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Abstract: This paper investigates the spontaneous decay rate of elliptical plasmonic nanostructures.
The refractive index was analyzed using the effective medium theory (EMT). Then, the polariz-
ability, spontaneous radiative, non-radiative decay rate, and electric field enhancement factor were
characterized for the targeted elliptical nanostructures at different aspect ratios. All of the optical
analyses were analyzed at different distances between the excited fluorescent coupled atom and
the plasmonic nanostructure (down to 100 nm). This work is promising in selecting the optimum
elliptical nanostructure according to the required decay rates for optical conversion efficiency control
in energy harvesting for solar cells and optical sensing applications.
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1. Introduction

Nanotechnology has been a major focus of scientific attention over past decades, ex-
hibiting an exponential growth for the number of publications in plasmonic nanostructures
(NSs) and light scattering in several such plasmonic materials like silver nanorods and gold
nanoparticles [1]. Plasmonic nanoparticles (NPs) exhibit many useful properties, especially
metallic NPs, due to the surface plasmon resonance (SPR) effect [2,3]. This SPR phe-
nomenon causes the resonance of collective electrons, known as surface plasmons, when
polarized light hits a metallic film at the interface of media with different refractive indices
which allows for a major increase in the light absorption and light scattering to the other
wavelengths that does not matched with the resonance of the plasmonic material. This
remarkable optical property makes plasmonic NPs a major subject of interest in the study
of optics and different applications in electronics, communications, and biomedicine [4].

Recently, the light scattering has become a very essential tool for sensing application in
several fields such as the material and the biomedical science [5]. However, the scattering
properties of the plasmonic nanoparticles are very good, the gold and silver metal nanopar-
ticles widely used in scattering applications [6]. One advantage of these material that
they are non-toxic, but it is relatively expensive [5,7]. Thus, the plasmonic nanoparticles
are used in Surface enhanced Reman Spectroscopy (SERS), which is a powerful method
for detecting tumors and cancers cells in alive body [5,8–12]. For the material science
applications, the light scattering plays a significant rule to measure the morphology and the
characterizations of the materials [13]. There are many devices uses this technology such
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as the Light Scattering Spectroscopy (LSS) to measure the spectral power density of the
material surface [14], the Phase Analysis Light Scattering (PALS) measures the motilities
of the colloidal particles [13,15], the Laser Doppler Anemometry (LDA) to investigate the
dynamic fluid [16], the Forced Rayleigh Scattering (FRS) to measure the diffusion of the
materials [17,18].

The need to compute the effective properties for the plasmonic nanoparticles has led
to establish a theory that can calculate the micro and macro optical properties for arbitrary
nanoparticle shape in a homogenous medium. So that the scientists forge many theoretical
methods to do that, whereas the most important one is the Effective medium theory
(EMT) [19]. In 1904, Maxwell–Garnett provided the EMT, whereas it makes a homogeneity
between the impeded nanoparticles and the certain medium. In addition, the EMT makes
a very good approximation to the complex electromagnetic medium. Thus, the EMT has
also succeeded to calculate the permittivity for this effective medium by taking the volume
fractions f into account for every individual particle in this theoretical medium [20,21].

