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Abstract: Glass-like carbon (GLC) is a complex structure with astonishing properties: isotropic sp2

structure, low density and chemical robustness. Despite the expanded efforts to understand the
structure, it remains little known. We review the different models and a physical route (pulsed laser
deposition) based on a well controlled annealing of the native 2D/3D amorphous films. The many
models all have compromises: neither all bad nor entirely satisfactory. Properties are understood
in a single framework given by topological and geometrical properties. To do this, we present the
basic tools of topology and geometry at a ground level for 2D surface, graphene being the best
candidate to do this. With this in mind, special attention is paid to the hyperbolic geometry giving
birth to triply periodic minimal surfaces. Such surfaces are the basic tools to understand the GLC
network architecture. Using two theorems (the classification and the uniformisation), most of the GLC
properties can be tackled at least at a heuristic level. All the properties presented can be extended to
2D materials. It is hoped that some researchers may find it useful for their experiments.

Keywords: vitreous carbon; thin films; applied topology

1. Introduction

Carbon is the most versatile element of the periodic table. There are nearly ten million
known carbon compounds, and an entire branch of chemistry, known as organic chemistry,
is devoted to their study (see Figure 1). Many carbon compounds are essential for life as we
know it. Even though the number of allotropes is lower than in boron or sulphur, carbon
exists in several forms which are characterised by a simple but powerful tool introduced by
chemists: hybridisation. This paper focuses on the special case of sp2 hybridisation, which
is planar. Graphene, which is the tessellation of a flat surface with hexagons, mimics the
concept of surface in Euclidean space for mathematics. It is therefore legitimate to use the
concepts related to geometry and surface topology [1] to understand the structure of some
carbon allotropes, especially vitreous carbon. The so-called glass-like or vitreous carbon
(GLC) [2] exhibits excellent biological compatibility with living tissues, meaning it has a
high potential for applications in life science [3]. Moreover, glass-like carbon has interesting
properties including “high temperature resistance”, hardness, low density, low electrical
resistance, low friction, low thermal resistance, extreme resistance to chemical attack and
impermeability to gases and liquids despite porosity [4] (the zero open porosity gives
a low permeability to gases). The structure of glass-like carbon has long been a subject
of debate. The main properties of GLC are summarised in Table 1. Surprisingly, despite
huge works dedicated to all forms of carbon over the last decades (graphene, fullerenes,
diamond, carbon foams, onions, nanotubes, clathrate, etc.), the GLC structure remains
a bit of a mystery. Several hundred papers suggesting “new” carbon allotropes [5,6]
have been published but no one is in a position to explain GLC. GLC no longer has a
long-range crystal order. Disordered phases of carbon have always proved difficult to
characterise as the standard structural determination methods based on diffraction are not
relevant. The vitreous carbon is intimately related to the open issues of graphitising versus
non-graphitising carbon.
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Figure 1. Landscape of the carbon structure according to hybridisation. The glassy carbon pathway
is underlined in blue.

