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Abstract: To date, the fabrication of advanced anode materials that can accommodate both Na+ and
K+ storage is still very challenging. Herein, we developed a facile solvothermal and subsequent
annealing process to synthesize SnS2/RGO composite, in which SnS2 nanosheets are bonded on
RGO, and investigated their potential as anodes for Na+ and K+ storage. When used as an anode
in SIBs, the as-prepared SnS2/RGO displays preeminent performance (581 mAh g−1 at 0.5 A g−1

after 80 cycles), which is a significant improvement compared with pure SnS2. More encouragingly,
SnS2/RGO also exhibits good cycling stability (130 mAh g−1 at 0.3 A g−1 after 300 cycles) and
excellent rate capability (520.8 mAh g−1 at 0.05 A g−1 and 281.4 mAh g−1 at 0.5 A g−1) when used as
anode for PIBs. The well-engineered structure not only guarantees the fast electrode reaction kinetics,
but also ensures superior pseudocapacitance contribution during repeated cycles, which has been
proved by kinetic analysis.

Keywords: SnS2; anode; sodium-ion batteries; potassium-ion batteries

1. Introduction

With the intensification of environmental pollution, green renewable energy has
currently become an active area of research [1,2]. Among numerous energy storage devices,
sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have gained extensive
concern for energy storage because of their similar energy storage mechanisms to lithium-
ion batteries (LIBs) and the abundant sodium and potassium resources [3–5]. However,
the low capacity of commercial graphite anodes for Na-ion and K-ion storage has greatly
limited the large-scale development of SIBs and PIBs [6–8]. Therefore, it is imperative to
develop high-performance anode materials for both SIBs and PIBs.

Specifically, the hexagonal tin (IV) sulfide (SnS2) possesses unique two-dimensional
(2D) layered structure with large interlayer spacing and high specific capacity based on
both conversion and alloying processes [9–11], which makes it more appropriate for Na-ion
and K-ion storage. Unfortunately, similar to other TMSs, SnS2 also has the low intrinsic
conductivity and the dramatic volume and structural changes, which will easily lead to
the poor sluggish kinetics and rapid capacity reduction in the process of Na+ and K+

insertion/extraction [12–15]. The construction of SnS2 and various conductive carbona-
ceous composite has become one of the most effective approaches to ameliorate these
problems [16–18]. For instance, the carbon-coated SnS2 nanosheet composite fabricated by
Li et al., delivered a reversible capacity of ~420 mAh g−1 at a current density of 500 mA g−1

after 100 cycles for Na+ storage [19]. SnS2 and rGO composite synthesized by Glushenkov,
displayed a reversible capacity of 250 mAh g−1 at 25 mA g−1 after 30 cycles for PIBs [20].
Even though the cycling stability has been improved via carbon modified anode materi-
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als, how to achieve higher-performance SnS2 electrode with long cycle life is still a huge
challenge for SnS2.

Herein, SnS2/RGO nanoarrays have been fabricated via a facile solvothermal method
along with a subsequent annealing process. GO is chosen as the substrate because the
rich functional groups on GO can increase the nucleation sites with metal ions, which
contributes to form a strong and close-coupled interface between RGO and SnS2. Benefit-
ing from the unique structural characteristics, SnS2/RGO displays higher cycle stability
and better rate capability than the pristine SnS2. For example, the prepared SnS2/RGO
shows a high reversible capacity of 653.8 mAh g−1 at 100 mA g−1, and outstanding rate
performance (593 mAh g−1 at 200 mA g−1 and 400 mAh g−1 at 2000 mA g−1) for SIBs.
Moreover, SnS2/RGO also displays a high-rate capacity (520.8 mAh g−1 at 50 mA g−1 and
281.4 mAh g−1 at 500 mA g−1) and good cycling stability (130 mAh g−1 at 300 mA g−1 af-
ter 300 cycles) for K-ion storage. The fast electrode reaction kinetics and superior pseudo-
capacitance contribution may be the reason for the excellent performance, which has been
proved by kinetic analysis. Thus, the present study provides a novel strategy to prepare
SnS2 and rGO composite with excellent performance for both sodium and potassium stor-
age and this strategy which may be extended to fabricate other high-performance electrode
materials for energy storage.