In 1916, Einstein provided the equilibrium emission theory for an excited quantum
state has emitted a spontaneous and stimulated light to calculate the spontaneous emission
decay rate [22]. Then, Dirac had predicted the theory of emission for quantum mechanics
according to his probability of the photon emission theory [23]. As Purcell discovered that
the resonant cavity affects the atomic fluorescence by controlling the spontaneous decay
rate. Recently, we know that the material geometry shape also can affect the influence of
the spontaneous decay rate. Thus, we can control the spontaneous emission by controlling
shape of the nanoparticle. This principle is widely used to enhance light sources [19]. For
decay rates of fluorescence emission, the SPR resonate cavity can effectively enhance, either
linearly or non-linearly, the atomic fluorescence decay rate depending on the geometry of
the metallic nanostructures [24,25]. Therefore, the investigation of the interaction of single
atoms, molecules, and quantum dots with optical fields in the presence of a nanobody
becomes essential to improve the optical efficiency of fluorescence emission [26]. Besides,
the spontaneous emission of the single molecule could be used as a normalized light and
utilized to study the sized nano-bodies [26,27]. Consequently, the spontaneous decay rate
is helpful to determine the measured quantity of nano-bodies at fluorescent detection
along with the identification of a single molecule by using the scanning microscopes [28].
Moreover, the metallic nano-radiator quantum dot can be employed as an amplifier to the
plasmonic surface by using the emission radiation [29,30]. The plasmonic metallic nanos-
tructures; such as gold, silver, and copper can be embedded in many applications such as
solar cells [31–36], up conversion [32,37–39], light emitting diodes (LEDs) [40,41], lasers
and laser printing [42–45], sensors and photodetectors [46–49]. Moreover, the plasmonic
nanoparticles aid to slow down the speed of light which can enhance both absorption effi-
ciency and optical coupling in the waveguide-cavity for optical communication networks
and sensing applications [25,48–53]. In addition, the spontaneous emission is wildly used
to control and tuning the light sources and its efficiency [30,54]. Also, the emission of the
nanobody that is emitted from the single molecule can be applied to influence the DNA
structure without using any addition to the fluorescent markers [55]. Thus, it is important
to know how to match the fluorescent properties of the NPs with the detected molecule
and consequently to improve the selectivity of the detection [26].Different plasmonic nanos-
tructures, such as gold and silver formed as nanorod, spheroid, sphere, ellipsoid, and half
ellipsoid (moth-eye) lead to enhance the electric field around them to the surrounding
medium which improves the optical coupling of any fluorescent emission matched with
surface plasmonic resonance (SPR) wavelength [56–60].

In this paper, we used the EMT to calculate the effective properties such as the
effective RI and the effective polarizability in order to calculate both effective spontaneous
radiative and non-radiative decay rates, and effective enhancement factor with taking the
geometrical shape of the plasmonic nanostructures into account, such as ellipsoid, sphere,
and spheroid. We analyzed this calculation at different distances between the excited
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atom and the plasmonic structure down to 100 nm, with detection of optimum ranges of
plasmonic geometry’s aspect ratio, coupling wavelength, and distance.

2. Mathematical Background
2.1. Mathematical Interpertation of EMT

The EMT has been selected to model our selected NPs to obtain a generalized formula
for the real part (n), and the imaginary part (k) of RI. This is performed by calculating an
effective RI which is a function of the height or depth of the nanostructure, with focusing on
NP geometry, as well as the refractive indices of both the NP and its surrounding medium.
The effective RI for the ellipsoid and spheroid can be approximated by both of the following
equations; Equations (1) and (2), respectively. This approximation is acceptable for small
value of Lo for the ellipsoid or large value of Lo for the spheroid in order of close to zero
and close to 1 for both ellipsoid and spheroid, respectively, as shown in details in Section
S3 in Supplementary Materials [20,61]:

ne f f (z) ≈ n2· f (z) + n1·(1− f (z)) (1)

(ne f f (z))
−1 ≈ n2

−1· f (z) + n1
−1·(1− f (z)) (2)

where both n1 and n2 are the RIs of the surrounding medium and NP, respectively, while
f (z) is volume ratio which is function of the height with respect to the z-axis and could be
expressed as f (z) = An(z)/Agrid, with An(z) being the cross-sectional area of the NP at a
specific height on the z-axis and Agrid being the area of the NP arrangement circular grid as
shown in Figure 1. Then, the effective RI can be written as Equation (3):

ne f f (z) ≈ n2·
An(z)
Agrid

+ n1·
(

Agrid − An(z)
Agrid

)
(3)
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Figure 1. Shape geometry analysis for EMT calculations.

