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Abstract: The optimal design objectives of the microwave absorbing (MA) materials are high absorp-
tion, wide bandwidth, light weight and thin thickness. However, it is difficult for single-layer MA
materials to meet all of these requirements. Constructing multi-layer structure absorbing coating is
an important means to improve performance of MA materials. The carbon-based nanocomposites
are excellent MA materials. In this paper, genetic algorithm (GA) and artificial bee colony algorithm
(ABC) are used to optimize the design of multi-layer materials. We selected ten kinds of materials to
construct the multi-layer absorbing material and optimize the performance. Two algorithms were
applied to optimize the two-layer MA material with a total thickness of 3 mm, and it was found that
the optimal bandwidth was 8.12 GHz and reflectivity was −53.4 dB. When three layers of MA mate-
rial with the same thickness are optimized, the ultra-wide bandwidth was 10.6 GHz and ultra-high
reflectivity was −84.86 dB. The bandwidth and reflectivity of the optimized material are better than
the single-layer material without optimization. Comparing the GA and the ABC algorithm, the ABC
algorithm can obtain the optimal solution in the shortest time and highest efficiency. At present, no
such results have been reported.

Keywords: microwave absorption; electromagnetic parameters; reflectivity; genetic algorithm; artifi-
cial bee colony algorithm

1. Introduction

Microwave absorbing coatings were first used in military stealth technology. Stealth
technology can effectively improve the survival and penetration ability of weapons and
equipment, showing great power in modern war. A stealth fighter is coated with a layer or
multi-layer absorbing material in the fuselage for avoiding radar tracking. Microwave ab-
sorbing coatings are not only widely used in military fields, but also increasingly important
in civil fields such as electromagnetic compatibility and microwave radiation protection.
Microwave equipment, communication transmitting stations, power transmission and
transformation equipment and mobile phones all have electromagnetic radiation. Electro-
magnetic interference produced by electromagnetic radiation not only affects the realization
of high performance for electronic products, but also causes long-term or short-term harm
to the human body. Therefore, it is possible to use microwave absorption coatings for
microwave radiation protection. The research and development of MA materials has im-
portant application value [1–4]. The MA materials are required to absorb electromagnetic
waves as high as possible within a given frequency range. Therefore, the materials are
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required to have a wide absorption bandwidth, strong absorption, light weight, and thin
thickness [5–8].

According to the loss mechanism, MA materials can be divided into magnetic loss type
and dielectric loss type. Magnetic loss materials include ferrite, carbonyl iron, ferromag-
netic metal, etc. [9,10]. Ferromagnetic metal micro-powder microwave absorbing materials
are composed of ferromagnetic metal iron, cobalt, nickel and their alloys, which loses elec-
tromagnetic wave through magnetic hysteresis loss, eddy current loss, etc. Compared with
ferrite series MA materials, ferromagnetic metal powder has higher permeability and satu-
ration magnetization, better magnetic loss and temperature stability [11,12]. However, the
application of ferromagnetic micro-powder is limited by its narrow absorbing bandwidth,
high density, easy oxidation and poor corrosion resistance. Nowadays, ferromagnetic metal
micro-powder materials are modified mainly through coating and doping [9,13]. Dielectric
loss absorbing materials such as silicon carbide, carbon materials (carbon fiber, carbon
nanotubes, porous carbon), etc., whose mechanism is dielectric polarization relaxation
loss. Compared with metal materials, carbon materials are widely used in field of MA
due to their light weight, high dielectric constant and good chemical stability [14–16].
Khurram et al. studied the honeycomb core material filled with 10 wt.% carbon powder
and obtained a reflectivity of −7 dB with a bandwidth of 18 GHz [17]. However, although
carbon materials have wide-band and excellent dielectric loss, its weak magnetic property
leads to poor magnetic loss.

