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Abstract: In this study, by combining a large-area MoS2 monolayer with silver plasmonic nanostruc-
tures in a deformable polydimethylsiloxane substrate, we theoretically and experimentally studied
the photoluminescence (PL) enhancement of MoS2 by surface lattice resonance (SLR) modes of
different silver plasmonic nanostructures. We also observed the stable PL enhancement of MoS2 by
silver nanodisc arrays under differently applied stretching strains, caused by the mechanical holding
effect of the MoS2 monolayer. We believe the results presented herein can guarantee the possibility
of stably enhancing the light emission of transition metal dichalcogenides using SLR modes in a
deformable platform.

Keywords: transition metal dichalcogenides; surface plasmon resonance; PL enhancement

1. Introduction

Widely studied layered materials usually consist of lamellas weakly attached by
van der Waals force, while the atoms in each lamella are strongly bonded in each two-
dimensional (2D) plane. A famous example of this type of layered material in nature
is graphite [1,2]. Over the past decade, by developing different artificial extractions or
growth strategies, researchers have been able to obtain single-layered graphene, as well
as to fully investigate its strong mechanical strength [3], ultrahigh electron mobility [4],
and high thermal conductivity [5] at room temperature. As the semiconductor analogy of
graphene, transition metal dichalcogenides (TMDs) [6,7] have received extensive attention
in recent years. The most significant feature of TMDs compared with graphene is the
direct bandgaps, which are beneficial as the channels of electrical transistors [8,9] or optical
gain media for efficient light emission [10–12]. TMDs composed of different elements
have different bandgaps which lead to different visible light emissions. Because TMDs
are extremely thin (<1 nm), they do not disturb the optical properties of the dielectric or
metallic photonic structures integrated with them. TMDs without dangling bonds also
prevent unnecessary interactions with integrated structures. The above features are crucial
for an optical gain medium in an efficient light source. However, researchers are still
concerned that the thinness of TMDs can limit their optical emissions. Therefore, recently,
efficiently enhancing the light emissions of TMDs has become one of the important issues
in the field.

To meet the above-mentioned requirement for TMDs, researchers can increase the
carrier recombination rate of TMDs materially or increase their spontaneous emission rate
and quantum efficiency by optical techniques. In the first approach, growing different
TMDs to form heterojunctions [13] and superposing their optical emissions is feasible.
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Alternatively, one can create oxygen-bonding-based defects or cracks in chemically doped
TMDs [14] and significantly enhance the optical emission from these sites. In the second
approach, researchers usually apply different nanophotonic structures [15–26] to TMDs
to dramatically increase the light–matter interactions of TMDs. For example, the use of
different photonic crystal (PhC) structures [15–17] with photonic bands and bandgaps for
guiding and locally confining optical waves can efficiently accumulate photons in spatial
and temporal domains. By utilizing a PhC cavity [18–20] with a sufficiently high-quality
factor, such enhancement can even realize lasers.

Additionally, using metallic structures with surface plasmonic resonance (SPR) [27]
is also a suitable choice. SPR is the collective electron oscillation at the metal–dielectric
interface, which typically presents an extremely strong electric field concentration. Such
a local field concentration can effectively overlap with a sheet gain medium in spatial
terms and produce a large Purcell factor for enhancing light–matter interactions. By
encircling this interface to be a nanoparticle, the SPR turns into localized SPR (LSPR) [28]
with stronger fields and Purcell factor. Furthermore, if we arrange these nanoparticles
into lattices, the Fano resonance effect due to lattice diffraction turns the LSPR in each
nanoparticle into surface lattice resonance (SLR) [29]. Generally, SLR has additionally
enhanced field intensity and narrower spectral linewidth, while it can significantly tune
the wavelength by changing the lattice parameters. In recent years, by combining different
TMDs with various PhC and plasmonic nanostructures [30], researchers have successfully
enhanced their light emissions of TMDs by more than one order [21–26]. However, most
demonstrations have still been on hard substrates, while only a few reports [30] have
studied the emission enhancement in a deformable platform. A further investigation on
such emission enhancement under deformation is still missing. Therefore, in this study,
by integrating different plasmonic nanostructures sustaining SLR modes with a MoS2
monolayer in a deformable carrier, we theoretically and experimentally investigate the
light emission enhancements of MoS2 and their stabilities under different stretching strains.