From Equation (3), both areas are expressed as Agrid = πr2
b and An(z) = Agrid·AHF(z),

where rb is the base radius of the grid and AHF(z) represents the area height factor, ranging
from 0 to 1. Additionally, since the base area of all NPs is also circular, the equation can be
further simplified to obtain the following expression [34]:

ne f f (z) ≈ AHF(z)·(n2 − n1) + n1 (4)
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The parameter of AHF(z) is a function of the geometrical curvature of the NPs as a
function of the height along the z-axis. Since all our shape geometries follow the equation:
x2

a2 + y2

b2 + z2

c2 = 1, as clarified in Figure 1, the AHF was derived to be AHF(z) = 1−
( z

c
)2

where c is constant. Thus, the effective RI for an ellipsoid on a circular grid can be approxi-
mated by Equation (5), which is valid for all ellipsoids, including spheres. In our case, this
equation will be applied on our ellipsoid, sphere, and spheroid nanoparticles.

ne f f ,ellipsoid(z) ≈
(

1−
( z

c

)2
)
·(n2 − n1) + n1,−c ≤ z ≤ c (5)

Utilizing Equation (5), an effective RI sweep can be performed and calculated at any
depth, ranging from the RI of surrounding medium value n1 at z = c, to the RI of NP value
n2 at z = 0 and back to the RI of surrounding medium value n1 at z = c.

According to the Electromagnetic theory, the RI of a material is a dimensionless
complex number, which describes how the light being fast or bending when it goes throw
the material based on EMT. We calculated the value of RI (nt) based on the real RI (n) and
the extinction coefficient (k) according to the following equation nt = n − ik, whereas the
real RI is related to the velocity of light waves, while the extinction coefficient is related to
the absorption or the damping of an oscillator. Then, we can introduce the permittivity in
both Equations (6) and (7).

ε(ω) = nt
2 (6)

ε(ω) =
(

n2 − k2
)
+ i2 (nk) (7)

where ε(ω) is the permittivity of NP which depends on frequency. Therefore, the polariz-
ability αz(ω) can be calculated from the following equation; Equation (8) [21,62]:

αz(ω) =
abc
3

(ε(ω)− εm)

εm + Lo(ε(ω)− εm)
(8)

where αz(ω) is the polarizability. The parameters a, b, and c are the dimensions of the NP
in the x, y, and z directions, respectively, εm is the surrounding medium permittivity, which
is assumed to be 1.5, and Lo is the depolarization factor. In the case of both ellipsoid and
spheroid, we considered that a = b and the depolarization factor is expressed according to
the Equations (9)–(11) listed in Table 1.
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Table 1. Depolarization factor at different geometry conditions.
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 𝐿௢ = 13 (10) 

Lo =
(
ξo

2 − 1
)( ξo

2 ln
(

ξo+1
ξo−1

)
− 1
)

, ξo
2 = c2

c2−a2 (9)
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Then, the analysis procedure is to solve the integration of 𝐼௖(𝑢) for both ellipsoid 
and spheroid shapes then apply it in Equation (14), to obtain the normalized radiative 
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mathematical solution of this integral is presented in Section 1 (Supplementary Materi-
als). The coupled excited atom is considered to be located at different distances away 
from the surface of each geometry shape. In the case of the ellipsoid, where 𝐿௢ → 0 is 

Lo =
(
1 + ξo

2)(1− ξo tan−1(ξo)
)
, ξo

2 = c2

a2−c2 (11)

Where the mathematical factor ξo is kept as the positive root of ξo
2. It is a function

of the atom position coordinates with assuming that the coupled atom is directly on the
surface of the plasmonic surface. This factor differs from one shape to another and its
value is calculated from the equations mentioned in the Table 1 [26,62]. Now, to calculate
the general root ξ for the atom located outside the NP, we consider the following cubic
equation in Cartesian coordinates (x, y, z):

x2

a2 + ξ
+

y2

b2 + ξ
+

z2

c2 + ξ
= 1 (12)

where ξ > ξo, if the atom is located outside the surface of nanoparticle, and ξ = 0 if
it is located inside the nanoparticle, which means that the decay rate is independent of
the position of the atom inside nanoparticle [26,62]. At any arbitrary value of x, there
is a possibility to have plasmonic resonances for a series of different shaped ellipsoids.
Therefore, a small change of the ellipsoid shape is expected to result in a change in the
spontaneous emission decay rate.

