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Abstract: To validate the possibility of the developed microwave plasma source with a novel structure
for plasma aerosol deposition, the characteristics of the plasma flow velocity generated from the
microwave plasma source were investigated by a Mach probe with pressure variation. Simulation
with the turbulent model was introduced to deduce calibration factor of the Mach probe and to
compare experimental measurements for analyses of collisional plasma conditions. The results show
calibration factor does not seem to be a constant parameter and highly dependent on the collision
parameter. The measured plasma flow velocity, which witnessed fluctuations produced by a shock
flow, was between 400 and 700 m/s. The optimized conditions for microwave plasma assisted aerosol
deposition were derived by the results obtained from analyses of the parameters of microwave
plasma jet. Under the optimized conditions, Y2O3 coatings deposited on an aluminum substrate
were investigated using scanning electron microscope. The results presented in this study show
the microwave plasma assisted aerosol deposition with the developed microwave plasma source is
highly feasible for thick films with >50 µm.

Keywords: plasma flow velocity; Mach probe; microwave plasma source; ceramic coating

1. Introduction

The aerosol deposition (AD) method, which is based on the impact adhesion of fine
particles for the formation and micro-patterning of thick ceramic layers on substrates, is a
novel coating technique for preparing thick ceramic films at room temperature [1–3]. In the
AD method, the micro-sized ceramic particles are accelerated by gas flow in the nozzle up
to a velocity of over 100 m/s and sprayed onto the substrate [1]. Moreover, no additional
heating is required for the solidification of the ceramic powder [1,2]. Therefore, AD is novel
and attractive coating method for ceramic thin films [1–4]. However, various limitations of
AD techniques have been reported from experimental and simulation results. One notable
disadvantage of AD techniques is that they have a quite low deposition efficiency, often less
than 1% [5,6]. The bonding mechanism between ceramic particles has been studied, and
not all factors influencing the deposition efficiency have been elucidated [5]. To produce
thick films (>50 µm), the AD method has limitations, with low adhesion to the coating layer
of thick films. Contaminated particles generated by plasma damage to coatings by the AD
method are a major contributor to poor process reliability [7]. Advanced novel techniques
with a better understanding of the AD mechanisms are required to solve various problems
of the AD method for the production of high-quality thick films.

To improve the high-temperature corrosion resistance and wear resistance of materials
in special environments, the technology of a direct current (DC) arc plasma spray has
been widely used because it provides sufficient control over coating thickness and coating
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speed [8–12]. However, for ceramic coatings using a DC arc plasma spray, impurities from
melting the electrodes cause low-quality ceramic films. The formation of pores and cracks
has been observed, which decreases the mechanical properties of ceramic films deposited
by a thermal arc plasma spray [9,10]. For example, Sadeghi-Fadaki reported that reductions
in porosity and pore size cause higher adhesion strength when Y2O3 stabilized zirconia is
used [13]. Thus, efforts need to be taken toward the fabrication of various ceramic coatings
using a DC arc plasma spray to avoid the deficiencies. Although a microwave plasma
source (MPS) [14] has various advantages, studies on the application of MPS to plasma
aerosol deposition (PAD) are insufficient. For example, MPS generates plasma jets without
any need for electrodes, which can solve problems such as impurities from melting the
electrodes of a thermal arc plasma source. In addition, it produces lower flux densities than
those of a DC arc plasma spray so that the powder injected in the PAD processes does not
completely melt.

Experimental or simulation studies on flow velocity with reliable results have been
lacking. However, flow velocity is one of the key parameters for the AD or PAD technique,
where forming a coating by a PAD technique involves melting and accelerating particles
at high velocity toward a substrate. In this study, an MPS with a novel structure for PAD
was developed as a plasma generator using ignition in a surface wave discharge in a low
vacuum region, which enables long-term (>4 h) operation with a stable plasma condition
by introducing an effective cooling structure. This process is called “microwave plasma
assisted aerosol deposition (µ-PAD)”. As shown in Figure 1, the geometric structure of
the MPS was designed such that the velocity of the powder sprayed from the nozzle of a
feeder could not decrease. The velocity of the powder increases as it passes through the
plasma region, and the surface of the powder is melted by the high heat generated from the
plasma to improve the efficiency of the µ-PAD. In other words, melting only the surface of
the powder using microwave plasma is the key to the concept of µ-PAD.
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Figure 1. Developed microwave plasma source (MPS).

