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Abstract: La0.8Sr0.2CrO3 (0.2LSCO) thin films were prepared via the RF sputtering method to fabricate
thin-film thermocouples (TFTCs), and post-annealing processes were employed to optimize their
properties to sense high temperatures. The XRD patterns of the 0.2LSCO thin films showed a pure
phase, and their crystallinities increased with the post-annealing temperature from 800 ◦C to 1000 ◦C,
while some impurity phases of Cr2O3 and SrCr2O7 were observed above 1000 ◦C. The surface
images indicated that the grain size increased first and then decreased, and the maximum size was
0.71 µm at 1100 ◦C. The cross-sectional images showed that the thickness of the 0.2LSCO thin films
decreased significantly above 1000 ◦C, which was mainly due to the evaporation of Sr2+ and Cr3+.
At the same time, the maximum conductivity was achieved for the film annealed at 1000 ◦C, which
was 6.25 × 10−2 S/cm. When the thin films post-annealed at different temperatures were coupled
with Pt reference electrodes to form TFTCs, the trend of output voltage to first increase and then
decrease was observed, and the maximum average Seebeck coefficient of 167.8 µV/◦C was obtained
for the 0.2LSCO thin film post-annealed at 1100 ◦C. Through post-annealing optimization, the best
post-annealing temperature was 1000 ◦C, which made the 0.2LSCO thin film more stable to monitor
the temperatures of turbine engines for a long period of time.

Keywords: post-annealing; La0.8Sr0.2CrO3; thin-film thermocouple; high-temperature sensing

1. Introduction

The gas turbine engine at the heart of the airplane is a highly complex and precise
thermal machinery, where its working temperature needs to be monitored in real time and
in situ to reflect the operational conditions for designing constructions or warning states
of modern propulsion systems; however, it is difficult to obtain operating temperatures
accurately with available technologies due to the extreme conditions [1]. Various noncon-
tacting sensing technologies have been employed, such as optic pyrometers [2] and acoustic
pyrometers [3], but the measuring temperature of turbine engines is not direct and accurate,
due to the principles of these technologies, and their complicated structures and sensing
modules do not make them easy to integrate with the turbine engine. However, thin-film
thermocouples (TFTCs) as a typical kind of immersive sensor can be deposited directly onto
the surfaces of turbine engine components with a thickness of a few micro/nanometers
using modern deposition technologies; they have been promising as thermal sensors for
turbine engines due to the advantages of excellent spatial resolution, cost-effective in large
quantities, and rapid response [4–8].
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TFTCs consist of two beams that should have excellent oxidation resistance and chem-
ical stability because of the high working temperature in air, and the two beams should
have large and stable Seebeck coefficients to form a TFTC with higher sensitivity. It is well-
known that a wire-type thermocouple fabricated by conventional noble metals, such as Pt,
Rh, or their alloys, can be used to measure high temperatures in air, which can even endure
up to about 1820 ◦C with Al2O3 shield protection [9]. Conversely, the maximum measure-
ment temperature is only 1100 ◦C when it is changed into a thin film, which is mainly
ascribed to the coalescence reaction between the TFTC and substrate, and the oxidation of
rhodium above 800 ◦C [10,11]. In addition, its sensitivity is lower due to the small intrinsic
Seebeck coefficients of noble metals. Therefore, the development of a new TFTC fabricated
by conductive ceramics has been a trend to measure high temperatures in air [12–15]. Es-
pecially, conductive oxides with better oxidation resistance and higher Seebeck coefficients
have become the most promising candidate materials of electrodes for TFTCs, such as
In2O3, ITO, ZnO:Al (AZO), and La1-xSrxCrO3 (xLSCO) [14,16–19]. When In2O3 and ITO
were used to fabricate the electrodes of TFTCs, they had excellent performances with a
maximum measurement temperature of 1280 ◦C, while a serious volatilization problem
appeared for them above 1200 ◦C especially because of the losing of Sn4+ from ITO, and the
indium element is scarce in the earth [20–22]. Meanwhile, for xLSCO, wider applications in
the energy and sensor fields of the present materials in the thin films field have also been
reported in recent years. They are suitable for interconnect materials in solid oxide fuel
cells [23–25], transparent electrolytes and electrodes of batteries and generators [26–30],
thin-film fluorescent sensors, and high-temperature sensing [17,18,31,32], with their high
melting point of 2490 ◦C, good conductivity, and high Seebeck coefficient. From our previ-
ous work [17], a screen-printed thick-film thermocouple fabricated by LaCrO3 (LCO) and
La0.8Sr0.2CrO3 can be used to measure a temperature of 1550 ◦C for 10 h in air, which has
inspired the fabrication of TFTCs by using xLSCO electrodes. Since then, some TFTCs fab-
ricated by the 0.2LSCO thin film have been investigated, such as 0.2LSCO-In2O3 [19] and
0.2LSCO-Pt [33], with a higher sensitivity and stable output voltage versus the temperature
difference. However, the properties of 0.2LSCO thin films can be affected significantly by
the post-annealing treatment process, which have not yet been investigated systematically
and should be studied to fabricate TFTCs with a stable output voltage curve to use at
high temperatures.