2. Design and Simulation

In this study, our proposed structure consists of silver nanostructures covered by
a large-area MoS2 monolayer (with a thickness of 0.7 nm) in deformable polydimethyl-
siloxane (PDMS) substrate, as shown in Figure 1a. Herein, we use silver because of its
lower optical absorption loss than gold and the ease of designing parameters of SLR for
aligning with the gain spectrum of MoS2 (wavelength peak near 650 nm). We designed two
different silver nanostructure topologies, including periodically arranged nanodiscs (NDs)
and their dimers with a gap (g) along the X direction, as shown in the inset of Figure 1a.
The insets also show their parameter definitions, including lattice constants (a) in the X
and Y directions, ND diameter (D), and ND thickness (t).

To understand the optical properties of the above structure without MoS2, we utilized
the three-dimensional (3D) finite element method (FEM, COMSOL, Burlington, MA, USA,
Multiphysics software package) to characterize the theoretical transmission spectrum.
Figure 1b shows the simulation lattice unit cell in the 3D FEM. In this setup, the silver ND
unit cell embedded in PDMS had a cell size of a × a and was enclosed by top, bottom,
and four side planes. The refractive index of PDMS is 1.405, and the dielectric function of
silver is described by the Lorentz–Drude model [31,32]. The four side planes were set as
the periodic boundary condition (PBC) to mimic the periodic ND array, and the top and
bottom planes were set as a scattering boundary condition (SBC). We further inserted a top
port above the ND to launch a broadband plane wave (essential for exciting the SLR mode)
with different polarizations to the ND; a bottom port was set below the ND to receive and
integrate the transmitted electric field for calculating the transmission spectra.
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Figure 1. (a) Schematic and parameter definitions of silver ND and ND-dimer arrays covered with
MoS2 monolayer in PDMS; (b) the lattice unit cell in the 3D FEM setup for simulating transmission
spectra of silver ND arrays in PDMS; theoretical transmission spectra of silver ND arrays with
different (c) a and (d) D, where the purple shadows represent the gain region of MoS2; (e) the
electrical field distributions of the SLR mode along XY and XZ planes in silver ND array with
D = 130 nm and a = 400 nm; theoretical transmission spectra of (f) X- and (h) Y-polarized SLR modes
of silver ND-dimer array with different D values; (g) their electrical field distributions along XY and
XZ planes under D = 100 nm, g = 20 nm, and a = 400 nm.

Figure 1c shows the theoretical transmission spectra of the silver ND arrays with
lattice constants, a, from 400 to 500 nm and a fixed disc diameter, D, of 130 nm in PDMS.
When the lattice constant decreased, the spectral valleys representing the SLR mode of the
silver ND array showed a significant wavelength blue shift. This sensitivity to the lattice
parameter is typical in SLR mode, in contrast to LSPR mode. Thus, aligning the SLR mode
with the gain region of the MoS2 is feasible by tuning the lattice constant. In Figure 1e, the
theoretical electric fields of X- and Y-polarized SLR modes along the XY and XZ planes
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concentrate along the top and bottom edges of the silver ND. In addition, because the
ND is rotationally symmetric in topology, the X- and Y-polarized SLR modes showed the
same transmission spectra and field distributions in Figure 1c,e, respectively. Furthermore,
Figure 1d shows the theoretical transmission spectra of the silver ND arrays with different
D values and fixed a of 400 nm. When the value of D increased from 80 to 160 nm, the SLR
mode showed a wavelength redshift because of the elongated resonance path of LSPR in
each ND. This wavelength dependence on D provides the other way to align the SLR mode
with the MoS2 gain region.