In recent years, a number of new carbon-based MA nanomaterials (carbon nanotubes,
carbon coated metal particles and graphene) have provided a nanoscale MA composite
material [18–22]. Lu et al. [20] studied the simulated reflectivity of carbon nanotube
composites with shell-core structure up to −47 dB and the bandwidth of −20 dB up to
2.0 GHz; Wan et al. [23] studied the composite material with Fe–Co alloy particles grown
on the surface of carbon fiber. When the thickness was 1.8 mm, they had a minimum
reflectivity of −37.7 dB; Huang et al. [24] studied carbon-coated nickel nanoparticles, when
the coating thickness was 3 mm, minimum reflection loss was −39.8 dB and absorbing
band width was 8.4 GHz; Zhang et al. [25] prepared nanocomposite particles with CoFe2O4
as the core and carbon nanotubes (CNT) as the shell. They found that the CNT grew on the
surface of CoFe2O4 microspheres. When the coating thickness was 2 mm, the maximum
reflection loss was −32.8 dB, and the absorption bandwidth was 5.7 GHz. Sun et al. [26]
prepared a FeNi/graphene nanocomposite material combining dielectric loss and magnetic
loss. When the thickness of the absorbing coating was 1.5 mm, it had a minimum reflect
loss of −32 dB at 12.4 GHz and a bandwidth of 3.3 GHz. Liu et al. [27] obtained a good
impedance match on porous carbon coated nickel nano-absorbing material. When the
thickness was 2.6 mm, the minimum reflectivity was −51.8 dB. Chan et al. [16] used carbon
nanotube/ferromagnetic metal micro-powder composite absorbing materials in antenna
design to eliminate various parasitic signals and improve antenna performance. As one of
the most promising new MA materials, nano carbon-based absorbing composite materials
will likely obtain high MA performance. In this paper, based on these excellent absorbing
materials (such as carbon nanotubes, carbon coated iron nanoparticles, nickel nanoparticles,
micron iron powder, etc.), the performance optimization design of micro-nano multilayer
composite absorbing materials will be studied.

At present, the research of MA materials is mainly toward the direction of low-
dimensionality, complexity, and multi-functionality and compatibility. Compatibility re-
quires that the absorbing material has a wide-band absorbing characteristic. The complexity
of materials means using composites of multiple materials to meet the comprehensive
performance of MA materials. However, these requirements are mutually restricted. For
example, it is easy to design a kind of absorbing material with thin thickness, but its
absorbing bandwidth and strength are insufficient, we can also easily design a high ab-
sorption material within a certain amount of bandwidth, but it is too heavy or too thick to
achieve the demand of the application. Therefore, it is very important to combine various
materials and design a MA material with good comprehensive performance. To design
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the MA materials with thin thickness, light weight, wide bandwidth and high absorption
performance is a typical optimization problem. Compared with single layer absorbing
coating, multi-layer coatings can obtain better performance by adjusting material type and
thickness of each layer. Thickness of each layer, electromagnetic parameters of absorbing
material and material order will all affect the absorbing properties. Compared with the
single-layer absorbing coating, the multi-layer absorbing coating is more beneficial to
widen the absorption bandwidth and enhance the reflection loss [28–30].

There are many factors influencing the reflectivity of the MA material. The combina-
tion of the optimal dielectric materials is mostly empirical at present. When there are many
material layers or too many types of materials, the optimization design is time-consuming
and laborious using experimental method only, and it needs computer-aided optimiza-
tion design. When using multiple dielectric materials to match the design of multilayer
absorbing materials, the relationship between the combined absorbing performance and
their original absorbing performance of each material is not a simple linear relationship, so
that the results of the electromagnetic optimization are highly nonlinear, multi-parameter
and multi-peak features, and the use of algorithms will greatly improve the efficiency of
optimization design.