In this paper, 0.2LSCO thin films were fabricated successfully via the RF sputter-
ing method. The effects of different post-annealing temperatures on the microstructures,
morphologies, and electrical conductivities of 0.2LSCO thin films were investigated sys-
tematically. Then, the thermoelectric properties of 0.2LSCO thin films were studied by
coupling with platinum (Pt) reference electrodes at a static calibration system. Finally, the
optimal post-annealing temperature was obtained by comprehensive analysis.

2. Experimental Sections

A La0.8Sr0.2CrO3 target was used to deposit the 0.2LSCO thin films onto alumina
substrates with sizes of 100 mm × 20 mm × 1 mm via the RF sputtering method. A JDP-
560 model sputtering system (Sky Technology Development Co., Ltd., Shen yang, China)
was used to deposit the thin films. The detailed deposition processes were the same as our
previous work [33]. Before the deposition of the thin films, the alumina substrates were
cleaned by ultrasonication with acetone, ethyl alcohol, and deionized water, successively.
Then, the 0.2LSCO thin films were deposited on cleaned alumina substrates by the RF
sputtering system at 500 ◦C. Finally, the as-deposited thin films were post-annealed at
different temperatures from 800 ◦C to 1300 ◦C for 1 h with an interval of 100 ◦C.

A Dmax/1400 X-ray diffractometer (Rigaku, Tokyo, Japan, Cu Kα radiation) was
used to characterize the crystal structures of 0.2LSCO thin films with a step of 0.02◦. The
surface and cross-sectional SEM images were obtained by a FEI Quanta 250 FEG field-
emission scanning electron microscope (FEI, Hillsboro, OR, USA), and the composition
of elements in the thin films was analyzed by an energy-dispersive spectrometer. The
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conductivities of 0.2LSCO thin films were measured by the four-point probe method using
the Vanderbilt law.

To characterize the thermoelectric properties of the 0.2LSCO thin films, they were
sputtered to form L patterns using the photolithography technique, and then post-annealed
at different temperatures for 1 h. Subsequently, another electrode of Pt thin films was
coupled with 0.2LSCO thin films to form TFTCs with a U-pattern. Finally, the fabricated
TFTCs were pasted with copper wires at the cold end using silver paste, and then heated
at 200 ◦C for 1 h to make the bonds strong. The output voltages of the TFTCs were
measured by a lab-made testing measurement system, similar to our previous work [20]. A
muffle furnace (LHT 02/17/P310, Nabertherm, Lilienthal, Germany) was used to provide
various temperature differences. The temperature of the hot-junction was collected by a
Type-S thermocouple, and the temperature of the cold-end was measured by a Type-K
thermocouple at the same time. In order to maintain the reproducibility of the measurement
system, the cold-end was chilled and the temperature was kept at 25 ◦C with circulating
water during the experiments, while the hot-junction was fixed in the same place in the
furnace. The data of temperatures and output voltages were recorded simultaneously by
using a USB Data Acquisition system (LR8431-30, HIOKI, Nagano-ken, Japan) equipped
with “Logger Utility” software.