In contrast, for the design of the silver ND-dimer array, owing to its different symmetry
along the X- and Y-axis, the X- and Y-polarized SLR modes inside showed different spectral
alignments with the MoS2 gain region, as shown in Figure 1f,g. This asymmetry led to
significantly different field distributions of the X- and Y-polarized SLR modes, as shown
in Figure 1h. However, owing to the dimer coupling effect, the X-polarized SLR mode
profile, as shown in Figure 1h, still showed a much stronger field concentration within
the gap than that of SLR in the silver ND array. Although the Y-polarized SLR mode did
not effectively align in the spectrum with the MoS2 gain region, the strong field of the
X-polarized SLR mode would still be beneficial for light emission enhancement. Moreover,
to improve the above misalignment issue, without significantly changing the X-polarized
SLR mode, one could further design elliptical NDs [33] to pull the Y-polarized SLR mode
into the gain region.

3. Manufacturing Process

Figure 2a shows the flowchart for manufacturing the above design. The process started
by defining the plasmonic nanostructure patterns on the coated electron beam (e-beam)
resist (polymethylmethacrylate, PMMA) on an InP substrate, using e-beam lithography
(Status A). After evaporating the silver (Status B) and lifting off the patterned PMMA
(Status C), we obtained the silver ND arrays on the InP substrate. Figure 2b shows the
scanning electron microscope (SEM) images in different magnifications of a silver ND array
on an InP substrate. Afterward, we spin coated PDMS (Sylgard184 of Dow Corning, a
mixture of SylgardA and SylgardB with a volume ratio of 10:1) on the silver ND array
and baked it at 60 ◦C for 12 h (Status D), and then removed the InP substrate using an
HCl wet etching process at room temperature (Status E). Next, we prepared a wafer-scale
MoS2 monolayer grown on a sapphire substrate by radio frequency sputtering [34] (see
Supplementary Note S1 and Figure S1). After dicing, we covered a piece of MoS2 grown
on sapphire (0.5 × 0.5 cm) on the exposed silver NDs (Status F). Owing to the viscosity of
PDMS and the difference in hydrophilicity between MoS2 and sapphire, we could remove
the sapphire substrate by the liquid wedging method [35] and uniformly attached the
above diced MoS2 monolayer on the silver ND array (Status G). Eventually, we realized
our proposed structure by sealing the MoS2 and silver ND array using PDMS. The above
sealing step results in a symmetric structure of the MoS2/ND array combination and
prevents the silver from oxidation by air.

Figure 2c shows the picture and optical microscope (OM) images of the silver ND and
ND-dimer arrays covered with MoS2 in PDMS and manufactured by the above process.
The picture clearly shows the uniformly attached MoS2 monolayer in the center of the
PDMS substrate. The different disc diameters in each silver ND and ND-dimer arrays
resulted in wavelength shifts of SLR modes, which reflected in different colors of each array
in Figure 2c. To ensure the quality of MoS2 after the above manufacturing process, using a
532 nm laser excitation, we obtained the photoluminescence (PL) and Raman scattering
spectra of MoS2 before and after embedding in the PDMS. In Figure 2d, the PL emissions
from the MoS2 showed slight blue shifts (~4 nm) in wavelength, while the Raman peaks in
Figure 2e corresponded to A1

g and E1
2g vibration mode shifts from 386 cm−1 and 406 cm−1

to 384 cm−1 and 404 cm−1, respectively. These slight peak shifts in PL and Raman spectra
come from the strain relaxation [36] of MoS2 after transfer. Nevertheless, the invariant



Nanomaterials 2021, 11, 1698 5 of 10

Raman peak difference (~20 cm−1) between A1
g and E1

2g vibration modes still guaranteed
the monolayer feature of MoS2 after transfer.
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Figure 2. (a) Fabrication flowchart of the silver ND array covered by MoS2 monolayer in PDMS; (b) The top-view SEM
images in different magnifications of silver ND array on InP substrate in Status C in (a); (c) picture and OM images of
silver ND and ND-dimer arrays with covered MoS2 monolayer in a PDMS substrate; the measured (d) PL and (e) Raman
spectra of MoS2 monolayer grown on sapphire and embedded in PDMS. The peaks on both sides of the MoS2 PL signal in
(d) correspond to the emissions from PDMS and sapphire substrates.