At present, the genetic algorithm (GA) has been used in the optimization design
of MA materials. Wang [31] optimized the performance of absorbing coatings by using
GA algorithm, and the reflectivity in the specified frequency interval achieves the best
comparing no optimization. The calculation results show that each layer thickness of the
material, the type of material and the arrangement order of the materials, the design results
are accurate and effective, and the use of GA greatly improves the efficiency of optimization
design. Compared with other algorithms, the GA optimization has higher accuracy, but
a vast calculating amount. Feng [32] optimized the reflectivity of the absorbing material
with an improved GA. The two obtained layers of absorbing material (inner layer 0.9 mm,
outer layer 2.7 mm) can realize the reflectivity less than −15 dB within a wide range of
8–18 GHz. Jiang [33] presented the application of the NSGA-II for constructing Pareto
optimal designs of microwave absorbers. Results indicate that the NSGA-II can work
more efficiently than traditional Pareto genetic algorithms. N. Dib [34] presented the
optimal design of multilayer microwave absorbers using differential evolution (DE) with
competitive control-parameter setting technique, and a very wideband (0.1–20 GHz),
thin (total thickness of 6.8 mm) seven-layer absorber has been designed. Artificial bee
colony (ABC) algorithm, as a new swarm intelligence optimization algorithm, has become
another important optimization algorithm in the field of biomimetic intelligence computing.
Toktas [35–37] designed multilayer radar absorbing material by utilizing a predefined
material set including electrical variables existing in the literature, and various numbers
of layers are optimally determined using artificial bee colony (ABC). They presented a
three-dimensional objective space optimization strategy using an enhanced multi-objective
artificial bee colony (ABC) algorithm for the design optimization of layered radar absorbing
material, and optimized material are picked up from a composite material database with
51specimens from nine previously reported studies. Yigit [38] optimized the thicknesses,
sequence and number of layers of the MRA structures using the materials given in the
literature by triple-objective artificial bee colony algorithm optimizations at the frequency
ranges of 2–18 GHz for each angle of incidence from 0◦ to 60◦. However, until now,
there is no report about the application of ABC algorithm for the optimization design
of multilayer new carbon-based MA micro-nano composite materials. In our work, we
selected optimizing bandwidth and reflectivity as the objective function for design, and
apply ABC and GA algorithm to give the optimal assembling of several new carbon-
based absorbing materials, and the purpose of optimizing the absorbing bandwidth and
reflectivity performance is achieved. At the same time, we discuss the efficiency of different
optimization algorithms for the same problem based on different algorithms mechanisms.
According to the theory of electromagnetic wave transmission line, matlab software is used
to simulate reflectivity curve after optimization [21].
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2. Experimental
2.1. Preparation of Material and Electromagnetic Parameter for Testing Samples

Commercially available carbon nanotubes with a diameter of 20–40 nm are raw materi-
als. Carbon nanotubes/paraffin composites with carbon nanotubes mass fraction of 7 wt.%
and 9 wt.% were made into ring-shaped solid samples (ϕin = 3.04 mm, ϕout = 7.00 mm).
The electromagnetic parameters of samples were measured by a vector network analyzer
in the frequency range of 2–18 GHz.

Ni@C nanoparticles were prepared by arc discharge method. The arc discharge was
generated by applying a direct current of 150 A at 60 V between two electrodes at an argon
pressure of 10 kPa. The distance between the electrodes was 3–4 mm. Micron-sized (µm)
graphite and iron powder were used as raw material. The mixture was shaped in form of
cylindrical anode of 25 mm in diameter and 50 mm in height. This anode was consumed
and produced soot during the arc discharge process. This soot was deposited on the inner
surface of the reaction chamber. After the arc discharge reaction, the soot was collected
and the samples were obtained. The ring samples were prepared according to the mass
fraction of 40, 50, and 60 wt.% Ni@C nanoparticles. The preparation process of Fe@C
nanoparticles was the same as the Ni@C nanoparticles. The ring samples of Fe@C were
prepared according to the mass fraction of 40 and 50 wt.%.

Commercially available iron powder with a particle size less than 58 µm was selected
as raw material and was reduced by the ball grinding process. The grinding ball and iron
powder were weighed in the mass ratio of 20:1, and grinded for 8 h and 10 h, respectively,
at the grinding speed of 400 rpm. The particle sizes of iron powder for 8 h and 10 h were
between 10–20 µm and 5–15 µm, respectively. The samples were labeled as Fe-8 h and
Fe-10 h, respectively. An iron powder/paraffin ring sample was prepared according to the
mass fraction of 50 wt.% iron powder for the measurement of electromagnetic parameters.

2.2. The Optimization Design of Microwave Absorption Performance of Multi-Layer Absorbing
Coating Using Algorithm

The GA and ABC algorithm was used to optimize the performance of 10 kinds of
absorbing materials (Table 1). Considering the requirements of practical application,
we choose: (1) 2–3 layers of absorbing material, and the material of each layer is one
of the materials in Table 1. The total thickness of absorbing coating will be controlled
within 3 mm, and the minimum thickness of each layer will not be less than 0.5 mm.
(2) The designed frequency band is 2–18 GHz. (3) The optimal bandwidth (F1) and the
optimal reflectivity (F2) are selected as the objective function for the optimization design.
Through the optimization of the algorithm, the type and order of the matched material,
the corresponding thickness of each layer of material, the bandwidth, and the minimum
reflectivity can be obtained.

Table 1. The number of materials.