2. Materials and Methods
2.1. Synthesis of SnS2, and SnS2/RGO Nanoarrays

In a typical preparation, 10 mg GO (prepared by the modified Hummers method)
was first dispersed in 8 mL isopropanol. Then 0.172 mmol (38.8 mg) SnCl2·2H2O and
0.761 mmol (62.4 mg) 2-methylimidazole (2-MIN) were added into the above solution and
stirred vigorously for 12 h at 25 ◦C. After that, 0.8 mmol (60 mg) thioacetamide (TAA)
was added into the solution under stirring. After stirring for another 2 h, the solution
was transferred into a Teflon-lined autoclave (25 mL) and kept at 120 ◦C for 24 h. The
solid product was collected and dried. Finally, the precursor annealed at 350 ◦C with a
heating rate of 2 ◦C min−1 in Ar gas for 1 h to gain the final products of SnS2/RGO. The
SnS2 was produced by similar route, but with no added organic molecules and GO in the
solvothermal process.

2.2. Materials Characterization

The morphologies of SnS2/RGO and SnS2 were tested by a transmission electron
microscope (JEOL-1400 Plus, Tokyo, Japan), the high-resolution TEM (HRTEM JEOL-
2011, Tokyo, Japan) and a field emission scanning electron microscope (FESEM, ZEISS
Geminisem 300, Oberkochen, Germany). The components of SnS2/RGO and SnS2 were
analyzed by energy dispersive spectrometry (EDS). Crystallographic phases of SnS2/RGO
and SnS2 were measured by powder X-ray diffraction (XRD Bruker, D8-Advanced, Tokyo,
Japan) using a Cu Kα radiation. Raman spectroscopy (LabRAM HR 800, Paris, France) with
532 nm laser excitation. X-ray photoelectron spectroscopic (XPS) surveys were performed
on an X-ray photoelectron spectrometer (Thermo Scientific Escalab 250Xi, New York, NY,
USA), which uses an Al Kα as the excitation source.

2.3. Electrochemical Measurements

For the Na-ion half cells, 2032 coin-type cells were employed. The electrodes were
obtained by applying a slurry mixture consisting of active materials (70 wt.%), Super-P
(20 wt.%), and polyvinylidene difluoride (PVDF, 10 wt.%), to a copper foil and drying it
under vacuum at 60 ◦C for 6 h. The loading of the active material on each disc was about
1.05–1.4 mg cm−2. A sodium foil with a diameter of about 14 mm was prepared in a glove
box under the protection of high-purity argon as a counter electrode using sodium block
(Aladdin, 99.7%). The glass fiber (Whatman) was used as the separator and 1 M NaPF6
dissolved in the diethyleneglycoldimethylether acted as electrolyte. To study the electrode
performance of SnS2/RGO for PIBs, CR 2016 coin batteries was built using SnS2/RGO
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as anode, potassium metal was used as counter electrodes. The electrolyte was 3.0 M
potassium bis(fluorosulfonyl)imide (KFSI) in TGM. The anode was prepared by casting
slurries of active material, super P and PVDF binder in a mass proportion of 7:2:1 onto
copper foil with an active material loading of around 1.05–1.4 mg cm−2. The galvanostatic
charge/discharge tests were conducted on battery test station (LAND CT-2001A, Wuhan,
China) from 0.01–3.0 V. Cyclic voltammetry (CV) tests (0.01–3.0 V) were carried on the CHI
760E electrochemical workstation.