3. Results

To withstand high temperatures for a long time, the 0.2LSCO thin films were deposited
for 4 h by using a sputtering system (where the RF power was 150 W, the target diameter
was 101.6 mm, the gas pressure was 1.3 Pa, and the O2/Ar ratio was 0.13/1.17), and then a
post-annealing process was carried out from 800 ◦C to 1300 ◦C for 1 h. The XRD patterns
of different post-annealing temperatures for 0.2LSCO thin films are shown in Figure 1.
For the as-deposited 0.2LSCO thin film, only the characteristic peaks of the alumina
substrate can be observed, which shows that the film was amorphous. When the post-
annealing temperature was 800 ◦C, the characteristic peaks of 0.2LSCO appeared, and its
intensity increased with temperature from 800 ◦C to 1000 ◦C, which indicates that a higher
temperature was beneficial for the crystallinity of the 0.2LSCO thin film. Conversely, when
the post-annealing temperature increased to 1100 ◦C and 1200 ◦C, the peaks of impurity
phases of Cr2O3 marked as spades were observed due to the volatilization of strontium
lanthanum chromate above 1000 ◦C [34]. Moreover, the peaks of Cr2O3 disappeared and
the peaks of SrCr2O7 were observed for the sample post-annealed at 1300 ◦C, which may
be attributed to the secondary combination after the decomposition of the constituent
elements for the 0.2LSCO thin film at high temperatures.
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Figure 1. XRD patterns of 0.2LSCO thin films at different post-annealing temperatures.
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The surface morphologies of 0.2LSCO thin films post-annealed at different tempera-
tures were measured, and their SEM images are shown in Figure 2a–e. The grain size of the
films with different temperatures was obtained by means of the standard root-mean-square
method from the SEM images, and the results are shown in Figure 2h. In Figure 2a, for
the as-deposited 0.2LSCO thin film, the morphology mainly consisted of grains of the
alumina substrate, and the surface of the alumina substrate was uneven, which was due to
the amorphous structure of the 0.2LSCO thin film. When the post-annealing temperature
reached 800 ◦C, the surface morphology of the 0.2LSCO thin film was totally different from
its as-deposited stage, and a lot of tiny spindle structures could be observed, as shown
in Figure 2b, which indicates that the 0.2LSCO thin film was not crystalline. With the
increases in post-annealing temperature, the grain size of the 0.2LSCO thin film increased
significantly from 0.2 µm at 800 ◦C to 0.71 µm at 1100 ◦C, as shown in Figure 2h.
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The SEM images of cross-sections at different annealing temperatures are shown
in Figure 3. The statistical average thicknesses of 0.2LSCO thin films post-annealed at
different temperatures were measured from the SEM images, and the changing curve of
thicknesses is shown in Figure 3h. For the as-deposited 0.2LSCO thin film, its thickness
was about 2.0 µm. The thickness increased slightly with the annealing temperature and
reached up to the maximum value of 2.08 µm at 1000 ◦C, which was mainly ascribed to
volume expansion induced by the increase in grain size, as shown in Figure 2. However,
the thickness decreased significantly when the annealing temperature was higher than
1100 ◦C. The thickness of the 0.2LSCO thin film changed from 1.54 µm at 1100 ◦C to the
minimum value of 1.38 µm at 1300 ◦C, which decreased about 31% compared with that of
the as-deposited sample.

Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 12 
 

 

1100 °C. The thickness of the 0.2LSCO thin film changed from 1.54 μm at 1100 °C to the 
minimum value of 1.38 μm at 1300 °C, which decreased about 31% compared with that of 
the as-deposited sample. 

 
Figure 3. Cross-sections of 0.2LSCO thin films annealed at different temperatures: (a) as-deposited; 
(b) 800 °C; (c) 900 °C; (d) 1000 °C; (e) 1100 °C; (f) 1200 °C; (g) 1300 °C; (h) the change in thickness. 

The constituent elements of the 0.2LSCO thin films post-annealed at different tem-
peratures were measured by EDAX, and the results are shown in Figure 4. Here, the main 
elemental content of Al, O, La, Sr, and Cr was chosen to analyze the effect of different 
post-annealing temperatures, and the results are listed in Table 1. The contents of Sr and 
Cr remained nearly unchanged below 1000 °C, and they then decreased above 1100 °C. 
For the element La, its content changed slightly even at the post-annealing temperature of 