Number Materials

0 CNT-7%

1 CNT-9%

2 Fe@C-40%

3 Fe@C-50%

4 Ni@C-40%

5 Ni@C-50%

6 Ni@C-60%

7 Ni@C-70%

8 Fe-8 h-50%

9 Fe-10 h-50%
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2.2.1. Design of Setting Parameters for Optimizing the Performance of Multi-Layer
Absorbing Coating Using GA

For optimal operation of multi-layer MA materials using GA, the flowchart of GA
algorithm operation is show in Figure 1. The operating parameters should be set in advance:
The population size (the number of individuals contained in the population) was set as
50. Chromosome length was set as 13 for the two-layer absorbing material and 22 for the
three-layer absorbing material. The termination evolutionary algebra of genetic algorithm
was set as 5000. The crossover probability was set as 0.6. The variation probability was set
as 0.01. Two objective functions are set as:
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Figure 1. Flowchart of GA algorithm.

For the design of optimal bandwidth, the objective function F1 is set as:

F1 = | fi|RL=−10 − fi+1|RL=−10|

∣∣∣ (i = 1, 3 . . .) (1)

where | fi|RL=−10 denotes the frequency when the reflectivity reaches −10 dB.
For the design of optimal reflectivity, the objective function F2 is set as:

F2 = min(RL(θ, fi)) (i = 1, 2 . . .) (2)

where RL(θ, fi) denotes the reflectivity of all frequency points in the design band at various
angles of incidence.
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2.2.2. Design of Setting Parameters for Optimizing the Performance of Multi-Layer
Absorbing Coating Using ABC Algorithm

When ABC algorithm is used to optimize the multi-layer MA materials, the flowchart
of ABC algorithm operation is show in Figure 2. Its operating parameters are as follows:
The size of the population was set as 40. The number of food (Food Number) was set as
20. The maximum evolution number of the algorithm termination (maxCycle) was set as 7.
The limit (Limit) was set as 20. Two objective functions are set as:
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For the design of optimal bandwidth, the objective function F1 is the same as it’s in
Equation (1), where | fi|RL=−10 denotes the frequency points when the reflectivity reaches
−10 dB.

For the design of optimal reflectivity, the objective function F2 is the same as it’s in
Equation (2), where RL(θ, fi) denotesthe reflectivity of all frequency all frequency points in
the design band at various angles of incidence.

3. Results and Discussions
3.1. Complex Permittivity and Complex Permeability of Carbon Nanotubes

As a typical one-dimensional nanomaterial, carbon nanotubes (CNT) exhibit unusual
electromagnetic wave absorption performance. In Figure 3a, the ε′ of the sample with
a carbon nanotube weight ratio content of 7 wt.% is basically constant, while the ε′ of
the sample with a nanotube content of 9 wt.% decreased slightly with frequency from
10.0 to 8.7 GHz. The ε′ of the sample increased with the increase of carbon nanotubes
content. In Figure 3b, the ε′′ values of each sample increased with the increase of frequency.
As the content of carbon nanotubes increases, the ε” of the materials also increases and
the ε” of samples with carbon nanotube content of 7 wt.% and 9 wt.% increased from
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0.6 and 1.2 to 2.0 and 3.6, respectively. The ε” curve has some maximum values due to
various polarizations [21,39–41]. At low frequencies, the weaker space charge polarization
is dominant, and at high frequencies, the dipole polarization is dominant. Correspondingly,
there are some loss peaks on the ε′′ curve, which are at 3.5, 5.8, 10.3, 12.8, 14.8, 17.1 GHz,
respectively. The samples with different contents of carbon nanotubes had little change for
the µ′ (from 1.0 to 1.2) and the µ′′ (from −0.1 to 0.1).
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Figure 3. The ε′ (a), ε′′ (b), µ′ (c) and µ′′ (d) of carbon nanotubes/paraffin samples.

3.2. Complex Permittivity and Complex Permeability of of Fe@C Nanoparticles

The Fe@C nanoparticles have both the magnetic loss capability and the dielectric
loss capability, which can establish a good impedance match and exhibit excellent MA
performance. The Fe@C nanoparticles have a shell-core structure with nano-iron of 30 to
100 nm as the core, and a multi-layer graphitized carbon layer of 3 to 5 nm thickness as shell.
The graphite carbon layer of Fe@C nanoparticles can both effectively protect the metal core
from being oxidized and prevent the nanoparticles from agglomerating. In Figure 4, the ε′

increase slightly with increasing frequency. There are some significant dielectric relaxation
peaks on the ε” curve, which are at 6.0, 8.2, 11.0, 13.5, 15.3, and 17.8 GHz, respectively. The
interface polarization that occurs at the interface between the iron core and the carbon shell
also contributes to dielectric loss of Fe@C.

