
nanomaterials

Article

Facile Synthesis of L-Cysteine Functionalized Graphene
Quantum Dots as a Bioimaging and Photosensitive Agent
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Abstract: Nowadays, a larger number of aggressive and corrosive chemical reagents as well as toxic
solvents are used to achieve structural modification and cleaning of the final products. These lead
to the production of residual, waste chemicals, which are often reactive, cancerogenic, and toxic
to the environment. This study shows a new approach to the modification of graphene quantum
dots (GQDs) using gamma irradiation where the usage of reagents was avoided. We achieved the
incorporation of S and N atoms in the GQD structure by selecting an aqueous solution of L-cysteine
as an irradiation medium. GQDs were exposed to gamma-irradiation at doses of 25, 50 and 200 kGy.
After irradiation, the optical, structural, and morphological properties, as well as the possibility
of their use as an agent in bioimaging and photodynamic therapy, were studied. We measured an
enhanced quantum yield of photoluminescence with the highest dose of 25 kGy (21.60%). Both S-
and N-functional groups were detected in all gamma-irradiated GQDs: amino, amide, thiol, and
thione. Spin trap electron paramagnetic resonance showed that GQDs irradiated with 25 kGy can
generate singlet oxygen upon illumination. Bioimaging on HeLa cells showed the best visibility for
cells treated with GQDs irradiated with 25 kGy, while cytotoxicity was not detected after treatment
of HeLa cells with gamma-irradiated GQDs.

Keywords: graphene quantum dots; gamma irradiation; bioimaging; photodynamic therapy; photo-
luminescence; atomic force microscopy

1. Introduction

Graphene quantum dots (GQDs) are a zero-dimensional (0D) nanomaterial that con-
sists of graphene sheets with π-conjugated sp2-hybridized carbon atoms. Since the dis-
covery of GQDs in 2008 by Ponomarenko et al., they have attracted much attention [1].
They belong to 0D carbon nanomaterials because the movements of their excitons are
confined in all three spatial directions [2]. On the basal plane and at the edges, GQDs
have covalently bonded oxygen-containing functional groups [3,4]. The existence of those
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functional groups makes them water-soluble but also suitable for subsequent surface modi-
fication with other organic/inorganic molecules [5]. Chemical modification of GQDs has
a noticeable effect on their electronic properties; depending on whether it involves the
strongly electron-accepting or electron-donating molecules [6].

GQDs are semiconductors with a lateral size below 100 nm and a tunable band gap,
usually between 1 and 4 eV [7,8], while graphene itself is a semi-metal with a 0 band
gap [9]. The non-zero band gap is a consequence of quantum confinement and the edge
effect in GQDs [10–12]. With the size and surface chemistry modification, the band gap
can be tuned [12,13]. Thus, GQDs show stable photoluminescence in the visible part of the
spectrum [12].

Other properties of GQDs are chemical inertness, low cytotoxicity, biocompatibility
and good dispersibility in water [11,12,14–17]. The non-toxic nature and excellent photo-
stability distinguish them from other inorganic quantum dots [18]. After administration, a
few ways of GQDs elimination from the animal organisms were found [19–21]. Smaller
size GQDs excreted from the mice organism, predominantly through the kidney and urine,
while larger ones are mainly eliminated through the liver. Thanks to these mechanisms,
over-accumulation in tissues and organs is avoided. The above-mentioned properties make
GQDs a good candidate for biomedical applications such as bioimaging and photodynamic
therapy [3,22].

One of the methods for GQDs synthesis is electrochemical oxidation. This simple and
low-price procedure is based on oxidation and exfoliation of graphite rods, immersed in the
electrolyte solution [23–25]. A high redox potential produces radicals OH• and H• from
water which create the pressure between graphene layers. This pressure leads to gaps in van
der Waals interactions and results in the formation of defects in graphene planes [26]. Both
exfoliation and electrochemical cutting of graphite rods cause the formation of nanometer-
scale structures—graphene quantum dots [27]. Depending on the employed electrolyte,
the obtained GQDs have different surface functionalization, degree of oxygenation and,
consequently, photoluminescence quantum yields [28,29].