3. Results and Discussion

Figure 1 schematically illustrates the fabrication route of SnS2/RGO and SnS2. The
Sn-based nanosheets in-situ grown on graphene oxide (GO) substrate can be obtained
via solvothermal reaction by added 2-methylimidazole (2-MIN) and GO substrate in
the first step. In the absence of 2-MIN and GO substrate, flower-like three-dimensional
microspheres consisting of larger nanosheets are obtained. After a calcination process
under Ar atmosphere, SnS2/RGO and SnS2 are obtained.
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Figure 1. Schematic illustration of the formation process of pure SnS2, and SnS2/RGO.

The FESEM and TEM are carried out to investigate the morphological features of
as-prepared materials. Figure 2a and Figure S1 show the detailed morphological character-
istics of the precursors. As seen in Figure 2a, the vertical tin-based precursor nanosheets are
densely and uniformly grown on both sides of the GO substrate, forming a sandwich-like
hierarchical structure. To find out the function of 2-MIN, we performed several comparative
experiments by varying the reaction conditions (Figure S1). In the absence of 2-MIN, the
same synthesis process produced bare GO sheets and parts of the nanosheets are assembled
separately to form a flower-like structure (Figure S1a). In the presence of 2-MIN but without
GO, the results showed that the nanosheets are grown on the solid spheres (Figure S1b).
In the absence of 2-MIN and GO substrates, the Sn-based precursor shows flower-like
three-dimensional spherical structure assembled by larger nanosheets compared with those
in the presence of 2-MIN (Figure S1c). The results show that 2-MIN can control the size
of precursor nanosheets and induce the growth of nanosheets on GO substrates, which
helps to synthesize some novel nanomaterials. FESEM images at different magnifications
(Figure 2b,c) show that the nanosheet structure is well retained after annealing at 350 ◦C.
TEM image in Figure 2d further indicates that SnS2 nanosheet is tightly grown on microns
GO nanosheets, indicating the synthesized sandwich structure integrates the features of
micro- and nanostructures. Figure 2e displays a typical high-resolution transmission elec-
tron microscopy (HR-TEM) image of SnS2/RGO, the d-spacing of 0.338 nm corresponding
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to the (100) plane in SnS2. Moreover, the selected-area electron diffraction (SAED) pattern
(Figure 2f) shows the tagged diffraction rings can be well indexed to (100), (101), (110)
and (111) crystal planes of SnS2, respectively. The FESEM image and the corresponding
Energy dispersive X-ray spectroscopy (EDX) elemental mapping images of SnS2/RGO are
shown in Figure 2g, revealing the homogeneous dispersion of Sn, S, and C throughout
the composites, further verifying the nanosheets are well dispersed on the GO substrate
throughout the whole network. As shown in Figure S2a, pure Sn-based precursor can also
keep the flower structure after annealing. Moreover, the EDS mapping result shown in
Figure S2b displays the homogeneous distribution of Sn and S elements throughout the
flower-like SnS2 sphere.
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(d) TEM image of SnS2/RGO. (e) HRTEM image of SnS2/RGO. (f) Corresponding SAED pattern. (g) A typical FESEM
image of SnS2/RGO and the corresponding elemental mappings of Sn, S and C elements (as labeled).

