections at the middle of simulation box with inclusions in yellow and matrix in dark grey. The
color scale going from 0 (blue) to 3× 10−9 eV (dark red) gives the atomic kinetic energy.

a-Si Pore Sphere SC STC NW-M

Time x

y

z Longitudinal 2 THz

0.6 ps

1.5 ps

2.4 ps

3.3 ps

4.2 ps

5.1 ps

6.0 ps

Time x

y

z Transverse 2 THz

0.6 ps

1.5 ps

2.4 ps

3.3 ps

4.2 ps

5.1 ps

6.0 ps
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Table 3. Cross-sectional view of a WP going through the different systems after a longitudinal excitation at 10 THz (first
part of the table) or a transverse excitation at 4 THz (second part of the table) every 0.9 ps. The first line represents the
geometry of the cross-sections at the middle of simulation box with inclusions in yellow and matrix in dark grey. The color
scale going from 0 (blue) to 3× 10−9 eV (dark red) gives the atomic kinetic energy.

a-Si Pore Sphere SC STC NW-M

Time x

y

z Longitudinal 10 THz

0.6 ps

1.5 ps

2.4 ps

3.3 ps

4.2 ps

5.1 ps

6.0 ps

Time x

y

z Transverse 4 THz

0.6 ps

1.5 ps

2.4 ps

3.3 ps

4.2 ps

5.1 ps

6.0 ps

For the transverse polarization, the selected frequency is 4 THz. As for the longitudinal
polarization, this frequency corresponds approximately to two third of the frequency for
which the group velocity becomes ill-defined (see Figure 3). The behavior is very similar to
the longitudinal polarization: there is ballistic transport limited to the structural percolation
region and a diffusive transport acting on a slower timescale. This diffusive behavior is
visible close to the border, where the impulsion is made. However, in this case, both the
crystalline NIs and the amorphous matrix participate in diffusive energy transport.

To summarize the WP propagation at high frequencies, there is a clear differentiation
of the crystalline and amorphous phases. There is no propagation in the amorphous phase.
Ballistic propagation through the sample is only possible through the structural percolation.
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We also observe that there is no backscattering or important deviation of energy in the
perpendicular branches of the inclusions.

3.2. Diffusive and Propagative Contributions to the Thermal Conductivity

As described in Section 2, information extracted from the WP simulations can be used
to estimate the thermal conductivity. First, the different components of the propagative
contribution to the thermal conductivity (κP) are displayed in Figure 3. In the top left
panel, the MFPs of the longitudinal WP for the different configurations are displayed as a
function of the frequency. The MFP is estimated through the decay rate of the envelope,
except at frequencies above 12 THz for the amorphous and porous configurations where
the penetration length is used (see Section 2.4). These curves confirm what is visible in
Table 2: the MFP is high at low frequencies for all configurations. Below 5 THz, the MFPs
of the non-porous configuration are very similar. Only the pores decrease the MFPs at
low frequencies. At higher frequencies, the configurations without structural percolation
have a low MFP. This contrasts with the configurations with structural percolation, for
which the MFP rises between 5 and 10 THz and decreases strongly after that. The MFP for
those configurations, around its maximum between 8 and 12 THz, is almost one order of
magnitude higher than without percolation. Moreover, the interconnection degree has an
influence. The MFP is higher for the NW-M than for the STC. It is also noticeable that the
porous and fully amorphous configurations have a small MFP peak around 8 THz; this
peak was already observed for a-Si by Beltukov et al. [43]. It has been associated with the
decreased number of transverse modes available for coupling at this frequency.
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Figure 3. From right to left: First row, longitudinal and transverse mean free path; second row,
longitudinal and transverse group velocity for the studied configurations; third row, longitudinal
and transverse VDOS. Additionally, the group velocity computed for a fully crystalline sample is
displayed with a dotted gray line.
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For the transverse polarization, in the top right panel of Figure 3, the behavior is similar.
Above 7 THz, the MFP is substituted by the penetration length for all the configurations in
order to avoid artifacts caused by a strong scattering. Below this frequency, the decay rate
of the envelope is used (see Section 2.4). As for the longitudinal polarization, the MFPs of
the configurations with structural percolation have a maximum. In this case, the maximum
is within 5–6 THz. Without structural percolation, the MFP decreases as the frequency
increases. Again, similar to the longitudinal polarization, most configurations share a very
similar MFP at 1 THz, the only exception being the porous configuration, which has a
lower MFP.