4. Results and Discussions
4.1. PL Enhancement of MoS2 via Silver ND and ND-Dimer Arrays in PDMS

In measurement, we use a 532 nm continuous wave laser to excite the manufactured
structures at room temperature. First, Figure 3a shows the OM image of the silver ND array
partially covered with a fractured MoS2 monolayer. It includes areas with different material
combinations by silver ND array, MoS2 monolayer, and PDMS. The measured PL intensity
spatial mapping in Figure 3a clearly shows the enhanced PL emission of MoS2 by the silver
ND array. By this initial confirmation, we further characterized the MoS2 with silver ND
arrays with D values from 80 to 160 nm, whose OM and top-view SEM images are shown
in Figures 2c and 3b, respectively. In Figure 3c, the PL enhancement of MoS2 increased with
D and reached an enhancement value of 6.5 when D was 160 nm. The PL enhancement
increased with increases in D, which was mainly attributed to the spectral alignment
between the SLR mode and MoS2 gain region, as the prediction in Figure 1b. More
specifically, the PL enhancement EPL is related to the excitation laser absorption and Purcell
factor of the utilized SLR mode [22]. We can express the EPL as the summation of electrical
field enhancements E′(λexc)/E(λexc) and E′(λem)/E(λem) of SLR mode. E′(λexc)/E(λexc) is
the ratio of the electric field within the MoS2 layer with and without silver ND array at the
excitation wavelength λexc and E′(λem)/E(λem) is with the same definition at the emission
wavelength λem. E′(λexc)/E(λexc) represents the enhancement in laser absorption by the
SLR mode at λexc. E′(λem)/E(λem) approximates the Purcell factor [37] of the SLR mode,
which expresses the enhancement of radiative spontaneous emission rate by the SLR mode
at λem.

In our FEM simulation, by integrating the electric field of SLR mode within the MoS2
layer, we calculated the electric field enhancements (compared with the electric field in the
MoS2 layer without silver ND array) provided by silver ND arrays with different D values
at different wavelengths, as shown in Figure 3d. With λexc and λem of 532 and 655 nm,
respectively, the EPL estimated from Figure 3d and recorded in Figure 3e increased with D,
which approximately agreed with the measured PL enhancement. It should be noted that
there is a mismatch between the D for maximum enhancement occurrence in the experiment
and simulation. It has been reported that this mismatch is the result of approximating
the Purcell factor by the electric field of SLR mode (i.e., E′(λem)/E(λem) we used above) in
evaluating the PL enhancement [37]. In addition, according to the definition of EPL, we can
further enhance the PL emission by enlarging the term E’(λexc)/E(λexc), which represents
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the excitation absorption. In Figure 3c, by using a 633 nm continuous wave laser excitation,
we can obtain a higher PL enhancement value of 7.6 under D = 160 nm. The other cases
with different D values all show stronger PL emissions under 633 nm laser excitation than
those under λexc of 532 nm (see Supplementary Note S2 and Figure S2).
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areas with different material combinations; (b) the SEM images of silver ND arrays with D from 80
to 160 nm; (c) the measured PL spectra of MoS2 covering these silver ND arrays in PDMS. The PL
spectrum of MoS2 with silver ND array with D = 160 nm under a 633 nm laser excitation is also in
the same plot; (d) theoretical enhancement of electrical field of SLR modes within MoS2 in silver ND
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For comparison, we further characterized the silver ND-dimer array under the same
excitation condition (λexc = 532 nm). The OM and top-view SEM images are shown in
Figures 2c and 4a, respectively. Figure 4b shows that, in the experiments, we observed the
same tendency towards an enhancement of PL from the array of ND dimers as from the
ND array. As we mentioned before, according to the definition of EPL, the total electric field
coupled in the MoS2 layer dominates the PL enhancement instead of the local maximum
electric field. Therefore, even though the ND dimer showed an SLR local electric field
over two times stronger than in a single ND, their similar total electric fields still led to
similar PL enhancements. As we discussed, related to Figure 1c, the low total electric
field in the ND dimer came from different symmetries of X- and Y-polarized SLR modes.
The calculated EPL, shown in Figure 4c, agreed with the above prediction. Specifically, in
Figure 4c, the EPL provided by X-polarized SLR mode at D = 100 nm matched well with
the gain region of MoS2. In contrast, the Y-polarized SLR mode showed misalignment
with λem and contributed less EPL than the X-polarized SLR mode. If one would like to
improve the PL enhancement of the silver ND-dimer array, as we discussed before, shaping
the discs to be elliptical along the Y-axis could shift the Y-polarized SLR mode to a longer
wavelength for aligning with the MoS2 gain region. However, in providing similar PL
enhancements, the ND with a simpler topology and larger manufacturing tolerance than
the present ND dimer would be a better choice.