2.2. Radiative Decay Rate

Moving to the total decay rate (γtot), which is the sum of both radiative decay rate
γrad and radiation-less decay rate γnonrad. γrad is related to the energy of free photons that
emitted, whereas γnonrad is the non-radiative decay rate that describes the losses inside the
NP, related to the imaginary part of dielectric constant [54]. This section may be divided
by subheadings. It should provide a concise and precise description of the experimental
results, their interpretation, as well as the experimental conclusions that can be drawn.

γtot = γrad + γnonrad (13)

For mathematical interpretation of decay rates, the momentum dipole between the
plasmonic NP and the fluorescent atom, which is affected by the plasmonic field, is assumed
to be located and oriented along z-axis and then the normalized decay rate equation is
simplified as presented in Equation (14):

(
γ

γo

)
z

rad =

∣∣∣∣∣1 + 1
2

abc (1− εzz)

(
ε− 1

ε− εzz

)
×
(

2
z
√
(z2 + a2 − c2)(z2 + b2 − c2)

− Ic(ξ)

)∣∣∣∣∣
2

(14)
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where ε is the permittivity of NPs. The integral Ic(ξ) and εzz are defined by the following

relations:

Ic(u) =
∞∫

ξ

du
(c2 + u)

√
(a2 + u)(b2 + u)(c2 + u)

(15)

εzz = 1−
(

1
2

abc Ic

)−1
(16)

Then, the analysis procedure is to solve the integration of Ic(u) for both ellipsoid
and spheroid shapes then apply it in Equation (14), to obtain the normalized radiative
decay rate for the structures of ellipsoid, sphere, and spheroid. More details about the
mathematical solution of this integral is presented in Section S1 (Supplementary Materials).
The coupled excited atom is considered to be located at different distances away from the
surface of each geometry shape. In the case of the ellipsoid, where Lo → 0 is approached
to be a cylinder and the excited atom is located along its major axis. On the other hand,
Lo → 1 is approached to be a disc in the case of spheroid and the exited atom is located
along its minor axis, as shown in Figure 2. To calculate the normalized decay rate for the
ellipsoid and the spheroid, we substitute with c > a for the ellipsoid to determine the value
of the Ic(ξ) integration as shown in Equation (15); then, similarly by substitution when
c < a for the spheroid. For both ellipsoid and spheroid geometrical cases, the integral Ic is
expressed as concluded in both Equations (17) and (18), respectively.

Ic(ξ) =
2

c2 − a2

1
2

ln


√

ξ+c2

c2−a2 − 1√
ξ+c2

c2−a2 + 1

+
1√

ξ + c2

 (17)

Ic(ξ) =
2

c2 − a2

 1√
a2 − c2

π

2
− tan−1

√ ξ + c2

a2 + c2

+
1√

ξ + c2

 (18)
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Figure 2. Simple sketch of the geometry of: (a) ellipsoid, (b) sphere, and (c) spheroid. The excited atom is located at different
distances (d) from the close surface of the NP.