The group velocities for the longitudinal and transverse polarizations are displayed in
the second row of Figure 3. All configurations share a very similar group velocity. This
is especially true for the longitudinal polarization at low frequencies (below 5 THz). At
higher frequencies, the group velocities for the amorphous and porous configurations are
lower than the group velocities of the others. The v values of the configurations containing
NIs are very similar to those of c-Si. For the transverse polarization, there is also a group
velocity difference, although spanning over the whole spectrum. For this polarization, the
v of the nanocomposites containing NIs is in between those of c-Si and a-Si. Finally, the
transverse polarization has a nil velocity for frequencies higher than 7 THz.

The third row from the top contains the VDOS attributed to the longitudinal and
transverse polarizations for the computation of κP. For this application, the transverse
and longitudinal VDOS are computed via the kernel polynomial method (KPM) [49] on an
a-Si sample. This allows for a good approximation in the 0–12 THz frequency range (see
Appendix B for more detail). On these graphs, it can be noted that the maximum of VDOS
at 10 THz for the longitudinal polarization and at 5 THz for the transverse also correspond
to MFP maxima. Due to the higher lifetime conjunct with a high VDOS, these modes will
contribute significantly to κP.

The different terms contributing to κD are shown in Figure 4. The top panel corre-
sponds to the diffusivity computed with Equation (8). Two main observations can be made:
firstly, all the configurations containing a crystalline phase share a very similar diffusivity
across the whole spectrum; secondly, only the porous configuration induces a reduction
of diffusivity with respect to the amorphous sample. The addition of NIs increases the
diffusivity. Additionally, a small peak at 8 THz is visible for all cases; this peak corresponds
to the end of the transverse phonon dispersion curve and was already observed by Allen
and Feldman [6]. The VDOS computed through the VACF for the different configurations
are displayed in the bottom panel of Figure 4. All the VDOS are very similar up to 14 THz.
At higher frequencies, the configurations containing NIs and the others show differences.
The VDOS of a-Si starts to decrease from 14 THz, while the others continue to increase.
However, this difference has little effect on the κD given that the diffusivity is very low at
those frequencies.
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Figure 4. Diffusivity and VDOS as a function of frequency for the studied configurations.

The different terms displayed in Figures 3 and 4 are used to compute κP and κD. The
results for temperatures between 10 and 400 K are displayed in Figure 5. The first column
contains the transverse and longitudinal propagative contribution. It confirms that the
structural percolation induces a marked increase of the propagative contribution; the STC
and NW-M have a larger κT and κL. However, for the diffusive contribution in the top
row of the central column, no distinction between the configurations containing NIs can
be made. Only the pores seem to decrease the diffusive contribution below amorphous
values. The propagative contribution, for both polarizations, increases with the degree
of interconnection. When looking at the propagative contribution as a function of the
temperature, it appears that κL increases at higher temperature than κT . This is linked to
the MFP peak at 10 THz and to C(T, ω) that limits the impact of high frequencies at low
temperature. This important high frequency contribution also results in a maximum of κL
around 200 K for the NW-M. This is due to the empirically added phonon–phonon term
(Equation (10)) that reduces the contribution of high frequency phonons as the temperature
rises. The different contributions (propagative and diffusive) can be compared in the central
panel. The diffusive and propagative contributions for the non-percolating configurations
have similar values at 300 K.

The sum of the different contributions, κTot, is displayed in the last column of Figure 5.
At all temperatures, the same order of κTot is preserved. This order is, from the highest
to the lowest thermal conductivity: NW-M, STC, SC and S with very similar values, then
amorphous and finally the porous configuration. The maximum observed for κL of the
NW-M is still visible on the sum and happens at 244 K. Such a maxima in κ has already
been predicted for SiC NWs using a similar method [52] but contrasts with experimental
results on Si NW [53].