Gamma irradiation is a possible approach to the structural modification of carbon
nanomaterials [30]. It is a simple and clean method for altering the structure, morphology
and physical–chemical properties of carbon nanomaterials. The effects of irradiation
strongly depend on material type, irradiation dose, and medium [30]. The mediums used
for irradiation of GQDs were deionized water, a mixture of deionized water and isopropyl
alcohol (IPA), ethanol, and ethylenediamine (EDA) [31–33]. By changing the medium, it is
possible to achieve a reductive or oxidative environment during irradiation. For example,
Chan et al. irradiated graphene oxide (GO) in water and a water–IPA mixture with doses
of 115.2, 230.4 and 345.6 kGy [34]. XPS spectra showed that after irradiation, the amount of
oxygen-containing functional groups was significantly reduced in the presence of IPA; the
C/O ratio was increased from 1.18 for 0 kGy to 9.98 for an irradiation dose of 345.6 kGy.
These results proved that IPA created a reductive environment. Another study showed
that carbon quantum dots (CQDs) irradiated with doses from 0 to 15 kGy in the presence
of IPA or isobutanol and purged with N2 showed more hydroxyl groups compared to the
reaction performed in the presence of only water [35]. Jovanović et al. showed that gamma
irradiation in oxidative mediums (H2O, NH4OH) can cause the shortening, unbundling and
annihilation of single-wall carbon nanotubes (SWCNTs) [36]. Consequently, the reductive
mediums (H2O and NH4OH both mixed with isopropyl alcohol) eliminated C–O groups
and increased the fraction of sp2-hybridized carbon atoms in the SWCNTs structure. For
the first time, GQDs were gamma-irradiated in 2015 [31]. The medium for irradiation
was a mixture of water and IPA (4 v/v%), while the applied doses of gamma irradiation
were 20, 50, 100 and 200 kGy. This study showed that GQDs’ properties such as diameter,
photoluminescence intensity, band gap, and singlet oxygen production differ with the
change in the irradiation dose. The main improvements in properties were found in the
sample irradiated with a dose of 50 kGy: the average diameter decreased from 24 to 18 nm,
the oxygen content increased from 35.9 to 45.1 wt.%, photoluminescence (PL) intensity was
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4.5 times higher, and the highest production of singlet oxygen upon the UV illumination
was detected [31].

Until now, there have been reported a few top-down syntheses of N,S-doped GQDs.
Ouyang et al. reported top-down hydrothermal synthesis from graphite as the carbon
source and thiourea as a heteroatom dopant [37]. The study showed that the incorporation
of S- and N-atoms reduces the number of graphene layers in GQDs from 4–6 to 1–2. XPS
spectra revealed the successful doping of heteroatoms in a GQD structure and the PL
intensity at an excitation wavelength of 320 nm was the highest for the sample synthesized
in the 1:1 ratio of graphene and thiourea [37]. Another top-down procedure was developed
by Xu et al. where mesoporous polythiophene-derived carbon was used as a starting
material [38]. With the temperature increase, the nitrogen and sulfur contents decreased
from 3.7 to 2.2 at% and 8.6 to 8.0 at%, respectively. The oxygen content was increased from
40 to 43 at%. Zhang et al. produced N-GQDs and N,S-GQDs and investigated how the
optical properties of GQDs changed with the introduction of sulfur [39]. With S doping,
the average radius increased from 3.16 to 5.25 nm, while the PL enhanced as well as the
quantum yield from 10.1 to 18.6%. Both the O- and N-content was enriched, which indicates
that S-doping enables the formation of more reactive graphene sites where N or O can
easily bind.

Here, we reported a one-step functionalization of GQDs by gamma irradiation in
the presence of IPA as an oxygen radical scavenger and amino acid L-cysteine as a S,
N- heteroatom donor. Before irradiation, samples were purged with Ar gas. Due to the
presence of IPA, cysteine and the removal of oxygen by Ar gas, the highest concentration
of H2 can be achieved [40]. These conditions offer the reductive environment for irradi-
ation and the source of N and S atoms. Amino groups can be introduced in the GQDs
structure using the organic chemistry reactions such as treatment with a combination
of N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) and N-hydroxysuccinimide
(NHS) [41,42], acid chloride formation [43], carbamate or imine formation [44], etc., or by
hydrothermal treatment with ammonia or sulfur [45,46]. These reactions demand the use
of reactive and aggressive chemicals, and they are often time-consuming. The method
proposed in this paper does not use hazardous chemicals and it took place in only one
synthetic phase; heteroatoms were incorporated.