To determine the value of the factor ξ we apply Equation (12) to the location of the
excited atom at z-axis, then, we get that ξ = z2 − c2. Then, we substitute in the previous
Equations (17) and (18) to obtain the radiative decay rate in Equation (19), as proved inside
the Supplementary Materials, Section S2:

(
γ

γo

)
z

rad =

∣∣∣∣∣1 + 1
2

abc (1− εzz)

(
ε− 1

ε− εzz

)
×
(

2
z
√
(z2 + a2 − c2)(z2 + b2 − c2)

− Ic

(
z2 − c2

))∣∣∣∣∣
2

(19)

whereas the Ic
(
z2 − c2) integrals for the ellipsoid and the spheroid are presented in both

Equations (20) and (21), respectively. However, the same Equation (15) could not be applied
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for the sphere because the value of the integration Ic(ξ) tends to infinity, so that another
approximation is essential in the sphere case as shown in Equation (22) [26].

Ic

(
z2 − c2

)
=

1
c2 − a2

 1√
c2 − a2

1
2

ln


√

z2

c2−a2 + 1√
z2

c2−a2 − 1

+
2
z

 (20)

Ic

(
z2 − c2

)
=

2
c2 − a2

 1√
a2 − c2

π

2
− tan−1

√ z2

a2 + c2

+
1
z

 (21)

(
γ

γo

)
r

rad =

∣∣∣∣1 + 2
ε(ω)− 1
ε(ω) + 2

( a
r

)3
∣∣∣∣2 ≈ ∣∣∣∣ 3 ε(ω)

ε(ω) + 2

∣∣∣∣2 , r ≈ a. (22)

2.3. Non-Radiative Decay Rate

In this section, the non-radiative decay rates are presented for the different geometry
shapes including ellipsoid, sphere, and spheroid. In contrast tothe radiative decay rate, and
the non-radiative decay rate depend on the nanoparticle plasmonic mode and the distance
between the excited atom and the surface of the nanoparticle. We consider that the distance
between the excited atom and the nanoparticle is constant. Then, the first three modes
with n = 1, 2, and 3 are taken to use the mentioned expressions of Equation (23) for both
the ellipsoid and the spheroid [62] and Equation (24) for the sphere [26], to calculate the
normal non-radiative decay rate.(

γ

γo

)nonrad

normal
=

3

8 (ko∆)3 im
ε(ω)− 1
ε(ω) + 1

(
γ

γo

)nonrad

tang
=

1
2

(
γ

γo

)nonrad

normal
(23)

(
γ

γo

)
r

nonrad =
3

8 (ko∆)3 im
ε(ω)− 1
ε(ω) + 2

(24)

where ∆ is the distance between the exited atom and the NP and ko is the wave number
which is defined as

√
εm

ω
c [9,37], where ω is the angular frequency and c is the speed of

light.

2.4. Electric Field Enhancement Factor

The local electric field is enhanced as a result of more optical polarization correspond-
ing to coupling with plasmonic resonance [62]. In linear photoluminescence, the electric
field enhancement (γE) is defined by Equation (25).

γE =

∣∣∣∣ E
Eo

∣∣∣∣2N
(25)

E
Eo

=
ε(ω)

(1− Lo)εm + Lo ε(ω)
(26)

where E is the local maximum of electric field, and Eo is the amplitude of the input source
electric field and N is an exponent order which is approximated to be 2 [37] and Equation
(26) is a general relation that is valid for all targeted geometries; ellipsoid, sphere, and
spheroid. The polarization factor (Lo) varies from one shape to another as explained before
in Table 1.

3. Results and Discussion
3.1. Refractive Index (n) and Extinction Coefficient (k)

Figure 3 shows both refractive index and extinction coefficient for ellipsoid, sphere,
and spheroid at different aspect ratios. The saturation spectrum of the RI curves start at
the wavelength of approximately 350 nm at all selected aspect ratios. The saturation level
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contrasts for the ellipsoid, sphere, and spheroid according to different aspect ratios with
the reduced value of saturation levels for the ellipsoid at higher aspect ratios. Then, the RI
value increases to the maximum at the case of sphere, and then decreases again according
to the smaller aspect ratio of the spheroid. On the other hand, there is an incremental
slope of the extinction coefficient k spectral curves at aspect ratios far from the sphere
case of c/a = 1. In general, the slopes are higher in the case of ellipsoid than the slopes of
the spheroid. As a result, the absorption and damping oscillation in case of ellipsoid is
expected to be slightly larger than the spheroid.