To validate the feasibility of the developed MPS for µ-PAD, the characteristics of the
plasma flow velocity generated from the MPS were investigated. We adopted a Mach
probe (MP) [15] with the simulation of a turbulent model for the analysis of plasma flow
velocity in collisional microwave plasma jets. In addition, using µ-PAD, with the optimized
conditions of the MPS, Y2O3 coatings were deposited on an aluminum substrate, and the
Y2O3 coating layer was investigated by scanning electron microscope (SEM).

2. Experimental Setup

Figure 2 shows a simplified schematic view of the experimental setup for the mea-
surement of the plasma flow velocity generated from the developed MPS for µ-PAD. The
cylindrical vacuum chamber had a diameter of 380 mm and an axial length of 720 cm. The
nozzle diameter of the MPS was 1 cm, and argon gases with Y2O3 powder, injected by a
feeder, were sprayed by the nozzle of the MPS. The plasma was generated using a 2.45 GHz
microwave with 1–1.5 kW power, when the reflected power was reduced by <0.1% using a
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3-stub tuner with a bidirectional power meter (BPM). A power supply, operated at 15 kV,
30 mA, and 25 kHz, was used for the ignition of the MPS. Argon was used as the working
gas. It was injected from the rear port of the MPS with Y2O3 powders, and a mass flow
controller (MFC) maintained a constant gas flow rate of 10 slm. In this study, Y2O3 powder
was not injected when measuring plasma flow velocity by an MP, and the Y2O3 coatings
were deposited on an aluminum substrate by µ-PAD after optimizing the plasma jet gener-
ated by MPS. The base pressure was 10 mTorr, and the operating pressure was 9 Torr in
the MPS and 2–6 Torr in the vacuum chamber, controlled by a vacuum valve between a
vacuum chamber and a hot gas cooler, for argon gas, which is 10 slm. The z-axial plasma
flow profiles were measured by the parallel MP, which consisted of two tungsten tips
and a ceramic insulator between the tips. The geometry of the MP, which has a collective
area (A) of probe tips (2.25 × 10−2 cm2) and a simple circuit, is shown in Figure 3a,b.
Using bipolar operational power, a negative bias (−100 V) was applied to probe tips for
the collection of ion saturation currents (Isat). For MP data, the measured voltage from
each probe is given as V1 = α1 I1R1 for the upstream probe (MP1) and V2 = α2 I2R2 for
the downstream probe (MP2), where α, I, and R are the conversion factor, ion saturation
current, and resistance (1 kΩ), respectively. To reduce the uncertainty of data acquisition, α
is introduced for calibration of the tip area and circuit differences with the BNC cable and
two power supplies.
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Figure 2. (a) Experimental setup for the measurement of plasma flow velocity generated from
the developed microwave plasma source (MPS) for microwave plasma assisted aerosol deposition
(µ-PAD). (b) Schematic diagram for plasma flow measurement and simulation. MFC: mass flow
controller, PG: pressure gauge, TC: thermal couple, BPM: bidirectional power meter, MW: microwave,
Ps: source pressure, Pc: operating chamber pressure, Pb: base chamber pressure, R1: source radius
and R2: chamber radius.

As shown in Figure 3c, to investigate the effect of the plasma flow velocity on the
operating pressure, a scanning system with electric probe tips was used, which can scan
the z-axial plasma profiles with a scan speed 0.1 m/s. The z-axial position was converted
from the voltage signals measured using linear position transducers. Figure 4 shows the
raw data of MP for voltages of z-axial position (z) and Isat, obtained from the performance
test of a scanning system.