2. Materials and Methods
2.1. Synthesis of Pristine GQDs and Gamma-Irradiated GQDs

Graphene quantum dots were synthesized by using electrochemical oxidation of
graphite electrodes purchased from Ringsdorff-Werke GmbH (Bonn, Germany), with
99.999% purity and a diameter of 3.05 mm. Both electrodes, anode and cathode, were
graphite ones. Electrodes were washed with Milli-Q water and ethanol (96 v/v%). Then,
they were dipped in the electrolyte which was prepared by sonication of a NaOH (3 g) in 96
v/v% ethanol (100 mL). Applied current intensity was 20 mA and a voltage was set at 20 V.
After 8 h, the color of dispersion changed from light yellow to dark brown, which indicated
the formation of GQDs. After that, ethanol was removed with evaporation at a reduced
pressure. Obtained as-synthetized material was redispersed in water in a concentration
of 3 mg mL−1 and placed into a dialysis bag with molecular weight cut-off (MWCO) of
3.5 kDa. We monitored the pH values of the dispersion all the time. The dialysis was
complete when pH remained stable at a value of 7 even after changing the water. In this
way, the residual amount of NaOH was removed from the GQDs solution. Water from
dispersion was then evaporated by heating at 80 ◦C to obtain the powder GQDs which
were labeled as pristine Graphene Quantum Dots (p-GQDs).

To synthesize modified GQDs, p-GQDs were exposed to gamma irradiation. Samples
for irradiation were prepared by sonication of GQDs in Milli-Q water at a concentration
of 1 mg mL−1, with 2 wt.% L-cysteine and 1 v/v% isopropyl alcohol (IPA). Then, the
mixture was purged with Ar gas for 15 min and exposed to gamma irradiation using
Co-60 as an irradiation source. Samples were exposed to different doses of irradiation: 25,
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50 and 200 kGy. Irradiated samples were dialyzed in the bags with MWCO of 3.5 kDa
and evaporated to dryness. The obtained powders were collected and used for further
characterizations. Samples were labeled as GQD-cys-25, GQD-cys-50, and GQD-cys-200
which corresponds to applied irradiation doses of 25, 50 and 200 kGy, respectively.

2.2. Methods
2.2.1. Ultraviolet–Visible Spectroscopy

Absorption measurements were recorded on a GBC Cintra 6 spectrophotometer (GBC
Dandenong, Australia) using quartz cell with 1 cm path length and 4 mL volume. UV–
Vis spectra were recorded from 200 to 800 nm. For these measurements, GQDs were
sonicated in demineralized water for 30 min. The concentration of produced dispersion was
0.25 mg mL−1. Measurements were conducted in the air environment, at room temperature.

2.2.2. Photoluminescence Spectroscopy

Photoluminescence spectra (PL) were recorded on a HORIBA Jobin Yvon FluoroMax-4
spectrometer (HORIBA, Kyoto, Japan). All of the GQD samples were dispersed in methanol
at a concentration of 0.025 mg mL−1. Excitation wavelengths for obtaining PL spectra were
in the range of 300–400 nm. All measurements were conducted in the air environment at
room temperature using a quartz cuvette with a path length of 1 cm and a volume of 4 mL.
Fluorescence quantum yields (QY) were calculated using the Equation (1):

QYGQDs = QYREF(AREF/AGQDs)(FGQDs/FREF)(nGQDs/nREF)2 (1)

where QY is fluorescence quantum yield, A is absorption, F the integrated fluorescence
intensity of the emitted light and n is the index of refraction of the solvent. The subscript
“REF” denotes the reference sample of Rhodamine B, QY = 31% and subscript “GQD”
refers to the GQD samples.

2.2.3. Atomic Force Microscopy

Atomic Force Microscopy (AFM) measurements were carried out using a Quesant
microscope (Agoura Hills, CA, USA), which was operating in a tapping mode. For non-
contact high-frequency applications, we used a rotated monolithic silicon probe Q-WM300,
with standard silicon tips (NanoAndMore GmbH, Wetzlar, Germany) and a force constant
of 40 N m−1. Aqueous dispersions of GQDs in a concentration of 0.25 mg mL−1 were
sonicated for 30 min and deposited on mica substrate by spin-coating at 3500 rpm for 1
min. Gwyddion software was used to analyze the lateral size and height of the GQDs.
For diameter distribution histograms, we analyzed around 1000 particles, and for height
distribution histograms we analyzed more than 100 particles.