Figure 3. Cross-sections of 0.2LSCO thin films annealed at different temperatures: (a) as-deposited;
(b) 800 ◦C; (c) 900 ◦C; (d) 1000 ◦C; (e) 1100 ◦C; (f) 1200 ◦C; (g) 1300 ◦C; (h) the change in thickness.
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The constituent elements of the 0.2LSCO thin films post-annealed at different temper-
atures were measured by EDAX, and the results are shown in Figure 4. Here, the main
elemental content of Al, O, La, Sr, and Cr was chosen to analyze the effect of different
post-annealing temperatures, and the results are listed in Table 1. The contents of Sr and
Cr remained nearly unchanged below 1000 ◦C, and they then decreased above 1100 ◦C.
For the element La, its content changed slightly even at the post-annealing temperature of
1200 ◦C, which showed that the evaporation of the 0.2LSCO thin film was mainly in the
form of compounds containing elements of Sr and Cr. However, the contents of Sr, La, and
Cr decreased significantly for the sample post-annealed at 1300 ◦C. It is also interesting
to note that the content of the Al element had an increasing tendency with the increase in
temperature, due to the intensity of aluminum oxide detected with the decreases in the
films’ thickness.
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Table 1. Contents of main elements in 0.2LSCO thin films with different post-annealing temperatures.

Temperature
(◦C)

Element Atomic Ratio (%)

O Al Sr La Cr

800 55.23 6.12 2.76 15.4 20.48
900 57.46 5.14 2.96 12.96 21.48
1000 59.58 5.94 2.7 12.57 19.22
1100 55.24 11.53 2.22 13.06 17.96
1200 54.56 12.07 1.73 14.46 17.17
1300 61.26 25.12 1.42 5.53 6.67
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Figure 5 shows the conductivities of 0.2LSCO thin films annealed at different tempera-
tures using the four-point probe method of the Vanderbilt law. There was a tendency of the
conductivity to rise first and then decrease, and the maximum value of 6.25 × 10−2 S/cm
was obtained for the 0.2LSCO thin film annealed at 1000 ◦C. For the rising stage, the
crystallinity and grain size of the 0.2LSCO thin film increased with the post-annealing
temperature, which resulted in a decrease in the scattering among grain boundaries for car-
riers. Conversely, for the decreasing stage, the thermal volatilization and formation of the
nonconductive secondary phase made the conductivity deteriorative and even insulative
at 1300 ◦C. In other words, an appropriate post-annealing temperature will enhance the
conductivity of the 0.2LSCO thin film and reduce the volatilization.
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The thermoelectric properties of 0.2LSCO thin films post-annealed at different temper-
atures were measured by forming U-type TFTCs with Pt thin-film electrodes using a static
calibration, and the variation curves of thermal voltages with temperature differences are
shown in Figure 6. For the 0.2LSCO thin film annealed at 800 ◦C, it was difficult to collect
the thermal voltages from the voltmeter due to its poor conductivity and lower crystallinity,
and its thermal voltage curve has not been marked in this figure. In addition, the thermal
voltages have also not been marked for the 0.2LSCO thin film annealed at 1300 ◦C, because
of the interruption of electrical transport of the Pt electrode. For others, their thermal
voltages increased first and then decreased with the post-annealing temperature. The
results of average Seebeck coefficients of the 0.2LSCO thin films at different post-annealing
temperatures are listed in Table 2. The maximum thermal voltage of 167.8 µV/◦C was
obtained for the 0.2LSCO thin film annealed at 1100 ◦C. The reproducibility of the mea-
surements in this lab-made system can be achieved by fixing the place of the hot-junction
in the furnace, as well as the temperature at the cold-end, for each test.
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Table 2. Average Seebeck coefficients of 0.2LSCO thin films at different post-annealing temperatures.

Post-Annealing Temperature (◦C) Seebeck Coefficient (µV/◦C)