The composition of two samples is investigated by X-ray diffraction (XRD). It can be
seen that SnS2/RGO and SnS2 show similar diffraction peaks (Figure 3a) and the diffraction
peaks can be attributed to hexagonal SnS2 with P-3m 1 (164) space group (JCPDS no. 23-
0677), corresponding to the above mentioned HRTEM and SAED results. There are no
obvious diffraction peaks for the carbon phase due to its poor crystallinity. Figure 3b shows
a typical 2D layered crystal structure of SnS2, with an interlayer spacing of 0.59 nm. The
Raman spectra of SnS2/RGO and GO are shown in Figure 3c. It can be seen that SnS2/RGO
and GO have distinct characteristic peaks at ~1344 and 1602 cm−1, which can be attributed
to the D (disordered carbon) and G (graphitic carbon) bands of graphite. Moreover, the
intensity ratio of D-band to G-band (ID/IG) is 1.06, 1.37 for GO, and SnS2/RGO, respectively,
indicating more defects in SnS2/RGO [21,22]. In addition, SnS2/RGO exhibits a peak
located at 313 cm−1, which corresponds to the A1g vibration of SnS2 [23,24]. Figure S3
presents the N2 adsorption-desorption isotherm profiling of SnS2/RGO. The relatively
large surface area (33.885 m2 g−1) and abundant pores (0.159 cm3 g−1) of SnS2/RGO
can provide adequate active sites and promotes the rapid transport of electron and ions.
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X-ray photoelectron spectroscopy (XPS) was further carried out to investigate the surface
electronic states and the chemical compositions of SnS2/RGO. The characteristic peaks of
Sn 3d, S 2p, C 1s, and O 1s are observed in the wide survey spectrum (Figure S4). Figure 3d
shows the Sn 3d spectrum, in which two strong peaks at 486.1 and 494.5 eV correspond to
Sn 3d5/2 and Sn 3d3/2 of Sn4+ in SnS2/RGO [25,26]. The high-resolution S spectrum can be
convoluted into two peaks at 162.4 eV and 161.3 eV, corresponding to S 2p3/2 and S 2p1/2
of S2− (Figure 3e), which further confirms the formation of SnS2 [27,28]. As presented
in Figure 3f, the C 1s spectrum can be divided into two peaks and assigned to the C-C
(284.8 eV) and C-O (286.5 eV) bonds, respectively [29,30].
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Inspired by their special structure, the electrochemical performance of the obtained
SnS2/RGO and SnS2 for SIBs anodes was tested. Figure 4a,b display the galvanostatic
charge-discharge (GCD) curves of SnS2/RGO and SnS2 at 0.1 A g−1, respectively. It can be
clearly seen that SnS2/RGO reveals the better performance than pure SnS2. For SnS2/RGO
electrode, the discharge and charge capacities of the first cycle are 795.4 and 653.8 mAh g−1,
respectively. The initial loss of irreversible capacity is mainly attributable to the irreversible
process of electrolyte decomposition and the generation of solid-electrolyte interface (SEI)
layers on the electrode surface, which was a common phenomenon in tin-based sulfide
anode materials [31,32]. After the initial cycle, the GCD curves are almost repeated in
the flowing cycles, which is coinciding with the CV results (Figure S5a), indicating the
good stability of SnS2/RGO electrode. For further comparison, the cycling performance
of SnS2/RGO and SnS2 was measured at 0.5 A g−1 and shown in Figure 4c. SnS2/RGO
displays the better performance than pure SnS2 electrode and maintains a high capacity of
581 mAh g−1 after 80 cycles. The SnS2/RGO exhibits excellent sodium storage performance
that exceeds many previously reported anode materials for SIBs (Table S1). Beside the
cycling performance, the SnS2/RGO electrode also showed excellent rate performance
(Figure 4d). It can show specific capacities of 593, 490.5, 425.2, 431.8, 428.1 and 400 mAh g−1

at 0.2, 0.4, 0.6, 0.8, 1 and 2 A g−1, respectively. When the current was switched back to
0.2 A g−1, the specific capacity of 491.3 mAh g−1 can be regained, which indicated that the
SnS2/RGO electrode has good structural stability. To verify the excellent rate performance
of SnS2/RGO, the morphology of SnS2/RGO electrode for SIBs after rate performance
was observed by FEEM. It can be seen from Figure S5b that the SnS2 nanosheets become
nanoparticles, but still in close contact with graphene, which is an essential aspect for the
good rate performance of the material. To further understand the improved electrochemical