Nanomaterials 2021, 11, 1705 4 of 13

Nanomaterials 2021, 11, x FOR PEER REVIEW 4 of 14 
 

 

Figure 2. (a) Experimental setup for the measurement of plasma flow velocity generated from the 
developed microwave plasma source (MPS) for microwave plasma assisted aerosol deposition (μ-
PAD). (b) Schematic diagram for plasma flow measurement and simulation. MFC: mass flow con-
troller, PG: pressure gauge, TC: thermal couple, BPM: bidirectional power meter, MW: microwave, 
Ps: source pressure, Pc: operating chamber pressure, Pb: base chamber pressure, R1: source radius 
and R2: chamber radius. 

 
Figure 3. (a) Geometry and (b) circuit of the Mach probe (MP) and (c) the scanning system for MP. 
Area of probe tip = 2.25 × 10−2 cm2. MP1 and MP2 are for measurement of upstream and downstream 
ion saturation current densities, respectively. Measured voltage from each probe is Vଵ = 𝛼ଵ𝐼ଵ𝑅ଵ for 
upstream current (MP1) and Vଶ = 𝛼ଶ𝐼ଶ𝑅ଶ for downstream current (MP2), where 𝛼, I, and R are con-
version factors, ion saturation current and resistors, respectively. 

As shown in Figure 3c, to investigate the effect of the plasma flow velocity on the 
operating pressure, a scanning system with electric probe tips was used, which can scan 
the z-axial plasma profiles with a scan speed 0.1 m/s. The 𝑧-axial position was converted 
from the voltage signals measured using linear position transducers. Figure 4 shows the 
raw data of MP for voltages of 𝑧-axial position (z) and Isat, obtained from the performance 
test of a scanning system. 

Figure 3. (a) Geometry and (b) circuit of the Mach probe (MP) and (c) the scanning system for
MP. Area of probe tip = 2.25 × 10−2 cm2. MP1 and MP2 are for measurement of upstream and
downstream ion saturation current densities, respectively. Measured voltage from each probe is
V1 = α1 I1R1 for upstream current (MP1) and V2 = α2 I2R2 for downstream current (MP2), where α, I,
and R are conversion factors, ion saturation current and resistors, respectively.
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Figure 4. Raw data for (a) the voltage measured by a linear position transducer for z-axial position (z),
(b) ion saturation current at microwave power = 1 kW and base pressure = 6 Torr and (c) ion saturation
current at microwave power = 1 kW and base pressure = 2 Torr, obtained from performance test of
a scanning system for the Mach probe. z-axial position: (1) = 300 ± 2.5 mm and (2) = 10 ± 2.5 mm
from the nozzle exit of a microwave plasma.
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3. Measurement of Plasma Flow

When an MP is composed of two separate directional probes with strongly negative
biased potential, one collects the current density (Jup) with the upstream plasma flow by
MP1, and the other collects current density (Jdn) moving against the downstream plasma
flow by MP2 (refer to Figure 3) [15]. Owing to plasma flow, these two currents show
asymmetry, producing a measured ratio (Rm) of current densities that is greater than one:
Rm = Jup/Jdn ≥ 1 [16,17]. For dimensional analysis of a Mach probe with ratio of current
densities reported by Chung [15,17], the one-dimensional continuity equation for ions is
described as:

∂ni
∂t

+
∂

∂x
niv = 0 (1)

which leads to
∂ni
∂t

niv = −∂ni
∂t

(2)

where ni, v, and x are the ion density, plasma flow velocity, and the coordinate for the
direction of the flow or magnetic field, respectively. Here, ∂ni/∂t can be treated as a
source term, which can also be obtained from the steady-state two-dimensional continuity
equation, which is the same as those in most fluid models, i.e., −∂(niv)/∂y ~−∂ni/∂t in
dimensional analysis, where y is the coordinate for the perpendicular direction to the flow
or the magnetic field. Equation (2) can be rearranged as

∂J = −dx
dt

∂n = −v∂ni (3)

where J ≡ niv. Then from the momentum equation, one can determine the following with
the Boltzmann electrons:

mini
dv
dt

=
dPi
dx

+ eniE = −(Ti + Te)
dni
dx
≡ −T

dni
dx

(4)

where mi, e, Pi, E, Ti, and Te are the ion mass, electron charge, ion pressure, electric field
intensity, ion and electron temperature, respectively. By multiplying both of the terms of
Equations (3) and (4) by dx and using v = dx/dt, it becomes