Theµ′ decreases monotonically with increasing frequency, and theµ′ of the Fe@C/paraffin
complex with Fe@C content of 40 and 50 wt.% decreases from 1.53 and 1.41 to 1.11 and
0.99, respectively, as shown in Figure 4c,d. It shows a wide maximum range appears
in the imaginary part µ′′, which appears around 8.40 GHz. The maximum value of µ′′

corresponding to Fe@C content composite is about 0.28 and 0.20, respectively. In Fe@C
nanoparticles, the direct contact between metallic iron nanoparticles is negligible due to
the presence of a carbon shell, dipole interaction is the main mechanism [42,43], and the
magnetic loss is mainly due to natural resonance.
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3.3. Complex Permittivity and Complex Permeability of Ni@C Nanoparticles

The Ni@C nanoparticles are made of nano-magnetic metal iron as the core and coated
with multiple graphitized carbon layers. From electromagnetic parameter curves as shown
in Figure 5, it can be seen with the frequency increases, the ε′ of all samples shows a
downward trend, and the ε′′ shows an upward trend. As the content of Ni@C nanoparticles
increased, the ε′ decreased from 4.8, 7.6, 9.7 to 4.5, 5.9, 6.0, and the ε′′ increased from 0.5,
1.2, 1.8 to 0.6, 2.9, 3.9, respectively. Additionally, there are some relaxation peaks on the
ε′′ curve, which are attributed to dielectric relaxation in carbon shell and ferromagnetic
metal core. With the increase of the content of Ni@C, the values of µ′ and µ′′ decreased
from 2 to 18 GHz. The magnetic loss mechanism of Ni@C nanoparticles is also mainly a
natural resonance [25].
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3.4. Complex Permittivity and Complex Permeability of Fe Powder

The micron iron powder has high electromagnetic parameters, so the addition of
micron iron powder may contribute to the microwave absorption of the composite. In
Figure 6a, we can see that increasing the ball milling time will cause the sample to have
a smaller ε′ because of smaller particle size. The ε′ decreases slightly with increasing
frequency for all samples. Increasing the ball milling time will reduce the average particle
size of the iron powder, so that the polarization of the iron powder will weaken and ε′

will decrease. Meanwhile, in Figure 6b, all samples have dielectric loss peaks at 6, 8.1, 10,
12.8, 15.3 and 16.5 GHz for ε” curve. The µ′ (Figure 6c) of all samples is between 2.0–1.0,
showing a decreasing trend. Since it is a ferromagnetic material, the permeability µ is
higher than that of carbon nanotubes and carbon-coated metal nanoparticles. The µ′′ of all
samples is between 0.25 and 0.6, and loss peaks appear at about 3.5, 9.0, 11.5, and 16.2 GHz
(Figure 6d).
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3.5. Analysis of GA Algorithm Optimization Results

For two-layers absorbing materials, F1 is used as the objective function of optimizing
bandwidth. The first nine optimization results of the program operation (the same below)
are showed in Table 2. The obtained convergence time is 2.1 s. It converges in the 17th
generation. The optimal result is obtained after the 17th generation: the first layer of
material is the number of materials, 9, and the thickness is 0.5 mm; the second layer is
4 and the thickness is 2.5 mm. The optimal bandwidth is 8.12 GHz and the corresponding
reflectivity is −42.45 dB.
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Table 2. The optimization results using objective function F1 (two-layers) of GA algorithm.

Frist Layer
Materials

Second Layer
Materials

Material
Thickness of the
First Layer (mm)

Material Thickness of
the Second Layer

(mm)

Optimal
Bandwidth (GHz) Reflectivity (dB)

9 4 0.5 2.5 8.12 −42.45
9 4 0.6 2.4 6.60 −21.92
7 2 0.5 2.5 5.24 −31.47
7 4 0.5 2.5 5.16 −34.71
7 2 0.6 2.4 5.12 −21.90
7 2 0.7 2.3 4.84 −17.77
9 2 0.5 2.5 4.84 −30.90
7 4 0.6 2.4 4.64 −21.25
9 2 0.6 2.4 4.64 −22.30

In the optimization of the GA algorithm, F2 is used as the objective function of
optimizing reflectivity. Table 3 shows the optimization results of the program. The obtained
convergence time is 3.9 s. It converges in the 31st generation. The optimal results are
obtained after the 31st generation: the first layer material is the number of materials 0 and
the thickness is 1.4 mm. The second layer material is 8 and the thickness is 1.6 mm. The
optimal reflectivity is −53.41 dB and corresponding bandwidth is 1.64 GHz. The optimized
reflectivity curves are showed in Figure 7a.