Nanomaterials 2021, 11, 1932 6 of 11

performance of SnS2/RGO electrode, the EIS spectra of the SnS2/RGO and SnS2 electrodes
are measured before and after 10 cycles. As shown in Figure 4e, SnS2/RGO shows a
much smaller charge transfer impedance (Rct) than pure SnS2 after 10 cycles at 0.2 A g−1,
indicating that the improvement of conductivity benefiting from the introduction of RGO.
Moreover, the Warburg coefficient of SnS2/RGO is 46.6 Ω s−0.5 (Figure 4f), which is much
smaller than that of SnS2 (316.1 Ω s−0.5), showing that Na-ion has a faster diffusion ability
in SnS2/RGO. These results are coincident with their sodium storage performance.
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To better understand the superior capability of SnS2/RGO, the charge storage behavior
and reaction kinetics of SnS2/RGO and SnS2 are further analyzed according to CV and
GITT tests. Figure 5a and Figure S5c show the CV curves of SnS2/RGO and SnS2 at multiple
scan rates from 0.1 to 0.6 mV s−1. It should be pointed out that the curves keep its shape
even at a high scan rate of 0.6 mV s−1. The dependency between the peak current (i) and
the sweep rate (ν) is based on Equation (1):

i = ανb, (1)

where b reflects the charge storage behavior [33–35]. Figure 5b and Figure S5d show the
b-values of the two redox peaks for SnS2/RGO and SnS2, respectively. It can be seen
that SnS2/RGO electrode shows a larger b-values than SnS2 electrode, indicating the
pseudocapacitive contribution ratio of SnS2/RGO is larger than that of the SnS2 electrode.
The ratios of capacitive contribution can be evaluated by Equation (2) [36–38]:

i(v) = k1v + k2v1/2 (2)

where the k1(V)v and the k2(V)v1/2 stand for the capacitive-controlled contribution and
the diffusion-controlled contribution, respectively. Figure 5c and Figure S5e show the
typical CV profiles of the Na-ion capacitive (dark red region) in comparison with the total
measured current for SnS2/RGO and SnS2 at the scan speed of 0.6 mV s−1. The capacitive-
controlled contribution is calculated to be 83.16% of the total Na+ storage at 0.6 mV s−1

in SnS2/RGO, which is higher than that in the case of SnS2 (74.13%). In addition, the
ratios of pseudocapacitive contribution are all increased as the scan rate increases but
from 62.76 to 83.16% for SnS2/RGO, 44.56 to 74.13% for SnS2 (Figure 5d). Therefore, the
improvement of the rate capability may be related to the enhanced contribution ratios
of the capacitive behaviors. After that, the galvanostatic intermittent titration technique
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(GITT) was carried out to further evaluate the Na+ solid-state diffusion dynamics of
SnS2/RGO and SnS2 [39]. The GITT test was performed on at 0.1 A g−1 in a voltage range
of 0.01–3 V (Figure 5e). Figure S6 shows the detailed test and calculation method. As
shown in Figure 5f–i, SnS2/RGO shows lower reaction resistance and higher D values
during the entire cycle than that with SnS2, which can be probably responsible for the
superb performance.
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The electrochemical performance of SnS2/RGO as the anode material for PIBs was
investigated using CR2016 half cells. Figure 6a exhibits the GCD profiles of SnS2/RGO
at 50 mA g−1. The discharge/charge capacity of the first cycle is 983.1/520.8 mAh g−1,
respectively. The irreversible capacity is considered to be the formation of the SEI layer,
which is a common phenomenon in transition metal-based anode materials [40]. In the
following cycles, the profiles are well overlapped, which is coinciding with the CV results
(Figure S7). In addition, it shows a high capacity of 520 mAh g−1 after 10 cycles. Figure 6b
exhibits the rate performance of SnS2/RGO. The reversible capacities of the SnS2/RGO
are 520.8, 405, 337.5, and 336.7 mAh g−1 mAh g−1 at 50, 100, 200 and 300 mA g−1, re-
spectively. Even at 500 mA g−1, it still can remain a high capacity of 281.4 mAh g−1,
which indicates the excellent rate capability of SnS2/RGO for K-ion storage. To further
evaluate the cyclic stability of SnS2/RGO electrode, the cycling test under current density
of 100 and 300 mA g−1 are conducted. The SnS2/RGO shows a high reversible capacity
of 403.2 mAh g−1 at 100 mA g−1 after 80 cycles, with coulombic efficiency of almost 100%
(Figure 6c). The long cycle performance of SnS2/RGO electrode is shown in Figure 6d. It
delivers a high reversible capacity of 130 mAh g−1 at 0.3 A g−1 after 300 cycles. The results
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have been amply vindicated that the SnS2/RGO electrode has excellent cycling stability
for K-ion storage. To gain insight into the electrochemical kinetics of K-ion storage in
SnS2/RGO, we performed CV (0.2 to 1.0 mV s−1) and GITT tests. As shown in Figure 6e–h
and Figure S8, the large proportion of pseudocapacitive contribution, and high D values
enables improvement of electrochemical performance, especially the rate capability. In
addition, SnS2/RGO also displays the excellent Li-ion storage performance (Figure S9). All
in all, this hybrid structure demonstrates good electrode integrity, fast electrode reaction
kinetics and the superior cycling stability, making SnS2/RGO a great potential for the
future electrochemical energy storage.
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kinetics and quantitative analysis of the K+ storage behavior for SnS2/RGO anodes. (h) Calculated diffusion coefficients
during charging and discharging from SnS2/RGO.