Jdv = −c2
s dni =

c2
s

v
dJ (5)

The separation of J and v leads to

d
v2

2c2
s
= d(ln J), (6)

which becomes

J = J0 exp
[

v2

2c2
s

]
= J0 exp

[
M2

2

]
(7)

where M ≡ v
cs

= v/
√
(Te + Ti)/mi, cs and J0 are Bohm velocity and the unperturbed

ion flux. Since drift flow affects the flow in perturbation regions, one can assume Mup ≈
M(x) + βM∞ and Mdn ≈ M(x) − βM∞, where M(x) and M∞ are a normalized flow
velocity of the perturbation region without drift flow and a normalized flow velocity,
respectively. Also, β is the constant reflecting the effects of magnetic field, collisionality,
viscosity, ion temperature, and other factors. Then

Rm ≡
Jup

Jdn
= exp

[
M2

up −M2
dn

2

]
= exp[M(x)·2βM∞] = exp

[
k f M∞

]
(8)

where k f = 2βM(x), which is calibration factor of a Mach probe.
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For the analysis of the experimental Mach probe data on plasma flow velocity by
theories of ion collection [15–17], the ratio of the upstream to downstream current densities
is given as

Rm =
Jup

Jdn
=

I1/A1

I2/A2
=

V1/α1R1 A1

V2/α2R2 A2
(9)

The measured voltages from each probe, along with the conversion factors, resistance
values and collective area, were used to calculate M∞. Figure 5 and Table 1 show the results
of the current densities calculated using Equation (9) with pressure variation, which was
used to calculate the ratio of upstream to downstream current densities. Using various
models [15–21] with Equations (8) and (9) for the plasma flow velocity, M∞ was defined as

M∞ =
v
cs

=
1

K f
ln[Rm] (10)Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 14 
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Figure 5. Current densities (J) of the Mach probe: (a) upstream and (b) downstream for base pressure variation at 1 kW
microwave power.

Table 1. Measured results of current densities for the Mach probe. The J has average values for z = ±2.5 mm with the
standard deviation (≤5%).

z (mm)
2 (Torr) 4 (Torr) 6 (Torr)

Jup

(mA/cm2)
Jdn

(mA/cm2) ln(Rm)
Jup

(mA/cm2)
Jdn

(mA/cm2) ln(Rm)
Jup

(mA/cm2)
Jdn

(mA/cm2) ln(Rm)

10 58.16 8.05 1.98 69.56 7.13 2.28 56.23 4.87 2.45
20 57.73 7.81 2.00 62.14 6.69 2.23 43.30 4.52 2.26
30 52.27 6.43 2.10 55.65 5.97 2.23 30.63 3.47 2.18
40 49.98 6.68 2.01 47.28 5.49 2.15 21.47 2.94 1.99
50 43.51 6.00 1.98 40.83 4.55 2.19 10.56 1.37 2.04
60 43.55 5.75 2.02 25.43 3.28 2.05 5.63 0.80 1.95
70 38.06 5.38 1.96 20.51 3.24 1.85 5.53 0.75 2.00
80 37.93 5.37 1.95 12.61 2.20 1.75 3.44 0.42 2.11
90 34.32 4.45 2.04 11.90 2.05 1.76 1.69 0.11 2.72

100 33.91 4.55 2.01 7.74 1.31 1.78 1.19 0.20 1.81

Te ~ 1 eV was measured by a Langmuir probe, and Ti = 0.1Te was assumed for
the calculation of cs =

√
(Te + Ti)/mi. The difference in cs between the approximation

condition (Te ~ 1 eV) and the measured results (Te = 0.92–1.09 eV) as a function of pressure
(2–6 Torr) was less than 5%. Therefore, the fixed condition (Te = 1 eV) was used for the
Bohm velocity (1629 m/s). The calibration factors for collisionless conditions have been
studied using various kinetic and fluid models [19–21]. However, the overestimation of
plasma flow velocity in collisional plasmas measured by an MP has been reported because
of the effect of ion-neutral collision [22–24]. In collisional plasma, the overall flow behavior
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can be described by the conventional gas dynamic theory, because the major constituent
of the plasma is still neutral atoms due to the low degree of ionization in typical plasma
sources in collisional conditions [25,26]. To consider this issue, plasma velocity ≈ neutral
gas flow velocity (u) was assumed and the turbulent model was introduced to deduce Kf
for collisional conditions.