Table 3. The optimization results using objective function F2 (two-layers) of GA algorithm.

Frist Layer
Materials

Second Layer
Materials

Material
Thickness of the
First Layer (mm)

Material Thickness of
the Second Layer

(mm)

Optimal
Bandwidth (GHz) Reflectivity (dB)

0 8 1.4 1.6 1.64 −53.41
5 7 1.8 1.2 3.28 −52.77
5 9 1.3 1.7 2.40 −50.50
3 9 0.8 2.2 1.76 −47.02
4 8 1.8 1.2 2.28 −46.71
5 8 1.9 1.1 2.40 −46.39
9 3 0.6 2.4 3.72 −45.91
3 7 1.6 1.4 3.12 −45.38
6 9 1.2 1.8 2.32 −44.82
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For three-layers absorbing materials, F1 is used as the objective function of optimizing
bandwidth. The first nine optimization results of the program operation are as shown in
Table 4. The bandwidth convergence time of the three-layer material optimized by GA
is 24.1 s. It converges in the 134th generation. The optimal results are obtained after the
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134th generation: the first layer material is 9 and the thickness is 0.6 mm. The second layer
material is 4 and the thickness is 1.9 mm. The third layer material is 7 and the thickness is
0.5 mm. The optimal bandwidth is 10.6 GHz and corresponding reflectivity is −20.35 dB.

Table 4. The optimization results using objective function F1 (three-layers) of GA algorithm.

Frist
Layer

Materials

Second
Layer

Materials

Third
Layer

Material

Material
Thickness of the
First Layer (mm)

Material
Thickness of the

Second Layer
(mm)

Material
Thickness of the

Second Layer
(mm)

Optimal
Bandwidth

(GHz)

Reflectivity
(dB)

9 4 7 0.6 1.9 0.5 10.60 −20.35
7 6 7 0.5 1.9 0.6 10.08 −17.33
9 3 4 0.5 0.6 1.9 10.08 −19.57
9 3 4 0.5 0.5 2.0 10.04 −21.30
9 6 4 0.6 0.5 1.9 10.04 −18.21
9 5 4 0.5 1 1.5 9.96 −19.90
7 6 7 0.5 2 0.5 9.92 −17.38
7 6 7 0.6 1.8 0.6 9.92 −16.71
9 5 4 0.5 0.9 1.6 9.92 −20.99

For three-layers absorbing materials, F2 is used as the objective function of optimizing
reflectivity. The first nine optimization results are listed in Table 5. The reflectivity conver-
gence time is 29.6 s. It converges in generation 153. The optimal results are obtained after
generation 153: The first layer material is 5 and the thickness is 0.7 mm. The second layer
material is 4 and the thickness is 1.0 mm. The third layer material is 7 and the thickness is
1.3 mm. The optimal reflectivity is −84.86 dB and corresponding optimal bandwidth is
3.6 GHz. The optimized reflectivity curves are shown in Figure 7b.

Table 5. The optimization results using objective function F2 (three-layers) of GA algorithm.

Frist
Layer

Materials

Second
Layer

Materials

Third
Layer

Materials

Material
Thickness of the
First Layer (mm)

Material
Thickness of the

Second Layer
(mm)

Material
thickness of The

Third Laye
(mm)

Optimal
Band-
width
(GHz)

Reflectivity
(dB)

5 4 7 0.7 1 1.3 3.6 −84.86
2 9 0 0.5 0.9 1.6 2.44 −81.13
6 5 7 1 0.8 1.2 3.08 −72.47
9 3 7 0.8 1.6 0.6 3.20 −71.67
2 9 1 1.2 1.1 0.7 2.20 −70.97
2 8 3 0.9 0.5 1.6 2.76 −70.46
6 9 0 1.2 1.3 0.5 2.48 −69.82
9 2 9 0.6 1.1 1.3 2.32 −67.81
2 7 9 1.4 0.6 1.0 2.56 −66.03