2.2.4. Dynamic Light Scattering

The particle size distribution was determined using the dynamic light scattering (DLS)
technique (Malvern, Herrenberg, Germany). This system was equipped with a 633 nm
helium–neon laser as a light source and measured the particle size at a scattering angle of
173◦. All measurements were conducted at a controlled temperature of 20 ◦C and fixed
positions (4.65 nm) with an automatic attenuator.

2.2.5. Scanning Electron Microscopy

Scanning electron microscopy (SEM) with energy-dispersive X-ray (EDS) spectroscopy
was conducted using an FEI ESEM Quanta 200 microscope (FEI Company, Hillsboro,
OR, Unites States). Samples p-GQDs, GQDs-cys-25 and GQDs-cys-200 were prepared by
dissolving the pristine powders in ethanol; the so-prepared solutions were drop-casted
onto clean Si-substrates (10 mm × 10 mm), and finally the samples were dried under
vacuum overnight. For SEM imaging, only sample GQDs-cys-50 was deposited onto Al
support using the same procedure. Samples were scanned at the SEM microscope without
any further preparation (no metallization), and using the “low vacuum mode”. Energy-
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dispersive X-ray (EDS) measurements were obtained focusing the analysis over an area
of ca. 230 × 200 microns. All samples were deposited on Si support. Data analysis was
conducted using the EDAX Genesis EDS microanalysis software (AMETEK, Inc., Berwyn,
PA, USA).

2.2.6. Fourier-Transform Infrared Spectroscopy

Fourier-Transform Infrared (FTIR) spectra were acquired using the Thermo Scientific
Nicolet 6700 FTIR instrument (Thermo Fischer Scientific, Waltham, MA, USA) in attenuated
total reflection (ATR) mode. The spectral range was from 900 to 4000 cm−1. All of the
GQDs samples were in powder form.

2.2.7. Electron Paramagnetic Resonance Spectroscopy

The electron paramagnetic resonance (EPR) spectra were recorded using a Bruker
BioSpin ELEXSYS-II E540 EPR spectrometer with the following experimental parameters:
microwave frequency 9.85 GHz (X-band), microwave power 10 mW, modulation amplitude
1 G, modulation frequency 100 kHz and a sweep time of 60 s. 2,2,6,6-tetramethylpiperidine
(TEMP) was used as a spin trap agent. Generation of 1O2 was measured in GQDs before
and after gamma irradiation, where air saturated dispersions were mixed with TEMP
and exposed to light. The spin trap method is based on the chemical reaction between
TEMP and 1O2, which forms a stable radical adduct, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl
(TEMP-1O2 or TEMPO). TEMPO shows a triplet signal in the EPR spectrum. To investigate
the ability of GQDs to produce singlet oxygen under illumination, samples were dispersed
in ethanol in a final concentration of 0.2 wt.%. Then, TEMP was added in a concentration
of 30 mM and mixtures were purged with air. These mixtures were exposed to blue light
(λ = 360–400 nm) for 100 min. EPR spectra were recorded before and during light exposure.
Additionally, GQDs were incubated with TEMPO (3 mM) and after illumination in the
same condition, EPR was recorded.

2.2.8. Bioimaging

Aqueous solutions of p-GQDs, GQD-cys-25, GQD-cys-50, and GQD-cys-200 were mixed
with cell culture media and added to the cells in the final concentration of 100 µg mL−1. Un-
treated HeLa cells were used as control. After 24 h of incubation, the medium was removed,
cells were washed three times in PBS and subjected to optical imaging. Cellular uptake
of p-GQDs, GQD-cys-25, GQD-cys-50, and GQD-cys-200 was monitored using Olympus
BX51 fluorescence microscope Olympus (Olympus, Tokyo, Japan) with Spectrum Aqua
filter. Images were captured at 10x and 20x objectives and analyzed using the CytoVision 3.1
software (Applied Imaging Corporation, Santa Clara, CA, USA).