3.2. Permittivity Analysis ε(ω)

Based on Equation (6), both the real and imaginary parts of the permittivity analysis
have been presented as shown in Figure 4, with a similar behavior to the previously
mentioned n and k spectral characteristics. In more detail, the spectral change of the real
permittivity is larger with an increasing aspect ratio for the ellipsoid or a decreasing aspect
ratio for the spheroid, with nearly constant permittivity for the case of sphere. For the
imaginary part, the magnitude starts to be reduced at relatively shorter wavelengths in the
near-UV region. However, for both visible and IR regions of the spectrum, the value of the
imaginary part of permittivity has an increment behavior that is opposite to the real part
performance.
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Figure 3. The real part of RI (n) and the extinction coefficient (k) for the ellipsoid, sphere, and spheroid
at different aspect ratios.
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3.3. Polarizabilty for the Studied Plasmonic Structures

The polarizability curves of the real part, as shown in Figure 5. For the ellipsoid, the
perturbation region is near the violet region, while the maximum perturbation is found
at higher aspect ratios for the ellipsoid, according to larger directivity of the plasmonic
geometry in the z-direction. In addition, the peak value of polarizability for the ellipsoid
curves is decreasing while the aspect ratio decreases. In the same way, the maximum peak
of the polarizability’s imaginary part becomes higher within a larger aspect ratio with a
remarkable red-shift of the peak when reducing the aspect ratio of the ellipsoid part. On
the other hand, there are no clear changes in polarizability’s peak value or the spectral shift
for both sphere and spheroid geometries.
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Figure 5. The real and imaginary parts of polarizability with different aspect ratios (c/a) for the studied
elliptical geometries.

3.4. Radiative Decay Rate

The tuning peaks of the radiative decay rate, according to the change of the distance d
between the excited atom and the Ag nanostructure, are shown in Figure 6 for different
aspect ratios. At smaller distances (d) between the surface of the elliptical nanostructure
and the excited atom, the radiative decay rate (γrad) peak value is decreased along with
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being spectrally-tuned to lower wavelengths for all aspect ratios. Generally, the spheroid
peaks have a larger bandwidth compared to the ellipsoid peaks at different distances. The
resonance peak intensity become greater and less broadening at both aspect ratios c/a = 5
and 0.2, whereas the structure is approaching to a nano-cylinder. For the ellipsoid with an
aspect ratio of c/a = 5, the radiative decay rate covers the studied spectrum region from
300 to 1200 nm according to a smaller distance (d) up to 10 nm. In addition, it can be noticed
that a smaller change in distance at higher aspect ratio of the ellipsoid nanostructure leads
to a larger change in spectral peak tuning. In the case of spheroid, for example c/a = 0.2,
the radiative decay rate covers the whole targeted spectrum with a larger needed distance
with the excited coupled atom. Also, the change in distance is less effective in tuning of the
spectral peak of the decay rate in the case of spheroid, compared to the ellipsoid. Therefore,
the elliptical shape is more flexible in tuning the peak radiative decay rate, but given the
control of the distance with the exited coupled atom to be relatively tighter.

In Figure 7, the spectrum of the radiative decay rate of the ellipsoid and the spheroid
are presented at different aspect ratios for certain distances, as examples. The spectral
peaks for ellipsoids are existed at much longer wavelength compared to spheroids. In
addition, the highest intensities are found for higher aspect ratios of ellipsoid according to a
better optical coupling probabilities between the sharper edge of the higher (c/a) ellipsoid
and the excited atom.