Nanomaterials 2021, 11, 1982 15 of 25

2

4

6

(W
m

1
K

1
) T

S

STC

SC

NW-M

Pore

a-Si

D

100 200 300 400
T (K)

2

4

6

8

10

(W
m

1
K

1
)

Tot

100 200 300 400
T (K)

2

4

6

(W
m

1
K

1
) L

100 200 300 400
T (K)

P

Figure 5. Different contributions to the thermal conductivity: the first column contains the contributions of the longitudinal
phonons κL (bottom) and the transverse phonons κT (top); the second column the diffusive contribution κD (top) and the
overall propagative contribution κP = κL + κT (bottom); the last columns contains the sum of the different contribution
κTot = κP + κD.

The different contributions to the thermal conductivity at 300 K are also shown in
Figure 6. With this representation, it appears clearly that the structural percolation increases
κP and does not affect κD. As a result, the propagative part represents up to 75% of κ for
those nanocomposites. This graph also shows that the addition of non-percolating NIs in
an amorphous matrix increases the diffusive transport more than the propagative transport.
For the S and SC configurations, the diffusive transport is dominant. Finally, it appears
that, despite the overestimation of the thermal conductivity of nanocomposite containing
NIs by the kinetic method compared to the results of EMD, the hierarchy in the different
structures is preserved.
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Figure 6. Thermal conductivities at 300 K, decomposed through Equations (3) and (4) and computed
with EMD. The proportional contribution to the thermal conductivity of the propagative mode is
also represented in the right part of the figure (right axis).

To briefly summarize the results obtained with the kinetic theory, it appears that as
predicted previously the addition of NIs increases κ above bulk a-Si values [15]. This
is due to the fact that the NIs are crystalline. This is particularly visible in the case of
structural percolation, where the MFP peak at high frequencies is concomitant to a VDOS
peak, resulting in a large increase of κP. This increase occurs mainly at high tempera-
tures (see Figure 5) due to the temperature dependent frequency weighting of C(ν, T)
(see Equation (5)). As high frequencies at high temperatures are also more impacted by the
phonon–phonon term (Equation (10)), a maximum of κTot(T) appears for the NW-M. This
maximum contrasts with experimental results for single nanowires of diameter similar
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to the NW constituting the NW-M. For these single NWs, no maximum of the thermal
conductivity has been observed as a function of temperature [53]. This is a first sign that
the propagative contribution, the only one which can cause the apparition of a maximum
of κ, is overestimated by our implementation of kinetic theory. The evolution of κ with
temperature is worth commenting: between 10 and 100 K, all configurations seem to follow
the unusual T2 power law as was observed experimentally below 1 K [54], but it can
certainly not be attributed here to double well potential effect since anharmonicity is not
taken into account in our simulations in this temperature range. Moreover, κP dominates
at these temperatures, contrasting with the predictions of Cahill et al. [55].

3.3. Global Estimation of the Thermal Conductivity

The thermal conductivity can also be estimated from the Green–Kubo relation (Equation (2)).
The results at 300 K as a function of the surface to volume ratio of the NIs are displayed in
Figure 7. A clear trend appears for the configurations containing NIs; the thermal conductivity
increases with the surface to volume ratio. Moreover, the thermal conductivity is very close to
the one of Tlili et al. [15] for a nanocomposite with smaller NIs representing the same volume
fraction but twice the surface to volume ratio. This hints that the effect of the interconnec-
tion/structural percolation is stronger than the effect of an increased scattering surface. It is
also noticeable that all the NIs of this study are regrouped in the center of the graph with ratios
between 6.5× 10−2 and 7.5× 10−2. The κ are also very close, with intersecting error bars. In
the end, only the NW-M really stands out with a κ increased by 20% compared to the spherical
NI. Finally, the thermal conductivity for a cubic supercell of eight NW-M (in gray) is very close
to the κ of the single NW-M. This absence of variation of the thermal conductivity shows that κ
does not depend on the number of NI simulated. The EMD methodology is not strongly size
dependent [56,57].
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1

2

3

 (W
m

1 K
1 )
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NW-M-8
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S

S [15]
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Figure 7. Thermal conductivity estimated with EMD for the studied configurations, as a function of
their surface to volume ratio. S [15] refers to the results of Tlili et al. with the same crystalline volume
fraction and NW-M-8 refers to a cube constituted by a 2 × 2 × 2 grid of the configuration NW-M.