2.2.9. MTT Assay

For (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) cell viability as-
say (MTT) assay, HeLa cells were seeded at concentration 1 × 104 cells/well in 96-well
plates and allowed to attach overnight. The following day, cells were treated with GQDs
(p-GQDs, GQDs-cys-25, GQDs-cys-50, and GQDs-cys-200) at concentrations of 1, 10, 25, 50,
and 100 µg mL−1 for 24 and 48 h. At the indicated time points, medium was removed, cells
were washed three times with phosphate-buffered saline and cell viability was determined
using MTT assay. Cells were incubated for 1 h in MTT solution, 0.5 mg mL−1 cell culture
media, (Merck KGaA, Gernsheim, Germany), formed formazan crystals were dissolved
in DMSO (dimethyl sulfoxide) (SERVA Electrophoresis GmbH, Heidelberg, Germany)
and absorbance was measured at 540 nm using an Epoch Microplate Spectrophotometer
(BioTek, VT, USA). All experiments were performed in triplicates, repeated at least three
times. The relative viability of the treated cells was calculated as a percentage of the vehicle
control (HeLa cells treated with methanol) set to 100%. Data were analyzed using SPSS
Statistics 28 (IBM, Armonk, NY, USA). Due to the technical issues we only obtained data
from one treatment with GQDs-cys-50 at concentration 100 µg mL−1 at 24 h time point.
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Accordingly the mean, standard deviation and statistical significance were not calculated
for this point.

3. Results and Discussion

GQDs are produced using an electrochemical approach. Two graphite rods were
immersed in 3% NaOH in ethanol and the current was applied. After 8 h, the dispersion
with NaOH, ethanol and GQDs was collected. To isolate dots, ethanol was removed by
evaporation, while NaOH was eliminated in the process of dialysis. To achieve a one-step
modification of GQDs, they were dispersed in a water–IPA mixture and L-cysteine was
added. This mixture was purged with Ar and irradiated with doses from 25 to 200 kGy.
After isolation in the process of dialysis, gamma-irradiated GQDs were characterized and
these results are presented in the following text.

3.1. UV–Vis Spectroscopy

The optical properties of pristine and gamma-irradiated GQDs were determined by
UV–Vis spectroscopy and the obtained spectra are presented in Figure 1.
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Figure 1. UV–Vis spectra of p-GQDs (black), GQD-cys-25 (red), GQD-cys-50 (green), GQD-cys-
200 (blue).

As we can see, all GQDs samples showed typical absorption peaks in the UV region.
For p-GQDs, the main absorption band at around 200 nm can be attributed to π–π* tran-
sitions from aromatic the C–C bond [37,47]. In the case of gamma-irradiated GQDs, this
band showed a small shift to 203 nm for gamma-irradiated samples. This can be assigned
to the changes in the aromatic structure and modification of GQDs [32]. For GQD-cys-200
and GQD-cys-50, the peak can be observed in a wavelength of about 324 nm. It stems from
a carboxyl functional group and n–π* transition of C=O groups [48].

3.2. PL Spectroscopy

In Figure 2, PL emission spectra of pristine and gamma-irradiated GQDs are presented.
For the excitation, we used wavelengths between 300 and 400 nm. All samples showed the
shift in the center of emission upon different excitation wavelengths. This kind of optical
behavior is named excitation-dependent and it is very often observed in GQDs [49].
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Figure 2. Emission spectra of p-GQDs (a), GQDs-cys-25 (b), GQDs-cys-50 (c) and GQDs-cys-200 (d). The excitation
wavelengths were between 300 and 400 nm.

Colloidal dispersions of GQDs showed a broad PL emission (Figure 2). The center of
the emission for p-GQDs was shifted from indigo at 426 nm (2.91 eV) to a blue color, to
494 nm (2.51 eV) upon excitation from 300 to 400 nm, respectively. The position of emission
bands for all samples is presented in Table 1. In the case of gamma-irradiated dots, they
showed a mostly blue emission, in the range of 440–495 nm. The position of the emission
band shifted with gamma irradiation toward higher wavelengths, as presented in Table
1. However, between doses of 25, 50 and 200 kGy, there were no significant differences
between the positions of these bands.

Table 1. Positions of the emission band center in nm at excitation wavelength from 300 to 400 nm.

Sample Position (nm) Sample Position (nm)

p-GQDs

426Ex300

GQDs-cys-50

440Ex300

439Ex320 445Ex320

452Ex340 457Ex340

464Ex360 465Ex360

477Ex380 478Ex380

494Ex400 493Ex400

GQDs-cys-25

443Ex300

GQDs-cys-200

435Ex300

447Ex320 442Ex320

457Ex340 456Ex340

466Ex360 467Ex360

480Ex380 478Ex380

495Ex400 494Ex400

PL emission is associated with Cπ*→Cπ, Nπ*→Cπ and Oπ*→Cπ transitions for N-
doped GQDs [50]. Due to various possible transitions, the emission bands are broad.
Photoluminescence of GQDs stems from both the graphene core and functional groups [51].
While graphene is responsible for the intrinsic emission, the surface state emission is con-
trolled by groups. Blue photoluminescence of GQDs is associated with hydroxyl functional
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groups, while green is related to carboxyl and amide functional groups [52,53]. Gamma
irradiation causes changes in the structure of GQDs which affecting the PL properties
by tuning them [31,32]. One more difference between the emission spectra of p-GQDs
and gamma-irradiated dots is that the highest intensity of the emission was detected for
p-GQDs at the excitation wavelength of 320 nm, while in the case of gamma-irradiated dots,
the highest intensity of the main emission band was detected at the excitation wavelength
of 360 nm.