4. Simulation Model

The model studies were also involved in capturing the measured oscillatory phenom-
ena of turbulent high-velocity flow in collisional plasmas. The High Mach Number Flow
Module contained in the commercial software COMSOL Multiphysics (V. 5.3a, COMSOL
Multiphysics, Stockholm, Sweden) was utilized [27]. The governing equations for this
model are the Navier–Stokes equations in the stationary state (du/dt = 0), which are
composed of equations for continuity and momentum conservation. The equation for
energy conservation is simultaneously correlated with the equations and their expressions
are as follows:

(continuity) ∇·(ρu) = 0 (11)

(momentum) ρ(u·∇)u = ∇·
[
−pI + (µ + µT)(∇u + (∇u)T)− 2

3
(µ + µT)(∇·u)I−

2
3

ρkI
]

(12)

(energy conservation) ρCpu·∇T − kt∇2T = Q (13)

where ρ, u, p, µ, µT , Cp, kt T, and Q are the gas density, gas velocity, pressure, dynamic
viscosity, turbulent dynamic viscosity, heat capacity at constant pressure, thermal conduc-
tivity, gas temperature, and heat source, respectively. For the simulation of the turbulent
model, the Reynolds-averaged Navier–Stokes (RANS) model is used, which includes the
k–ε model. Each of k–equation for turbulent kinetic energy (k) and ε-equation for the
turbulent dissipation rate (ε) is

ρ(u·∇)k = ∇·
[
(µ +

µT
σk

)∇k
]
+ pk − ρε (14)

and

ρ(u·∇)ε = ∇·
[
(µ +

µT
σε

)∇ε

]
+ Cε1

ε

k
pk − Cε2ρ

ε2

k
(15)

where

µT = ρCµ
k2

ε
(16)

pk = µT

[
∇u + (∇u)T − 2

3
(∇·u)2

]
− 2

3
ρk∇·u (17)

The free constants for these equations are set to Cε1 = 1.44, Cε2 = 1.92, Cµ = 0.09,
σk = 1, and σε = 1.3, which were validated by numerous iterations of data fitting for a
wide range of turbulent flows [28]. The dynamic viscosity µ and thermal conductivity kt
are determined by Sutherland’s law, which relates the quantities to the gas temperature
and constants dependent on the gas species. Sutherland’s laws are as expressed as follows:

µ

µ0
= (

T
T0

)
3/2 T0 + Sµ

T + Sµ
(18)

k
k0

= (
T
T0

)
3/2 T0 + Sk

T + Sk
(19)

where µ0 = 2.125× 10−5 N·s/m2, T0 = 273 K, Sµ = 114 K, k0 = 0.0163 W/(m·K), Sk =
170 K, and the values are those of argon species [29].



Nanomaterials 2021, 11, 1705 8 of 13

The geometry of the MPS was reflected in two dimensional axisymmetric simulations,
and the simulation domain was decomposed into 61,532 meshes. A schematic diagram is
shown in Figure 2b. The argon flow, which has a Mach number of 1.5 and a temperature
of 1000 K (Ti ~ 0.1 eV), is heated by a microwave power of 1 kW, passing through a tube,
with a diameter of 10 mm, and spurted out of the chamber with a diameter of 200 mm.
The base pressure in the MPS was set to 10 mTorr and the pressure on the inlet boundary
(in MPS) was set to 9 Torr based on the experimentally measured result. To estimate K f
and compare the experimental measurements, the gas flow velocities were investigated at
different chamber pressures: 2, 4, and 6 Torr.