4. Conclusions

In summary, the well-designed sandwich-like hierarchical SnS2/RGO structure have
been synthesized via a facile solvothermal and subsequent annealing process. We found
that 2-MIN can induce the growth of SnS2 nanosheets on GO substrate during the solvother-
mal process, which has not been reported before. Benefiting from the good electrode
integrity, excellent pseudocapacitive contribution and fast electrode reaction kinetics,
SnS2/RGO displays an outstanding rate performance (593 mAh g−1 at 0.2 A g−1 and
400 mAh g−1 at 2.0 A g−1) and good cycling stability with a high capacity of 581 mAh g−1

at 0.5 A g−1 over 80 cycles when applied as anode for SIBs. Simultaneously, it delivers
a high capacity of 130 mAh g−1 at 0.3 A g−1 after 300 cycles as anode for PIBs. These
results indicate that the SnS2/RGO is a promising anode material for electrochemical
energy storage.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11081932/s1, Figure S1: FESEM images of the precursors obtained under different reaction
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conditions. (a) In the presence of GO but without 2-MIN. (b) In the presence of 2-MIN but without GO.
(c) In the absence of 2-MIN and GO, Figure S2: (a) FESEM image of SnS2. (b) FESEM image of SnS2
and the corresponding elemental mappings of Sn and S elements (as labeled), Figure S3: (a) Nitrogen
adsorption-desorption curve of SnS2/RGO, (b) the related pore size distribution curve, Figure S4:
High resolution XPS spectrum of SnS2, Figure S5: (a) Cyclic voltammetry (CV) curves of SnS2/RGO.
(b) FEEM image of SnS2/RGO electrode after rate performance. (c) CV profiles of SnS2 at different
sweep rates. (d) Linear relationship of log (i) vs. log (v) plots at each redox peak. (e) CV curve
with capacitive and diffusion-controlled contributions at 0.6 mV s-1, in which the pseudocapacitive
fraction is shown in the pink region, Figure S6: (a) Voltage versus time curve for one single GITT test.
(b) The plots of voltage vs. root of pulse time (τ1/2), Figure S7: CV curves of the SnS2/RGO electrode
at a scan rate of 0.1 mV s-1 for the first four cycles for PIBs, Figure S8: (a) The charge/discharge
curves of SnS2/RGO electrode obtained during GITT measurement, (b) a single GITT titration curve
during the charge process, and (c) the plots of voltage vs. root of pulse time (τ1/2), Figure S9: (a)
The cycling performance of SnS2/RGO at 0.6 A g-1. (b) Rate performance of SnS2/RGO electrode at
various densities of 0.2–2.0 A g-1, Table S1: Electrochemical performance comparisons of SnS2/RGO
electrode with those of the previously reported transition metal dichalcogenides anodes for SIBs.
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