Photoluminescence QYs of gamma-irradiated GQDs were calculated using Rhodamine
B as a reference and these results are presented in Table 2. The highest PL QY was detected
after gamma irradiation at a dose of 25 kGy, while for doses of 50 and 200 kGy, QYs were
only 5.15 and 3.12%, respectively. Our previous study showed that PL QY for p-GQDs was
only 1.45% at the excitation wavelength of 340 nm [32]. These results suggest that gamma
irradiation improved PL QY of GQDs and that the largest improvement was achieved at a
dose of 25 kGy.

Table 2. Values of integrated surface for emission spectra at excitation wavelength 360 nm, absorbance
at 360 nm and calculated QY.

Sample Iex360 A360 QY (%)

p-GQDs 23,450,791340nm 0.144340nm 1.45340nm [33]
GQDs-cys-25 35,957,065 0.073 21.60
GQDs-cys-50 17,488,510 0.149 5.15

GQDs-cys-200 14,572,620 0.205 3.12
Rhodamine B 66,440,340 0.094 31

3.3. AFM Microscopy

The morphology, height and diameter distribution of p- and gamma-irradiated GQDs
were measured with an AFM microscope. The obtained AFM images and histograms of
the height and diameter distribution are shown in Figure 3. The fraction of GQDs is a
percentage of dots that are a certain height or diameter (the number of dots divided with
the total number of analyzed GQDs).

All images show well-dispersed, uniform, round-shaped particles without large ag-
glomerates. From the height distribution histogram of all samples, it can be seen that the
height of GQDs was between 0.5 and 2.5 nm. Since the thickness of one graphene layer
measured by AFM was between 0.7 and 1 nm [4], it can be stated that most of GQDs
consist of one to four graphene layers. While p-GQDs have a smaller percentage of single
and double-layered GQDs (5.26% and 6.31%, respectively), irradiated GQDs are mostly
multilayered with a higher percentage of single and double graphene layers (9.2% and
24.5%; 13.3% and 23.0%; 19.1% and 25.8% for GQD-cys-25, GQD-cys-50 and GQD-cys-200,
respectively). This result indicates that gamma irradiation increases the level of layer
separation [31]. The average particle diameter was in a range of 20 to 30 nm after AFM
tip deconvolution. With a higher irradiation dose, the particle diameter also increased.
Accordingly, the p-GQDs diameter calculated from tip deconvolution was 20.4 nm, and
for GQD-cys-25, GQD-cys-50 and GQD-cys-200 the diameter was 25.5 nm, 28.0 nm and
29.0 nm, respectively (Table 3).
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Table 3. The values of the average diameter and height of GQD samples, before and after irradiation.

Sample Diameter (nm) Height (nm)

p-GQD 20.4 2.6
GQDs-cys-25 25.5 1.6
GQDs-cys-50 28.0 1.5

GQDs-cys-200 29.0 1.4

3.4. DLS Analysis

The effects of surface functionalization on the size distribution in gamma-irradiated
GQDs were investigated by using DLS. The obtained number-weighted average diameter
distribution function is presented in Figure 4a–c.
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(b), GQD-cys-200 (c) and mean diameter (d).

The results show that both GQD-cys-25 and GQD-cys-50 had a similar shape of the
diameter distribution function, while GQD-cys-200 was strongly right-skewed, with a
heavy right tail. The average hydrodynamic diameter was approximately 23, 24 and 27 nm
for GQD-cys-25, GQD-cys-50 and GQD-cys-200, respectively (Figure 4d). The following
average PDI values were measured: 0.37 (GQD-cys-25), 0.35 (GQD-cys-50), and 0.23 (GQD-
cys-200). These results are in agreement with AFM measurements. As we previously
reported for p-GQDs, the average hydrodynamic diameter was 13.85 nm [32].