900 59.0
1000 62.2
1100 167.8
1200 114.1

4. Discussion

From the results of XRD and SEM for 0.2LSCO thin films annealed at different tem-
peratures, the as-deposited 0.2LSCO thin film shows an amorphous structure and needs
post-annealing to be suitable as electrodes of TFTCs. When the post-annealing temperature
was lower than 800 ◦C, the amorphous structure was shown in the 0.2LSCO thin film and,
accordingly, the crystallization was not good, which agrees with the research results of the
literature [35]; a higher temperature over 780 ◦C should be taken to crystallize chromic acid
lanthanum. With the post-annealing temperature increased from 800 ◦C to 1100 ◦C, the
grain size of the 0.2LSCO thin film increased significantly from 0.2 µm at 800 ◦C to 0.71 µm
at 1100 ◦C, while the thickness of the films remained stable at about 2.0 µm, indicating the
good crystallization of the films. However, when the temperature was higher than 1100 ◦C,
the grain size of the 0.2LSCO thin film decreased with the post-annealing temperature to
1300 ◦C, while the thickness decreased about 38% at the same time. For this reason, one is
due to the emergence of the secondary phases and the intensification of volatilization of
Cr2O3 and SrCr2O7 at higher temperatures; the other is due to the higher specific surface
area of the material and the increase in Gibbs free energy, which enhances the reaction be-
tween the 0.2LSCO thin film and external thermal environment. Post-annealing treatment
will change the morphologies of 0.2LSCO thin films and has an impact on their service
stability for high temperatures. Therefore, the post-annealing temperature should be kept
below 1100 ◦C through comprehensive analysis.

In order to obtain optimal parameters for the preparation of thin-film thermocouples,
the thermoelectric response with different annealing temperatures was studied accordingly.
The maximum thermal voltage of 167.8 µV/◦C was obtained for the 0.2LSCO thin film
annealed at 1100 ◦C. Furthermore, hysteresis phenomena of thermal voltages were observed
for all TFTCs between heating and cooling processes because of defect concentration, crystal
structure, grain size, and heating rate. On the other hand, it was caused by the formation
of a small amount of secondary phase and the decrease in thickness. Conversely, for the
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sample annealed at 1200 ◦C, the thickness of the thin film reduced further due to the
enhancement of evaporation, and lower thermal voltages were achieved.

It is well known that the principle of thermocouples is based on the Seebeck effect,
which can be defined as Equation (1) [19]:

S = ∆V/∆T (1)

where S is the Seebeck coefficient, ∆V is the output voltage, and ∆T is the difference
temperature between the hot end and cold end. By calculation, the S values of 0.2LSCO-Pt
thin-film thermocouples were nearly the same as those of the 0.2LSCO thin films themselves
due to the S of Pt being neglected (1.67 V/◦C for standard Pt wire [36]). From our previous
article [19], the 0.2LSCO thin film annealed at 1000 ◦C was very stable, and the draft rate of
a 0.2LSCO/In2O3 TFTC was only 0.58 ◦C/h, which was almost equal to that of a standard
type-K wire thermocouple (0.18 ◦C/h) with a diameter of 0.5 mm. At the same time,
combining with the results of the crystal structure, morphology, and electrical conductivity
mentioned above, the post-annealing temperature of 1000 ◦C was more beneficial for
high-temperature sensing. In other words, the post-annealing treatment will affect the
microstructure composition, volatilization, and thermoelectric output performance of the
0.2LSCO thin film, and a higher-sensitivity TFTC fabricated by the 0.2LSCO thin film can
be achieved to sense high temperatures in air.

5. Conclusions

La0.8Sr0.2CrO3 thin films were prepared via the RF sputtering method and post-
annealed at different temperatures. 0.2LSCO thin films with a pure phase were obtained
and the intensity of XRD peaks increased with the temperature from 800 ◦C to 1000 ◦C,
while impurity phases of Cr2O3 and SrCr2O7 appeared above 1000 ◦C. Meanwhile, the
grain sizes of 0.2LSCO thin films had a tendency to increase first and then decrease,
and the maximum size was 0.71 µm for the thin film post-annealed at 1100 ◦C due to
the apparent melting and agglomerating phenomena. The thicknesses of 0.2LSCO thin
films decreased significantly above 1000 ◦C due to the evaporation of Sr2+ and Cr3+. The
conductivities of 0.2LSCO thin films increased first and then decreased, with a maximum
value of 6.25 × 10−2 S/cm obtained for the post-annealing temperature of 1000 ◦C, while
the thermal volatilization and the formation of a nonconductive secondary phase made
the conductivity deteriorative at 1300 ◦C. By coupling with Pt reference electrodes to
form TFTCs, the maximum average Seebeck coefficient of 167.8 µV/◦C was achieved for
the 0.2LSCO thin film annealed at 1100 ◦C. The results indicated that the properties of
the 0.2LSCO thin film can be affected by post-annealing temperature significantly, and
an appropriate treatment should be taken to make the 0.2LSCO thin film more stable to
fabricate TFTCs for sensing at high temperatures.
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