3.6. Analysis of ABC Algorithm Optimization Results

For two-layers absorbing materials, F1 is used as the objective function of optimizing
bandwidth. The first nine optimization results of the program operation are shown in
Table 6. The convergence time is 0.8 s. It converges in the 7th generation. The optimal
result is obtained after the 7th generation: the first layer material is 9 with a thickness of
0.5 mm. The second layer material is 4 with a thickness of 2.5 mm. The optimal bandwidth
is 8.12 GHz and corresponding reflectivity is −42.45 dB. In the optimization of the ABC
algorithm, F2 is used as the objective function of optimizing reflectivity. The optimization
results are shown in Table 7. The convergence time obtained is 1.54 s. It converges in the
14th generation. The optimal results are obtained after the 14th generation: the first layer
material is 0 and the thickness is 1.4 mm. The second layer material is 8 and the thickness is
1.6 mm. The optimal reflectivity is −53.41 dB, and corresponding bandwidth is 1.64 GHz.
The optimized curves can be seen in Figure 8a.
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Table 6. The optimization results using objective function F1 (two-layers) of ABC algorithm.

Frist Layer
Materials

Second Layer
Materials

Material Thickness of
the First Layer (mm)

Material Thickness of
the Second Layer (mm)

Bandwidth
(GHz)

Optimal
Reflectivity (dB)

9 4 0.5 2.5 8.12 −42.45
9 4 0.6 2.4 6.6 −21.92
7 2 0.5 2.5 5.24 −31.47
7 4 0.5 2.5 5.16 −34.71
7 2 0.6 2.4 5.12 −21.90
7 2 0.7 2.3 4.84 −17.77
9 2 0.5 2.5 4.84 −30.90
7 4 0.6 2.4 4.64 −21.25
9 2 0.6 2.4 4.64 −22.30

Table 7. The optimization results using objective function F2 (two-layers) of ABC algorithm.

Frist Layer
Materials

Second Layer
Materials

Material Thickness of
the First Layer (mm)

Material Thickness of
the Second Layer (mm)

Bandwidth
(GHz)

Optimal
Reflectivity (dB)

0 8 1.4 1.6 1.64 −53.41

5 7 1.8 1.2 3.28 −52.77

5 9 1.3 1.7 2.4 −50.50

3 9 0.8 2.2 1.76 −47.02

4 8 1.8 1.2 2.28 −46.71

5 8 1.9 1.1 2.4 −46.39

9 3 0.6 2.4 3.72 −45.91

3 7 1.6 1.4 3.12 −45.38

6 9 1.2 1.8 2.32 −44.82
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For three-layers absorbing materials, F1 is used as the objective function of optimizing
bandwidth. The results can be seen in Table 8. The bandwidth convergence time is 10.6 s. It
converges in the 69th generation, and the best results are obtained after the 69th generation:
the first layer of material is 9 and the thickness is 0.6 mm. The second layer of material is
4 and the thickness is 1.9 mm. The third layer material is 7 and the thickness is 0.5 mm.
The optimal bandwidth is 10.6 GHz and corresponding reflectivity is −20.35 dB.
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Table 8. The optimization results using objective function F2 (three-layers) of ABC algorithm.

Frist Layer
Materials

Second
Layer

Materials

Third Layer
Materials

Material
Thickness of the
First Layer (mm)

Material Thickness
of the Second
Layer (mm)

Material
Thickness of the

Third Layer (mm)

Bandwidth
(GHz)

Optimal
Reflectivity

(dB)

9 4 7 0.6 1.9 0.5 10.6 −20.35
7 6 7 0.5 1.9 0.6 10.08 −17.33
9 3 4 0.5 0.6 1.9 10.08 −19.57
9 3 4 0.5 0.5 2 10.04 −21.30
9 6 4 0.6 0.5 1.9 10.04 −18.21
9 5 4 0.5 1 1.5 9.96 −19.90
7 6 7 0.5 2 0.5 9.92 −17.38
7 6 7 0.6 1.8 0.6 9.92 −16.70
9 5 4 0.5 0.9 1.6 9.92 −20.99

F2 is used as the objective function of optimizing reflectivity. Table 9 shows the first
nine optimization results. The convergence time obtained is 14.4 s. It converges in the
88th generation, and the best results are obtained after the 88th generation: the first layer
is 5 and the thickness is 0.7 mm. The second layer is 4 and the thickness is 1.0 mm. The
third layer is 7 and the thickness is 1.3 mm. The optimal reflectivity is −84.85 dB and
corresponding bandwidth is 3.6 GHz. The optimized curves are shown in Figure 8b.

Table 9. The optimization results using objective function F2 (three-layers) of ABC algorithm.