The κ computed for bulk a-Si through EMD is 1.9 W m−1 K−1, which is close to the
previously reported values [9,58]. The nanoporous a-Si has a sub-amorphous κ due to the
additional scattering at the surface of the pores. When the pores are filled with crystalline
NIs, the κ is increased by a factor of 2.5–3 compared to the porous κ and a factor of 1.2–1.5
compared to a-Si.

The results of the EMD computations are compared to κTot obtained in the previous
section in Table 4. As visible in Figure 6, even if the thermal conductivity predicted by
Equations (3) and (4) is higher, both methods predict the same hierarchy of κ. The differ-
ence of prediction between the two methods is more pronounced for the configurations
containing NIs and even more if there is a structural percolation. The last row of the table
shows the results if τphonon−phonon is not taken into account. It appears that the reduction of
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thermal conductivity induced by this term is marked only for the configurations with a
crystalline continuity.

Table 4. Thermal conductivity in W m−1 K−1 at 300 K for the different configurations, computed
with EMD or estimated with Equations (3) and (4).

Am Pore S SC STC NW-M

EMD 1.9± 0.2 0.89± 0.04 2.3± 0.1 2.3± 0.2 2.5± 0.2 2.7± 0.1
WP w τph−ph 2.5 1.3 4.0 4.1 7.2 8.9

WP w/o τph−ph 2.6 1.3 4.1 4.2 8.7 14.0

To conclude on the EMD computation, all configurations containing NIs have a κ
between 2.3 and 2.7 W m−1 K−1 (see Table 4). The NW-M is the only configuration that
has a distinctively higher κ than the nanocomposites without structural percolation. Its
thermal conductivity is 20% higher than the one of the nanocomposite with a spherical
inclusion. Nakamura et al. obtained experimentally a thermal conductivity between 1.7
and 1.9 W m−1 K−1 for Si nanocrystallite of similar size in a-SiO2 [23]. The difference
probably comes from the a-SiO2 having a lower κ than a-Si. In our simulation, the a-Si can
be considered as a proxy for a-SiO2, which is a reasonable approximation if the electronic
contribution is neglected as in classical MD. Moreover, counter-intuitively, when going
from the spherical NI to the NW-M, κ seems to increases with the surface to volume ratio.
However, usually, an increased density of interfaces leads to a reduction of κ [59]. The
increased surface to volume ratio is here a consequence of the gradual interconnection of
the NIs: as the shape shifts from a sphere to a NW-M, the surface to volume ratio indeed
increases. In our case, the interconnection probably has a stronger effect on κ than the
surface to volume ratio. In addition, a similar thermal conductivity has been found before
for smaller particles having a higher surface to volume ratio but sharing the same volume
fraction as the S configuration [15]. This means that the surface to volume ratio has little
effect on c-Si NIs in a-Si matrix. This lack of impact of the surface to volume ratio contrasts
with the results obtained for GaN NIs in SiO2 [60]. The origin of this difference may be
found in the impedance mismatch between GaN and SiO2.

Furthermore, the κ of a-Si estimated here is coherent with previous results obtained
with a similar method [58] as well as experimental results [61]. Porous a-Si is less studied,
but the results can be compared with results obtained on porous c-Si amorphized by
irradiation [62,63]. The experimental results range between 3 and 1.8 W m−1 K−1, thus
higher than the 0.89 W m−1 K−1 obtained here. This difference can have multiple origins,
two of which are important: the shape of the pores and the presence of gas in the pores in
the experimental set up.