4.2. PL Enhancement of MoS2 with ND and ND-Dimer Arrays under Stretching

To further study the PL enhancements of MoS2 by silver ND and ND-dimer arrays
under deformation in experiments, we fixed the sample on a custom-designed stretching
stage in Figure 5a and stretched it along a specific direction. The stretching stage consists
of fixtures and a linear actuator, and its applied strain ξ definition is the length ratio of
the sample after (L′) and before (L) stretching, as illustrated in Figure 5a. Using this setup,
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we applied stretching strain along the X direction to the MoS2 in PDMS with silver ND
and ND-dimer arrays. Figure 5b shows their measured PL spectra under stretching ξ from
1.0 to 1.1. Their peak wavelengths were almost invariant, while the PL intensities only
showed less than 7% degradation under ξ of 1.1. However, the PL enhancement was very
sensitive to the lattice expansion of the silver ND array (see Supplementary Figure S3). A
reasonable explanation for the above slight PL variation could be the low strain transfer of
MoS2 in PDMS under stretching, due to the huge stiffness difference between MoS2 and
PDMS. In this case, the silver ND and ND-dimer arrays beneath are “held” by the MoS2
and become immobilized under stretching. Therefore, the SLR electric field enhancements
in the silver ND and ND-dimer arrays are also stable under stretching, which produce the
almost invariant PL enhancements shown in Figure 5b. In addition, it is also foreseeable
that we could observe a similarly stable PL enhancement of MoS2 under stretching when
replacing the present SLR plasmonic structure with the LSPR plasmonic structure that is
not sensitive to lattice changes.
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To verify the above prediction, we performed a mechanical simulation using 3D FEM.
For the simulation, we set a loading plane in the simulation domain (PDMS substrate) and
applied a planar force on the opposite plane to the MoS2 and silver ND array embedded
inside, as illustrated in Figure 5a. We set the other four planes as loading free in all
directions. The top of Figure 5c shows the theoretical strain distribution of the silver
ND array in PDMS without MoS2 coverage under applied stretching stress along the
X-axis. In this case, the strain nonuniformly concentrated in the PDMS regions between
each silver ND. Such a nonuniform strain distribution is known as the film-edge induced
strain [38] and comes from the stiffness difference between two neighboring materials.
This strain distribution results in the lattice expansion of the ND array along the X-axis.
Meanwhile, the almost zero strain distribution inside the silver NDs also means that
there is no deformation of NDs under the applied stress. In contrast, in the case with
MoS2 coverage, the bottom figure of Figure 5c shows that most strain distributed in the
PDMS near the edge of MoS2, while there was almost no strain distribution between the
silver NDs. This means the silver ND array beneath the MoS2 immobilized as predicted
above, which led to an invariant SLR mode in stably enhancing the PL emission of MoS2
under stretching.