At certain wavelengths, the optimum design of the nanoparticle in different aspect
ratios for visible and infrared wavelength can be determined, as shown in Figure 8. In
the visible range closed to green emission at 550 nm, as an example, the spheroid of
c/a = 0.2 becomes an optimum choice for the best radiative decay rate at a distance around
10 nm, as presented in Figure 8a. Within the IR region, such as 880 nm for example, both the
ellipsoid and the spheroid offer optimum decay rates but at different designed distances.
In more detail, the spheroid of aspect ratio 0.2 allows for a larger distance with the coupled
excited atom up to 18 nm, as shown in Figure 8b. On the contrary, the ellipsoid offers a
relatively large peak value of radiative decay rate, but at much smaller distances of less
than 5 nm. Here, the flexibility in the selected distances and aspect ratios of the designed
elliptical nanostructures give wide variety of applications such as energy harvesting and
sensing within different spectral regions.
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3.5. Non-Radiative Decay Rate Results

In this section, the non-radiative decay rates for the ellipsoid, sphere, and spheroid
are discussed. The variation of non-radiative decay rate depends on the dimension ratio
c/a. Both spheroid and ellipsoid with aspect ratios, such as 0.2 and 2.5, respectively, have
maximum peaks at near UV regions, as shown in Figure 9. Unlike radiative decay rate
analysis, the separation distance d does not affect the spectral behavior of non-radiative
decay rate. Figure 9a,b shows that the spectral performance of non-radiative decay rates
for different aspect ratios of elliptical nanostructures are similar at different distances to
excited atoms, but with smaller values of the decay rates according to higher distance.
This leads to reduce the losses effect or non-radiative coupling as long as the excited atom
located away from the plasmonic elliptical nanoparticle.

The relation between non-radiation decay rate γnonrad and distance d at certain wave-
lengths, such as 550 and 800 nm, are expressed in Figure 10. According to Equations (20)
and (21), it shows that the distance d affects the non-decay rates by factor of 1/d3.
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3.6. Electric Field Enhancement Factor

The spectral curves of enhancement factor for ellipsoid, spheroid, and sphere are
presented in Figure 11. The ellipsoid with c/a = 5 has the greatest peak value at wavelength
880 nm, then the peaks are decreased gradually with blue-shifted peaks toward the lowest
wavelength whenever the aspect ratio decreases. The enhancement factor for both cases of
sphere and spheroid are generally lower in intensity compared to the ellipsoid structure.
Whereas, the enhancement factor of the sphere does not have a peak over the studied
spectrum, but increases slightly with a longer wavelength. The enhancement of local
electric field is increasing where the resonance occurs in prolate particles or near the spikes.
That is clear in the cases of higher aspect ratios of the ellipsoid or smaller (c/a) for the
spheroid.
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4. Conclusions

Different plasmonic nanostructures including ellipsoid, sphere, and spheroid nanopar-
ticles have been investigated to control the absorption and emission light using single
molecule. Using the refractive index analysis via effective medium theory (EMT), dif-
ferent optical characterizations have been analyzed such as polarizability, spontaneous
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radiative/non-radiative decay rates, and enhancement factor. It has been found that we
can control the maximum tuning of peak decay rates and enhancement factor according to
different parameters including the aspect ratio of elliptical nanostructure and the distance
between the excited atom and the plasmonic nanostructure surface. From our analysis,
spheroids can be the optimum choice in near UV or visible spectrum with higher decay
rates along with larger separation distances between elliptical nanostructures and excited
atoms. However, the ellipsoid gives much larger radiative decay rate peaks in IR regions
with smaller separation distances. This work is promising in selecting the optimum ellipti-
cal nanostructure according to the required decay rates for optical conversion efficiency
control in energy harvesting and optical sensing applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11081928/s1, Section S1. Proof of Ic integral for both ellipsoid and spheroid, Section
S2. Radiative decay rate for the ellipsoid and the spheroid using Ic integral, Section S3. The general
formula the effective medium theory.
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