The simple effective medium approach that considers the κ of both phases, their
proportion and shape overestimate the thermal conductivity [64]. Other models considering
interfacial effect also fail; they predict a decrease of thermal conductivity when the surface
to volume ratio increases contrary to what is visible in Figure 7 [18]. A more complex
model, such as the one presented by Wang et al. [16], might be able to predict the thermal
conductivity. However, as the authors pointed out, the effective model approach often fails
to predict the properties at the nanoscale, where the continuum approach shows its limits.

4. Discussion

Previous analysis of the impact of NIs in amorphous matrices on the vibrational and
thermal properties of nanocomposites via MD have focused on the intrinsic properties of
spherical NIs and on their role as scatterers [12,13,15]. The influence of their shape and
eventual interconnection are rarely the center of attention; here, we try to understand their
role on the effective thermal conductivity and on the ballistic transport.
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4.1. Thermal Conductivity

The gradual interconnection/structural percolation between the NIs increases the
effective thermal conductivity of the studied nanocomposites. This enhancement is due to
an increase of the propagative part. The diffusive part (κD) on the contrary is not affected
by the shape of the inclusions or by the structural percolation. It can however be noted
that κD is increased by the introduction of NIs, and that the only way to decrease it below
amorphous values is to introduce pores. Finally, we showed that the two methods used to
evaluate κ conserve the same hierarchy.

Having estimated thermal conductivity through two methods (the WP method and
the EMD computation), the respective results can be compared. Firstly, it appears that
the two methods give slightly different results. Equations (3) and (4) of the WP method
overestimate the thermal conductivity of all configurations, particularly in the case of
structural percolation that makes the thermal response very inhomogeneous. It also
does not take properly into account the possible thermal sensitivity of the MFP. Secondly,
in opposite, the EMD simulations might not capture all the effects induced by the NIs.
Additional non-equilibrium molecular dynamics (NEMD) [57] simulations containing
multiple NIs could be interesting to perform. In the case of structural percolation, the heat
flux will likely concentrate in the crystalline percolation and the effect of this concentration
maybe lost in the flux auto-correlation over the whole sample that is used to compute κ
with the EMD method.

However, the discrepancies between the values of both models also question the
quantitative accuracy of the computation of κ with the kinetic theory. The robustness of the
method, in particular for nanocomposites, is not established. To carry out the computations,
multiple assumptions are made. These different assumptions is reviewed in Section 4.3.

4.2. Ballistic and Diffusive Transport

Concerning ballistic transport, the behavior at high and low frequencies must be
distinguished. At low frequencies (below 5 THz), for the longitudinal polarization, no
distinction can be made between the different nanocomposites containing NIs. The WP
travels through NIs and matrix alike. At higher frequencies, the waves are strongly
attenuated in the amorphous matrix and ballistic transport is possible through the structural
percolation only.

At low frequencies, ballistic propagation was expected in the amorphous matrix [43].
Moreover, at these frequencies, there is no impedance mismatch: the group velocity in a-Si
and c-Si are similar (as can be seen when comparing the vL(ω) between a-Si and c-Si in the
middle panel of Figure 3). The long MFP at low frequencies for a-Si/c-Si nanocomposite
is consistent with results obtained with finite elements simulations [12]. Moreover, the
transmission rate through a a-Si/c-Si interface is known to be high for a single interface and
for grain boundaries in nanocrystalline Si [65,66]. The combination of a high MFP in the
matrix, a lack of impedance mismatch and a good transmission through the interface results
in a reduced impact of the NIs on the MFP at low frequencies for longitudinal polarization.
For the transverse polarization, still at low frequencies (below 4 THz), the MFP is similar
for all configurations, except for the porous one. This similarity happens despite the
acoustic mismatch between the matrix and NIs (see Figure 3) and the stronger scattering
observed in Table 2. The latter indicates that ballistic transport at those frequencies is
dominated by the matrix and that the inclusions have little effect despite the distortion of
the wave front. However, it is worth mentioning that a previous study observed a decrease
of MFP at low frequencies for a similar system with smaller spherical inclusions and the
same crystalline volume fraction [15]. This difference might be explained by the increased
density of scatterers that amplifies the interfacial effects or by specific coherent effects as
the wavelength is close to the size of the spheres in this case. To conclude on this point, the
most effective way to decrease the transmission of low frequency WP relative to bulk a-Si
in these nanocomposites is to introduce pores.
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While only a few differences appear between the configurations at low frequencies, at
high frequencies, strong disparities between the nanocomposites become clear. At high
frequencies, the MFP in a-Si is small [43], and there is an impedance mismatch between
a-Si and c-Si for both polarizations (see the middle panel of Figure 3). As a result, the WP is
strongly attenuated in the matrix but travels well through the structural percolation at high
frequencies. A previous study has shown a similar behavior for NWs with an amorphous
shell [67].

