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Figure S1. FESEM images of the precursors obtained under different reaction conditions. (a) In the presence of GO but 

without 2-MIN. (b) In the presence of 2-MIN but without GO. (c) In the absence of 2-MIN and GO. 
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Figure S2. (a) FESEM image of SnS2. (b) FESEM image of SnS2 and the corresponding elemental mappings of Sn and S 

elements (as labeled). 

 

Figure S3. (a) Nitrogen adsorption-desorption curve of SnS2/RGO, (b) the related pore size distribution curve. 
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Figure S4. High resolution XPS spectrum of SnS2. 

Table S1. Electrochemical performance comparisons of SnS2/RGO electrode with those of the previously reported transi-

tion metal dichalcogenides anodes for SIBs. 

Electrode Battery 

Current  

Density 

(mA g–1) 

Cycle Number 
Capacity  

(mAh g–1) 
Ref/year 

SnS2 Microspheres SIBs 0.5 100 548 1/2020 

GNS/SnS2 SIBs 100 200 462 2/2020 

SnS2/3DG SIBs 100 50 430 3/2020 

SnS2@GNS SIBs 500 100 374.8 4/2020 

SnS/RGO SIBs 100 200 443.4 5/2021 

SnS-SnS2 SIBs 100 200 290.1 6/2019 

SnS2-CM SIBs 200 200 322.4 7/2021 

SnS2 NSA SIBs 500 100 420 8/2017 

2D MXene/SnS 2 SIBs 100 200 332 9/2018 

SSC@SnS 2 SIBs 100 100 564 10/2018 

SnS 2 /S-rGO SIBs 100 83 530 11/2017 

SnS 2 @N,S-GA SIBs 50 100 360 12/2017 

SnS-ZnS@C SIBs 100 100 585 13/2018 

SnS2/RGO SIBs 500 80 581 Our work  
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Figure S5. (a) Cyclic voltammetry (CV) curves of SnS2/RGO. (b) FEEM image of SnS2/RGO electrode after rate perfor-

mance. (c) CV profiles of SnS2 at different sweep rates. (d) Linear relationship of log (i) vs. log (v) plots at each redox peak. 

(e) CV curve with capacitive and diffusion-controlled contributions at 0.6 mV s–1, in which the pseudocapacitive fraction 

is shown in the pink region. 
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Figure S6. (a) Voltage versus time curve for one single GITT test. (b) The plots of voltage vs. root of pulse time (τ1/2). 

During the GITT test in the first cycle, the cell was charged or discharged at 0.1 A g–1 

for 30 min, then followed by a 90 min open circuit step to allow relaxation back to equi-

librium. The procedure was repeated until the discharge (or charge) voltage reached 0.01 

V (3 V). Figure S5a shows a single GITT titration curve during the charge process. Where, 

τ is the relaxation time (s); sE  stands for the voltage change in two consecutive relaxa-

tion period; E  represents the voltage change during the constant current pulse, re-

gardless of the IR-drop. Figure S5b presents the plot of voltage vs τ1/2 is roughly linear, so 

the Na+ diffusion coefficients can be calculated according to the following Equation: 
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NaD (cm2 s–1) is the chemical diffusion coefficient of Na+; Bm (g) is the quality of the 

active material in the electrode; BM (g mol–1) is the molecular weight of active material; 

mv (cm3 mol–1) is the molar volume of the active material; S (cm2) is the contacting area of 

eletrode with electrolyte (taken as the geometric area of electrode for better comparison 

with literatures); It shows that the DNa values during the insertion and extraction pro-

cesses are close and on the order of 10–10.5 to 10–11.5 cm2 s–1 (Figure 5h, 5i), indicating that 

Na+ has a high kinetic behavior in SnS2/RGO electrode.[14,15] The high Na+ diffusion coef-

ficient may be due to the unique micro- and nanostructure, which can be responsible for 

high rate performance. 

 

Figure S7. CV curves of the SnS2/RGO electrode at a scan rate of 0.1 mV s–1 for the first four cycles for PIBs. 
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Figure S8. (a) The charge/discharge curves of SnS2/RGO electrode obtained during GITT measurement, (b) a single GITT 

titration curve during the charge process, and (c) the plots of voltage vs. root of pulse time (τ1/2). 

The GITT test was performed in a voltage range of 0.01–3 V (Figure S7a). Prior to 

GITT measurement, the assembled cells were charged/discharged at 100 mA g–1 for 10 

cycles to activate the battery. Figure S7b shows a single GITT titration curve during the 

charge process. Assuming that K+ transport in the electrode obeys Fick’s second law, the 

chemical diffusion coefficients can be calculated by the following Equation (2): 
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When /dE d   shows a linear relationship, the equation can be simplified into: 
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Where, KD  (cm2 s–1) is the chemical diffusion coeffi-

cient of K+; Bm  (g) is the quality of the active material in the electrode; BM  (g mol–1) 

is the molecular weight of active material; mv  (cm3 mol–1) is the molar volume of the 

active material; S (cm2) is the contacting area of eletrode with electrolyte (taken as the 

geometric area of electrode for better comparison with literatures); sE  is the voltage 

change in two consecutive relaxation period; E  is the voltage change during the 

constant current pulse. It can be seen that the plots of voltage vs τ1/2 are roughly linear 

(Figure S7c), so the K+ diffusion coefficients at different discharge and charge states can 

be calculated according to the simplified Eq. 2. 



7 
 

 

Figure S9. (a) The cycling performance of SnS2/RGO at 0.6 A g–1. (b) Rate performance of SnS2/RGO electrode at various 

densities of 0.2–2.0 A g–1. 
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