3.5. SEM-EDS

The surface morphology and chemical composition of irradiated GQD-cys samples
were determined by SEM-EDS analysis. The obtained results are presented in Figure 5.
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Figure 5. SEM images and EDS spectra of p-GQDs (a,b), GQD-cys-25 (c,d); GQD-cys-50 (e,f) and GQD-cys-200 (g,h).

From SEM images (Figure 5a,c,d,g), it can be seen that the surface morphology of all
analyzed samples was similar, with plate-like structures and agglomerates. The elemental
content was investigated using EDS. The obtained results (Figure 5b,d,f,h) showed that
p-GQDs had only C and O atoms in their structure, while GQD-cys samples were mainly
composed of C, O and S atoms. This indicates that after irradiation, C and O atoms were
still present in the sample. Silicon was detected in each EDS spectrum from the substrate
used in the experiment. The atomic percentage of C and O was similar for GQD-cys-25 (C
83.78 at%; O 10.25 at%) and GQD-cys-50 (C 82.84 at%; O 10.29 at%). With the increase in
the irradiation dose, the content of C and O was lowered for GQD-cys-200 (80.99 at% for
C and 8.19 at% for O atoms). This indicates the decrease in oxygen-containing functional
groups over the surface of GQD-cys. Sulfur was also found in each of these samples in the
amount of 1.91 at%, 0.93 at% and 4.89 at% for GQD-cys-25, GQD-cys-50 and GQD-cys-200,
respectively. These results confirmed the successful S-doping of GQDs and the largest level
was detected at a dose of 200 kGy.

3.6. FTIR Spectroscopy

To investigate the structure and identify functional groups on the surface of GQD-cys,
an FTIR analysis was employed. The obtained results are presented in Figure 6.
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The strong and broad absorption band at 3421 cm−1 is attributed to the stretching
vibration of OH groups [54]. Unlike p-GQDs, all irradiated GQD-cys showed a peak at
approximately 3256 cm−1 which corresponds to N–H stretches. These results confirmed
the presence of N atoms on the surface of GQD-cys. Three low-intensity bands at around
2970 cm−1, 2930 cm−1 and 2877 cm−1 originated from vibrations of sp2- and sp3-CH
groups [8,32]. Next, the weak signal at 2578 cm−1, found only in the gamma-irradiated
FTIR spectra, originated from the vibration of the S–H bond [55,56]. The peaks at 2364 and
2332 cm−1 are related to the background CO2.

The broad and characteristic band for GQD-cys with peaked at approximately 1630 cm−1

and 1706 cm−1 stemmed from C=O stretching vibrations in COOH and the amid-carbonyl
(–NH–CO–) group, respectively [56,57]. The signal of amid-carbonyl vibrations was formed
due to the reaction of amide and carboxylic groups. The spectral band at around 1630
cm−1 also proves that the aromatic structure of GQD-cys was preserved after gamma ir-
radiation [56]. For p-GQDs, peaks showed at around 1570 cm−1 and 1630 cm−1 stems
from C=C and C=O stretching vibrations [8,58]. The peak at 1384 cm−1 was present in all
samples, and it is the result of C–OH bending vibrations [59]. The intensity of this band
was lower for gamma-irradiated samples due to the replacement of oxygen-containing
functional groups with S and N functional groups. The band at 1250 cm−1 appeared only
in gamma-irradiated samples and it is assigned to the C=S stretching vibrations from the
thiocarbonyl groups [58]. This band indicates the substitution of oxygen in the carbonyl
or carboxylic group with sulfur, thus, achieving the successful binding of S atoms in the
GQDs structure. Finally, the peak at 1083 cm−1 could be seen in all analyzed samples, and
it stemmed from the vibration of C–O bonds.

FTIR spectroscopy confirmed the doping of gamma-irradiated GQDs with S- atoms
as it was observed by SEM-EDS spectroscopy. Additionally, the successful incorporation
of N- atoms in the structure of GQDs was detected. These results proved that gamma
irradiation in the presence of L-cysteine and IPA in a reduction atmosphere leads to S,N-
doping of GQDs.