5. Results and Discussion

Using the 2D simulation results of u at the center of the z-axis with pressure varia-
tion, as shown in Figure 6, the calibration factor was calculated using Equation (10) as
K f = csu−1 ln[Rm]. Figure 7 shows the results for the relation between the calibration factor
and normalized ionization collision frequency (ω∗ ≡ ωa/cs) as a dimensionless parameter
to deduce the effect of the collision parameter on the calibration factor, where ω and a are
the ionization collision frequency and the probe radius [15,23,24]. The calibration factor
does not seem to be a constant parameter at 40 < ω∗ < 130 and highly dependent on the
collision parameters. In addition, the calculated calibration factor for collisional plasma
conditions is much higher than that for collisionless models [15], which have similar results
for the overestimation of plasma flow velocity in collisional plasmas by an MP [23,24].
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Figure 8 and Table 2 show the plasma flow velocity along the z-axis measured by an
MP and camera images of microwave plasma jets for operating chamber pressure variation
at a fixed microwave power of 1 kW. The experimental results of the plasma flow velocity
were found to be in good agreement with the simulation results. The measured plasma
flow velocity was between 400 and 700 m/s, and it gradually decreased along the z-axis.
The maximum value was ~700 m/s when the experimental conditions were z = 25 mm,
microwave power = 1 kW, and operating chamber pressure = 2 Torr. At 2 Torr, the plasma
jet was over-expanded with the formation of oblique shocks at the edge of the nozzle
exit, converging to the jet axis. On the other hand, it was not clearly observed at 4 and
6 Torr as higher pressures. The results show similar tendencies with the phenomena for
supersonic flow in arc plasma jets, experimentally reported by Namba [26] and Gindrat [30].
The position of the normal shock front varies with the flow and background pressure as
predicted by

zp = 0.67× d

√
Ps

Pc
(20)

where d, Ps and Pc are the source nozzle diameter, source pressure at the nozzle throat, and
chamber pressure [25,26,31]. Further, d = 10 mm, Ps = 9 Torr, and Pc = 2− 6 Torr were
used for the calculation of zp (refer to Figure 2). The results calculated using Equation (20)
for zp were compared with the results of the simulation and experiment obtained using
MP and camera images. Figure 9 shows the first positions of the normal shock for the
operating pressure variation. The simulation and experiment results, which can be fitted in
the form calculated by Equation (20), were in good agreement for the estimation of zp with
little uncertainty in absolute values.

After the optimization of conditions considering the substrate position, plasma flow
velocity, etc. of MPS for µ-PAD were derived from the results obtained from the simulation
and experiment for the analyses of the parameters of the microwave plasma jet, the Y2O3
coatings were deposited on an aluminum substrate. Y2O3 powder was injected at 4 g/min
with a particle size of ~5 µm, which was a commercial Y2O3 powder with 99% purity
as shown in Figure 10a. Considering the window of deposition as a function of the
average particle diameter and velocity for intrinsically brittle materials from molecular
dynamics simulations in comparison to the analytical fracture model [6], the µ-PAD was
conducted under experimental conditions with the highest plasma velocity. The particles
with excessive impact velocity, rather than the bonding between the particles themselves,
contribute to the erosion of the coating layer [5]. However, this was not observed in this
study because the particle velocity generated from the nozzle of the MPS was expected to
be much lower than the measured plasma flow velocity owing to the increased collision
frequency and the mass ratio of Y2O3 particles and gases. Mounting the substrate at
a position with higher plasma velocity, where the distance between the nozzle and the
substrate was less than 50 mm, resulted in negative effects, such as a changed µ-PAD
condition and low quality of coating layers, due to the accumulation of Y2O3 particles at
the nozzle or damage to the nozzle by the Y2O3 particles backscattered from the substrate
and the fluctuation of plasma parameters produced by the shock flow. Therefore, the
distance between the nozzle and the substrate was fixed at 50 mm, which was the position
for plasma flow velocity of 600 < v < 650 m/s under the experimental conditions of the MPS
for the Y2O3 coatings: microwave power = 1 kW and operating pressure = 2 Torr at 10 slm
in the vacuum chamber. This condition results in a relatively lower fluctuation of plasmas
formed from the shock flow, as shown in the results on the characteristics of the plasma
flow. The substrate was scanned repeatedly at a speed of 100 mm/s. Figure 10b,c show the
results of Y2O3 coatings on an aluminum substrate for 10 min, which were analyzed by
SEM for the microstructure with a cross-sectional view. The thickness of the coating layer
was ~50 µm, with pore properties <10%.
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Table 2. Comparison between experiment (E) and simulation (S) results for the plasma flow velocity
along the z-axis. The E has average values for z = ±2.5 mm.