However, from the OM images in Figure 5d, we still observed that the ND arrays
obviously elongated with stretching instead of being immobilized as we predicted above.
This elongation is reversible when the applied stretching stress is released. To understand
the contradiction between this phenomenon and our prediction above, we further examined
the magnified OM image of ND arrays under ξ of 1.1, as shown in Figure 5e. In Figure 5e,
the observed cracks along the Y-axis on the silver ND array could be responsible for the
contradiction. In our study, because the area of MoS2 covering the silver ND array was
quite large (100 × 100 µm2), the produced film-edge-induced strain near the MoS2 would
be huge, even under low applied stress. Therefore, if certain structural asymmetries exist
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in the integration of silver ND array and MoS2, the induced strain concentrates near the
asymmetry, which breaks the MoS2 into plural grain regions accompanied by the cracks
labeled in Figure 5e. However, in this case, the induced strain was distributed along the
cracks. Therefore, the silver ND array beneath each MoS2 grain still immobilized under
stretching, as shown in Figure 5c, which still guaranteed the stable PL enhancements shown
in Figure 5b.
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Figure 5. (a) (top) Schematics of stretching sample in measurement and simulation, definition of stretching strain ξ, and
(bottom) picture of the stretching stage in PL and Raman spectra measurement system; (b) the measured PL spectra of
the MoS2 covered with silver ND (top, D = 110 nm) and ND-dimer (bottom, D = 100 nm) arrays in PDMS under different
stretching strains ξ from 1.0 to 1.1; (c) theoretical strain distributions along the planes of the silver ND arrays with (bottom)
and without (top) MoS2 coverage in PDMS under an applied ξ of 1.1 along the X-axis; (d) the OM images of silver ND array
covered with MoS2 under the applied ξ from 1.0 to 1.1; (e) high magnification OM images of MoS2 (with and without crack
labels) with silver ND array under an applied ξ of 1.1 along the X-axis.

5. Conclusions

In this study, based on silver ND and ND-dimer arrays covered by a MoS2 monolayer
in a deformable PDMS substrate, we theoretically studied the PL enhancement of MoS2
by SLR modes within as well as the corresponding demonstration in experiments. When
we further applied different stretching to the MoS2 with silver ND and ND-dimer arrays,
the PL enhancements and the peak wavelengths of MoS2 still remained stable. In this case,
because of the stiffness difference between MoS2 and PDMS, the MoS2 mechanically held
the ND and ND-dimer arrays beneath the MoS2. This resulted in immobilized ND and
ND-dimer arrays and SLR modes within and thus provided stable PL enhancement of
MoS2 under stretching, even for the real case of large-area MoS2 cracks into plural grains.
We believe the results presented herein provide an important reference for stably enhancing
TMD light emission using SLR modes in a deforming platform.
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Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015, 520, 69–72. [CrossRef]