Frist Layer
Materials

Second
Layer

Materials

Third Layer
Materials

Material
Thickness of the
First Layer (mm)

Material Thickness
of the Second
Layer (mm)

Material
Thickness of the

Third Layer (mm)

Bandwidth
(GHz)

Optimal
Reflectivity

(dB)

5 4 7 0.7 1 1.3 3.6 −84.86

2 9 0 0.5 0.9 1.6 2.44 −81.13

6 5 7 1 0.8 1.2 3.08 −72.47

9 3 7 0.8 1.6 0.6 3.2 −71.67

2 9 1 1.2 1.1 0.7 2.2 −70.97

2 8 3 0.9 0.5 1.6 2.76 −70.47

6 9 0 1.2 1.3 0.5 2.48 −69.82

9 2 9 0.6 1.1 1.3 2.32 −67.82

2 7 9 1.4 0.6 1 2.56 −66.03

3.7. Comparison of Two Algorithms

It can be seen from Figure 9 that for the bandwidth as the objective function for the
two-layer material, the GA reaches convergence in the 17th generation and takes 2.1 s, and
the ABC algorithm reaches convergence in the 7th generation and takes 0.8 s. Compared
with GA, the ABC algorithm can get the optimal solution in the shortest time and the
highest efficiency. For the optimal reflectivity as the objective function for the two-layer
material, the GA algorithm reaches convergence in the 31st generation and takes 3.9 s, and
the ABC algorithm reaches convergence in the 14th generation and takes 1.54 s. The ABC
algorithm can obtain the optimal solution in the shortest time and the highest efficiency.

In Figure 10a, the GA reaches convergence in the 134th generation and takes 24.1 s;
the ABC algorithm reaches convergence in the 69th generation and takes 10.6 s. Compared
with GA, the ABC algorithm can obtain the optimal solution in the shortest time and with
the highest efficiency. In Figure 10b, the GA reaches convergence in the 153rd generation
and takes 29.6 s. The ABC algorithm reaches convergence in the 88th generation and takes
14.4 s. Therefore, the ABC algorithm can obtain the optimal solution in the shortest time
and the highest efficiency. The advantage of ABC algorithm is that global and local search
is carried out to avoid falling into the local optimal situation to some extent.
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4. Conclusions

We selected GA and ABC algorithm to optimize the absorbing properties of 10 kinds
of materials. The ABC algorithm is used to optimize the three-layer absorbing material
and the optimization result with bandwidth as the objective function is: the first layer
material is “Fe-10 h” and the thickness is 0.6 mm; the second layer material is “Ni@C-
40%” and the thickness is 1.9 mm; and the third layer material is “Ni@C-70%” and the
thickness is 0.5 mm. The optimal bandwidth is 10.6 GHz and corresponding reflectivity
is −20.35 dB. The optimization result with the reflectivity as the objective function is: the
first layer is “Ni@C-50%” and the thickness is 0.7 mm; the second layer is “Ni@C-40%” and
the thickness is 1.0 mm, and the third layer material is “Ni@C-70%” and the thickness is
1.3 mm. The optimal reflectivity is −84.86 dB and corresponding bandwidth is 3.6 GHz.
After optimization, obtained reflectivity and bandwidth are better than that of the single
material in the same thickness. This shows that the absorbing performance (bandwidth
and reflectivity) of these new absorbing materials can be optimized through the algorithm
in the multi-layer absorbing coating, especially the application of ABC algorithm, has not
yet seen in the same research.

Comparing the optimization application of GA and ABC algorithm in multi-layer
absorbing coating. For the optimal bandwidth, the GA reaches convergence in the 17th
generation and takes 2.1 s and the ABC algorithm reaches convergence in the 7th generation
and takes 0.8 s. For the optimal reflectivity, the GA reaches convergence in the 31st genera-
tion and takes 3.9 s and the ABC algorithm reaches convergence in the 14th generation and
takes 1.54 s. Compared with the GA, the ABC algorithm application can obtain the optimal
solution in a shorter time and higher efficiency. When different optimization algorithms are
used to optimize the three-layer material, for optimal bandwidth as the objective function,
the GA reaches convergence in the 134th generation and takes 24.1 s and the ABC algorithm
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reaches convergence in the 69th generation and takes 10.6 s. For optimal reflectivity as the
objective function, the GA reached convergence in the 153rd generation and takes 29.6 s.
The ABC algorithm reaches convergence in the 88th generation and takes 14.4 s. It is found
that the ABC algorithm has less convergence time and running time than GA, and the
algorithm efficiency is higher.
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