z (mm)
2 (Torr) 4 (Torr) 6 (Torr)

E (m/s) S (m/s) E (m/s) S (m/s) E (m/s) S (m/s)

10 563 ± 10 778 546 ± 05 568 566 ± 05 552
20 620 ± 09 711 537 ± 06 563 580 ± 12 561
30 652 ± 11 656 527 ± 06 554 533 ± 05 554
40 635 ± 12 681 529 ± 07 540 514 ± 05 540
50 632 ± 14 668 509 ± 08 514 469 ± 07 516
60 609 ± 16 645 516 ± 08 479 484 ± 07 482
70 615 ± 09 621 487 ± 10 445 465 ± 15 448
80 607 ± 11 589 437 ± 15 407 459 ± 27 410
90 597 ± 16 553 414 ± 20 371 432 ± 25 374

100 562 ± 14 520 418 ± 26 342 420 ± 23 345
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In future work, the coating efficiencies, hardness, surface roughness and pore prop-
erties of Y2O3 coatings, deposited on various substrates, will be studied with SEM, X-ray
diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), etc.

6. Summary and Conclusions

An MPS with a novel structure was developed as a plasma generator for µ-PAD. To
validate the potential of the developed MPS for µ-PAD, the characteristics of the plasma
flow velocity generated from the MPS were investigated using an MP with pressure varia-
tion. Simulation with the turbulent model was introduced to deduce the calibration factors
of the Mach probe and compare experimental measurements for analyses of collisional
plasma conditions, owing to the overestimation of plasma flow velocity in collisional plas-
mas measured by an MP with collisionless models. The results show that the calibration
factor does not seem to be a constant parameter and is highly dependent on the collision
parameter. In addition, the calculated calibration factor of 4 < Kf < 7 under collisional
plasma conditions (40 < ω∗ < 125) is much higher than that of collisionless models. The
measured plasma flow velocity, which witnessed fluctuations produced by a shock flow,
was between 400 and 700 m/s. The optimized conditions considering substrate position,
plasma flow velocity, etc. of the developed MPS for µ-PAD were derived by using the
results obtained from the simulation and experiment for analyses on the parameters of the
microwave plasma jet. The optimized conditions were as follows: substrate position (z) =
50 mm and plasma flow velocity = 600 < v < 650 m/s at a microwave power of 1 kW and
operating pressure of 2 Torr at an argon gas flow rate of 10 slm in the vacuum chamber.
Under the optimized conditions, Y2O3 coatings deposited on an aluminum substrate were
investigated using SEM. After applying the µ-PAD for 10 min., a coating layer thickness
~50 µm and pore properties of <10% were observed. By comparison with AD results of
≤10 µm, the results presented in this study show that the µ-PAD with the developed MPS
is a highly feasible as an alternative to AD with various limitations, such as low adhesion
for the coating layer of thick films.

This study contributes to the understanding of a Mach probe for the measurement of
plasma flow velocity in highly collisional conditions. In addition, the measured physical
properties or tendencies of the plasma jets will serve dry processes for the synthesis of
nanomaterials with plasma sources such as deposition or etching in semiconductor fields,
because the surface damage to parts or walls of semiconductor equipment which require
the coated ceramic materials with high plasma resistance has emerged as a new issue due
to etching through the corrosive ionized gases or the extreme ultraviolet used.
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