3.7. EPR Spectroscopy with 1O2 Trap

EPR spectroscopy was used to investigate the ability of GQDs to produce singlet
oxygen upon light illumination (360–400 nm), using TEMP as a selective 1O2 trap. In the
reaction with singlet oxygen, the EPR silent TEMP is converted to the EPR-active TEMPO
radical, characterized by an isotropic three-line signal [60]. The results showed that only the
GQD-cys-25 dispersion can produce singlet oxygen when it is exposed to light (no radical
formation is observed in the absence of light). The radical production was followed for
100 min, during which it was observed that the TEMPO signal increased with illumination
time (Figure 7a). Since the TEMPO radical was not detected upon the illumination of the
GQD-cys-50 and GQDs-cys-200 dispersions in the presence of TEMP, they were further
investigated. Interestingly, when these dispersions were incubated with TEMPO, and
subsequently exposed to light up to 100 min, a reduction in the EPR signal was observed
(Figure 7b,c). This may suggest that the light-activated GQD-cys-50 and GQDs-cys-200
dispersions are strong oxidizing agents which convert the TEMPO radical into its EPR
inactive oxoammonium cation form. Therefore, it is most likely that these GQDs are not
incapable of singlet oxygen production, but rather that they produce 1O2 to a greater extent
than GQD-cys-25.
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3.8. Bioimaging

The cellular uptake of p-GQDs, GQD-cys-25, GQD-cys-50 and GQDs-cys-200 into
HeLa cells was analyzed using fluorescent microscopy and results are presented in Figure 8.
All tested quantum dots (p-GQDs, GQD-cys-25, GQD-cys-50, and GQDs-cys-200) entered
into HeLa cells (Figure 8a–d). The best visibility of HeLa cells was achieved when the
cells were treated with GQDs-cys-25 (Figure 8c). The calculation of PL QY showed the
highest values for the GQD-cys-25, while the size of all samples was similar (14–30 nm).
It was found that GQDs with a size below 100 nm, entered the cell through the passive
mechanism [61,62]. However, the difference in the visibility of the cells stems from the
superior photoluminescence of GQDs-cys-25. Thus, this sample is considered the best
candidate as a bioimaging agent.
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3.9. Cytotoxicity

To estimate how safe it is to use materials in bioimaging, one of the first tests is
cytotoxicity. However, agents for photodynamic therapy must also be non-toxic in the
absence of light. Thus, the cytotoxicity of both p-GQDs and gamma-irradiated GQDs
was evaluated on the HeLa cells (Figure 9) using an MTT assay. The effects of both GQD
concentrations (1–100 µg mL−1) as well as exposure time (24–48 h) on the cell viability
were studied. All measurements were conducted in dark, to avoid photo-induced toxicity.
The results of the MTT assay showed that p-GQDs were not considered toxic toward HeLa
cells at concentrations up to 100 µg mL−1 (Figure 9). As shown in all gamma-irradiated
GQDs, either cytotoxicity (cell viability between 80 and 100%) nor very low cytotoxicity
(cell viability slightly below 80%) was detected.
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denotes a significant difference from the control (* p < 0.05). SD—standard deviation.

4. Conclusions

In this study, we exposed a water dispersion of GQDs mixed with L-cysteine (2 wt.%),
and IPA 1 v/v% to gamma irradiation at doses of 25, 50 and 200 kGy. Dispersions were
purged with Ar gas to remove oxygen. By selecting these conditions we were able to
achieve reductive conditions, but also the bonding of N and S functional groups in the
GQD structure. The largest improvement of PL properties was detected for dots irradiated
at 25 kGy where QY was calculated to be 21.65%, while for 50 and 200 kGy, this parameter
was lower (5.15 and 3.12%, respectively). SEM-EDS analysis indicated that S atoms were
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present in GQDs. FTIR spectroscopy proved that, apart from S groups (C–SH and C=S),
GQDs have N groups such as amino and amide groups. Gamma irradiation caused a
small increase in the GQD diameter (23, 24 and 27 nm) compared to p-GQDs (14 nm),
dots preserved a round shape, they were homogenously dispersed and no agglomerates
were observed. The height of dots was lowered and the highest fraction of single and
double-layered dots (19.1 and 25.8%, respectively) was detected in the GQDs-cys-200
sample. The ability of dots to generate singlet oxygen upon light illumination was detected
only for GQDs-cys-25 and at the same time this sample showed the best visibility of
HeLa cells on a fluorescence microscope. According to the MTT assay, gamma-irradiated
GQDs were not toxic toward HeLa cells after treating them with concentrations from 1 to
100 µg mL−1 during 24 and 48 h. These results led to the conclusion that GQDs-cys-25 is a
good candidate for both photodynamic therapy and bioimaging. To further improve the
structure of irradiated and modified GQDs for use in biomedicine, our future experiments
will be based on this and related studies.
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