Interestingly, if the MFP is affected by the shape of the NIs, the diffusivity is not.
All the configurations that include NIs have a very similar diffusivity. This diffusivity is
distinctively higher than the bulk a-Si one (see Figure 4). A diffusivity increase caused
by the addition of NIs has already been observed [15]. The only strategy to decrease the
diffusivity of a-Si seems to be the creation of pores.

To summarize the ballistic transport properties, NIs were already known to affect the
transmission of phonons, for instance, small spherical NIs act as a low pass filter [4], and
here we show that if there is a structural percolation in the nanocomposite it can be used as
a bandpass filter centered at 10 THz.

4.3. Validity of the Hypothesis Made

Equations (3) and (4) rely on different hypotheses. In this section, the validity of these
hypotheses along with the possible origins of the discrepancies between the models is
reviewed.

First, both the diffusive and the propagative contributions are considered at all fre-
quencies. In previous works, the different contributions were separated either based on
frequency ranges or on the periodicity of the modes [10]. Here, both contributions are
included for all the frequencies considered. This is motivated by the fact that both a prop-
agative and a diffusive part appear at all the observed frequencies for our configurations
(see Tables 2 and 3). This contributes to the overestimation of the thermal conductivity by
the kinetic theory. Indeed, some modes are considered twice, once as diffusive and once
as propagative. This is especially true in the low-frequency range where both MFP and
diffusivity are high. In such a regime, the relative contributions of expressions (3) and (4)
should be weighted.

Secondly, the propagative contribution is also very likely overestimated. This overesti-
mation already appears for the bulk a-Si for which the propagons are expected to contribute
up to 40% of κ [9] and our model gives 50%. This overestimation can be attributed to the
lack of a cut-off frequency for the propagative contribution as previously discussed. The
effect is much more marked for the STC and NW-M nanocomposites; for those, only a
small fraction of the system (restricted to the center of the crystalline part) takes part to
the ballistic transport at high frequencies (see Table 3). The transport only happens in
the structural percolation and not in the whole nanocomposite. A manifestation of this
phenomenon also appears in Figure 1; part of the energy is scattered and part of it travels
ballistically. The diffusive behavior is visible through the gradual flattening of the central
peak (0–10 nm). The propagative behavior is given by the lobe shifting through the sample.
This lobe corresponds to the WP travelling in the structural percolation. However, in
Equation (3), it is assumed that the whole configuration contributes to κP. This leads to
an overestimation of κP, especially at high frequencies where non-propagating modes are
taken into account in the VDOS but do not contribute to the ballistic transport.

A confinement effect, inducing the decrease of the group velocity, has been predicted
for free NWs [68] and observed experimentally recently [69]. Such effects are not visible in
our case (see Figure 3). However, as the group velocity is extracted from the fitting of the
dispersion relation by a sine function, the eventual confinement effects impacting the low
frequencies may be neglected due to the low wave-vector resolution.