https://www.mdpi.com/article/10.3390/nano11071698/s1
https://www.mdpi.com/article/10.3390/nano11071698/s1
http://doi.org/10.1126/science.1102896
http://doi.org/10.1038/nature11458
http://doi.org/10.1116/1.2789446
http://doi.org/10.1103/RevModPhys.81.109
http://doi.org/10.1038/nmat3064
http://www.ncbi.nlm.nih.gov/pubmed/21778997
http://doi.org/10.1038/nnano.2012.193
http://doi.org/10.1021/acsnano.7b07436
http://doi.org/10.1021/acs.nanolett.5b05066
http://www.ncbi.nlm.nih.gov/pubmed/26844954
http://doi.org/10.1126/science.aah4698
http://www.ncbi.nlm.nih.gov/pubmed/27846499
http://doi.org/10.1002/adom.201800420
http://doi.org/10.1038/s41467-018-03218-8
http://doi.org/10.1021/acs.nanolett.8b03729
http://www.ncbi.nlm.nih.gov/pubmed/30532981
http://doi.org/10.1038/nmat4064
http://doi.org/10.1021/nn500532f
http://doi.org/10.1021/acsphotonics.6b00779
http://doi.org/10.1021/acs.nanolett.6b01558
http://www.ncbi.nlm.nih.gov/pubmed/27420735
http://doi.org/10.1021/acs.nanolett.7b02777
http://doi.org/10.1038/nature14290


Nanomaterials 2021, 11, 1698 10 of 10

19. Li, Y.; Zhang, J.; Huang, D.; Sun, H.; Fan, F.; Feng, J.; Wang, Z.; Ning, C.Z. Room-temperature continuous-wave lasing from
monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol. 2017, 12, 987–992. [CrossRef]

20. Ge, X.; Minkov, M.; Fan, S.; Li, X.; Zhou, W. Laterally confined photonic crystal surface emitting laser incorporating monolayer
tungsten disulfide. NPJ 2D Mater. Appl. 2019, 3, 16. [CrossRef]

21. Butun, S.; Tongay, S.; Aydin, K. Enhanced Light Emission from Large-Area Monolayer MoS2 Using Plasmonic Nanodisc Arrays.
Nano Lett. 2015, 15, 2700–2704. [CrossRef] [PubMed]

22. Lee, B.; Park, J.; Han, G.H.; Ee, H.S.; Naylor, C.H.; Liu, W.; Johnson, A.T.C.; Agarwal, R. Enhancement in Monolayer MoS2
Integrated with Plasmonic Nanoantenna Array. Nano Lett. 2015, 15, 3646–3653. [CrossRef]

23. Li, J.; Ji, Q.; Chu, S.; Zhang, Y.; Li, Y.; Gong, Q.; Liu, K.; Shi, K. Tuning the photo-response in monolayer MoS2 by plasmonic
nano-antenna. Sci. Rep. 2016, 6, 23626. [CrossRef]

24. Wang, Z.; Dong, Z.; Gu, Y.; Chang, Y.H.; Zhang, L.; Li, L.J.; Zhao, W.; Eda, G.; Zhang, W.; Grinblat, G.; et al. Giant photolumines-
cence enhancement in tungsten-diselenide–gold plasmonic hybrid structures. Nat. Commun. 2016, 7, 11283. [CrossRef]

25. Kim, J.H.; Lee, H.S.; An, G.H.; Lee, J.; Oh, H.M.; Choi, J.; Lee, Y.H. Dielectric Nanowire Hybrids for Plasmon-Enhanced
Light–Matter Interaction in 2D Semiconductors. ACS Nano 2020, 14, 11985–11994. [CrossRef] [PubMed]

26. Wang, Z.; Dong, Z.; Zhu, H.; Jin, L.; Chiu, M.H.; Li, L.J.; Xu, Q.H.; Eda, G.; Maier, S.A.; Wee, A.T.S.; et al. Selectively Plasmon-
Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates. ACS Nano 2018, 12,
1859–1867. [CrossRef] [PubMed]

27. Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007.
28. Willets, K.A.; Van Duyne, R.P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58,

267–297. [CrossRef] [PubMed]
29. Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic Surface Lattice Resonances: A Review of Properties and

Applications. Chem. Rev. 2018, 118, 5912–5951. [CrossRef] [PubMed]
30. Yan, S.; Zhu, X.; Dong, J.; Ding, Y.; Xiao, S. 2D materials integrated with metallic nanostructures: Fundamentals and optoelectronic

applications. Nanophotonics 2020, 9, 1877–1900. [CrossRef]
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