Moreover, in the WP simulations, the propagation direction is aligned with the struc-
tural percolation. This alignment decreases the interactions of the WP with the interface
and with the branches of the NW-M and STC perpendicular to the propagation at the
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crossings. This may artificially increase the MFP measured by WP propagation. As the
boundary scattering is known to be the main factor limiting the thermal conductivity of
NWs, a model has been developed to take it into account by considering a specularity
parameter for reflections at the interface [70]. It has even been shown recently for argon
NWs that this specularity parameter has a stronger effect on the thermal conductivity
than the confinement effect [71]. Moreover, due to the geometry, the impact of boundary
scattering might be even more important, especially in the case of the NW-M, where back
scattering at intersections is expected to play an important role [28], whereas no impact of
the intersection of the NW is visible in Table 3.

For comparison purposes, the MFP can also be estimated through the DSF thanks
to the damped harmonic oscillator model (see Appendix A). However, this method is
known to give lower lifetime than the estimation through WP amplitude decay rate [43].
Additionally, the DSF is an averaged quantity computed over the whole unit cells repre-
sented in Table 1. Thus, it cannot take into account the longer MFP due to transport in
the structural percolation. As a result, if the MFP computed through the DSF is used to
estimate κP, the hierarchy of κ between the nanocomposites obtained with EMD is not
reproduced.

Finally, the hypotheses made on the effect of temperature are important. Namely, the
MFP and the diffusivity are computed at 0 K, and then for κP a phonon–phonon lifetime
term is added to take into account the thermal effects. This phonon–phonon scattering
parameter is approximated thanks to empirical coefficients derived for bulk c-Si. These
coefficients were already successfully used for NWs, albeit NWs with larger characteristic
dimensions than in the present study [45]. Alternatively, one may consider the expression
for Umklapp processes derived by Klemens [72]. Moreover, the phonon–phonon scattering
in amorphous materials is negligible, its effect being small in front of the effect of disorder.
Thus, the bulk c-Si scattering coefficients seem to be the best available. Nonetheless, these
parameters might be impacted by the interfaces and size effects. Interfaces are known
to increase electron–phonon coupling [73] and could also increase the phonon–phonon
scattering. The diffusivity can also be influenced by the temperature. To avoid using
temperature correction coefficients, the WP propagation simulations could be performed
at higher temperature. However, at higher temperature, the amplitude of the impulsion
has to be increased in order to distinguish the WP from the thermal agitation. This larger
impulsion may induce other bias, such as the overestimation of the effect of anharmonicity.

All those factors lead to an overestimation of the thermal conductivity computed
through the kinetic theory and particularly of the propagative part. In future work, the
estimation of the thermal conductivity using the kinetic theory could be improved by
including the effect of the reflection at the interface, for instance by introducing a specularity
parameter [70].

5. Conclusions

The vibrational and thermal properties of gradually interconnected c-Si NIs in an a-Si
host matrix were studied, with the goal of gaining a better understanding of the effects
of a crystalline continuity at a constant NI volume fraction. WP simulations revealed
that the structural percolation has a strong impact on the transmission of energy at high
frequencies (8–12 THz), the MFP being increased by an order of magnitude in the case of
structural percolation. The interconnection also results in a thermal conductivity increase.
This enhancement appears for the two methods used in our paper for the estimation of
κ: the WP method (kinetic theory) and EMD computation. However, the kinetic theory
predicts a twofold increase of κ between the non-interconnected NIs and the interconnected
NIs, while the EMD simulations predict a more modest increase of 20%. More generally,
the use of Equations (3) and (4) seems to overestimate κ, especially its propagative part
κP. This difference between the predictions of the two methods has multiple roots: the
contribution of all frequencies to both κD and κP, the overestimation of the MFP due to
alignment effects and the incomplete consideration of temperature effects. This leads us
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to conclude that, if ballistic transport can be observed at high frequencies for percolating
NIs, it does not induce a marked absolute thermal conductivity increase. This kind of
configurations could thus be used for applications where a low κ is needed while keeping
the coherent transport of phonons at high frequencies. Such properties could be useful for
information processing or phonons focusing in a structure.
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Appendix A. Damped Harmonic Oscillator

The DSF can be used to extract both the dispersion relation and the lifetime of phonons.
To this end, the low-frequency region of the DSF can be fitted with the damped harmonic
oscillator (DHO) model [42]:

Sη(q, ω) =
A

(ω2 −ω2
η(q))2 + ω2Γ2

η
(A1)

with Γη = 1/τη the inverse lifetime, ωη(q) the phonon dispersion, A the amplitude and η
labeling either the longitudinal or transverse polarization. The parameters of Equation (A1)
are fitted to match the DSF obtained with Equation (12) for every wave vector. This fit is
realized on the DSF convoluted with the experimental resolution [4]. Thus, this model
enables the computation of both the lifetime and the dispersion relation using the DSF only.
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Figure A1. Sη(q, ω) as fitted from Equation (A1) (left) and resulting MFP (right) for the NW-M configuration for the
longitudinal polarization.

The result of the fitting to a DHO model for a longitudinal polarization for the NW-M
is displayed in Figure A1 (left) for a few wave vectors. The expression (A1) seems to fit to
the DSF computed via Equation (12) reasonably well at low frequencies. However, as the
frequency increases, the DSF is increasingly noisy, degrading the fit quality. The MFP can
also be extracted (Figure A1, left). It then appears that the MFP peak at 10 THz observed
with the WP disappears. The MFP computed with this method steadily decreases. This dis-
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crepancy can be attributed to the low-frequency limit of validity of this fit discussed in [42]
or to the fact that this MFP is computed using a quantity averaged over the whole sample.
This spatial average cannot capture the effect of the structural percolation showcased with
the WP method.

The successive fits of different wave-vectors enable the computation of the dispersion
relations ωη(q), from which the group velocity can be computed. However, the method
includes more parameters to fit than the method described in Section 2.6 and is thus a less
robust approach.

Appendix B. VDOS Estimated with DSF, VACF or KPM

The VDOS can be estimated thanks to the integral of the DSF over the wave vectors.
This allows a distinction between the different wave-vector directions and polarizations. To
consider the anisotropy of c-Si, the sum for the different vector directions of the Brillouin
zone (BZ) is considered. The VDOS obtained are then filtered using the Savitzky–Golay
polynomial filter.

However, a choice has to be made regarding the range of wave-vectors considered
for the integration. The different possibilities tested are displayed in Figure A2. They are
compared with the results of the VACF, which serve as a reference point.
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Figure A2. VDOS computed using different methods. The red and blue lines correspond, respectively, to the transverse
and longitudinal polarizations. The solid blue and green dashed lines correspond to the total VDOS computed, respectively,
via the DSF or the VACF. The first panel starting from the left uses the full DSF, the second the DSF limited to the theoretical
wave-vector limit of the BZ of c-Si, the third the DSF limited to the wave vector giving a 0 velocity and the last the results
using the KPM for an amorphous sample.

The first possibility is to consider the whole DSF computed, that is from 0 to 2.25 Å
−1

(“Full DSF” in Figure A2). Another possibility is to consider the point at which the
estimated group velocity of the phonons is nil (“Nil Vel. DSF” in Figure A2), relying on the
fact that near the BZ limit the velocity is nil. The last possibility is to consider the theoretical
end of the BZ computed for the lattice parameter used (“Brill. Edge DSF” in Figure A2).
Another comparison point for the study is the separation of transverse and longitudinal
VDOS by the KPM [49] on a fully amorphous sample, given that the configurations are
mostly amorphous (70% of a-Si and 30% of c-Si).

When comparing the different VDOS, it appears that the total VDOS computed using
DSF does not match with the VACF results, whatever wave vector limit is used. If all
the peaks seem to be present, their relative size does not match, and they are flattened.
This is even more marked when considering the theoretical end of the BZ (third panel
in Figure A2). The failure to reproduce the VDOS using the DSF can partially be attributed
to the fact that the BZ is not defined for the amorphous Si.

On the other hand, the VDOS of a-Si computed via the KPM matches comparatively
well the VDOS of the NW-M configuration computed via VACF. However, in this case,
some differences arise after 12 THz, but, given the reduced MFP at those frequencies, its
impact on the computation of κP is negligible.
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