The first model was proposed by Franklin [7,8] (see Figure 2). The keypoint is the
existence of saddle points with negative curvature connecting graphitic regions. Noda and
Inakagi proposed in 1964 [9] a structural model of GLC deduced from X-ray diffraction, in
which tetrahedral carbon atoms form the main part of the cross-linkages which link the
graphite-like layers in a random way. The weakness of the model is the large content of
sp3 hybridised atoms and the “high density”; it is better suited for isotropic carbon, which
is a graphitisable material. Using electron microscopy, Crawford et al. [10] proposed a
graphene (graphite) lattice distortion due to non-basal edge dislocations and low-angle
boundaries of tilt or twist character. In the same way, the model of Ban et al. [11] consists of
a high proportion of intertwined crystallites comprising turbostratically packed aggregates
of graphitic basal planes. From electron microscopy, Jenkins and Kawamure [12] proposed
a model based on aromatic (sp2 hybridised carbon atoms) ribbon tangling. The weakness
is the open pores inconsistent with gas impermeability and the presence of ribbon edges
which are chemically active. In the “nested fullerene” model of Shiraishi [13], the form of
the stacks of aromatic layers is isometric, not ribbon-like. Barborini et al. [14] synthesised a
“spongy carbon” by energy cluster beam deposition. This is a distinctly different concept
where the skeleton is derived from the TPMS (triply minimal surface structures) introduced
by Townsed et al. [15]. The keypoint is that total energy calculations have shown that
carbon Schwarzites are more stable than fullerenes [16]. Harris [17] proposed a model for
the structure of non-graphitising carbons, which consists of fragments of curved carbon
sheets (fullerene-like), containing pentagons and heptagons as well as hexagons. Thanks
to neutron and X-ray diffraction, Jurkiewicz et al. [18] showed a large proportion of
curved graphitic sheets. The presence of these curved elements in carbon nanomaterials
can be related to the formation of topological point-type defects in non-hexagonal rings
(pentagons, heptagons and higher-membered rings). Acharya et al. [19] developed an
interesting model for nanoporous carbon based on an algorithm approach. This method
starts from the basic building blocks and lets random bond formation between hexagonal
sheets lead to curvature. n-fold rings are obtained by connecting unsaturated carbon atoms
based on a minimum distance criterion. Shiell et al. [20] proposed a structure with graphene
layers with different orientations. The last model, discussed below, is derived from the
gyroid Schwarzite using a procedure given by Benedek et al. [21,22]. Other observations
predict that carbon foams contain graphite-like “sp2 carbon” segments, connected by
sp3 carbon atoms, resulting in porous Kagome structures [23]. However, such networks
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are widely open structures and permeable to gases. Table 1 reports the main features of
glass-like carbon. Samples obeying all theses features can be considered as GLC.

1950 Franklin (a+c) 1971 Crawford (a)

1984 Shiraishi (b)
1975 Ban (a)

2004 Harris (a+b+c)

2018 Schiell (a+b+c)

2017 Jurkiewicz (a+b) 2002 Barborini (c)

1964 Noda (a)

current model (c) Schwarzite

a

a b c

1971 Jenkins (a)

Figure 2. History and evolution of GLC throughout the ages, as presented by Franklin [7,8],
Noda et al. [9], Crawford et al. [10], Jenkis et al. [12], Ban et al. [11], Shiraishi et al. [13], Bar-
borini et al. [14], Harris [17], Jurkiewicz et al. [18] and Shiell et al. [20]. The insert (bottom right)
shows the three elemental forms according to the curvature sign with labels a–c, respectively. The
labels in the models correspond to the elemental bricks of the models. Figure 2 is adapted from [24].
Reproduced with permission from Shiell, Journal of Non-Crystalline Solids; copyright 2021, Elsevier.

Table 1. Selected properties observed in GLC compared to graphene. ID and IG refer to Raman spectroscopy. dt is the
topological dimension.

Allotrope IG Peak cm−1 FWHM cm−1 ID Peak cm−1 FWHMcm−1 T Peak cm−1

graphene 1582 ± 5 [25] 13 not relevant not relevant not relevant
GLC 1585–1600 25–(70) 1324–1329 [26] 40–(100) weak 1150

allotrope I2D Peak cm−1 Density dt Porosity Plasmon π [27] eV

graphene asymmetric not relevant 2 not relevant 6.4
GLC symmetric 1.2–1.5 g/cm3 3 no ∼6

Allotrope Graphitisation Conductivity Chemical Stability

graphene yes semi-metal-like good [28]
GLC no complex [29,30] very good [31]

2. Characterisation of GLC
2.1. Raman Spectroscopy

GLC is improperly considered as a 3D amorphous structure, but it avoids the dangling
bonds formation as reported in all families of common 3D amorphous carbon, which are
formed by a mixing of sp2/sp3 and dangling bonds. GLC has the expected short-range
order probed by Raman spectroscopy with two narrow bands labelled ID and IG with
ID/IG > 1.5 [32]. In addition to the E2g zone centre vibration in graphite IG, another
band labelled ID at 1350 cm−1 is disorder induced and can be assigned to scattering by
off-centre phonons made active by a relaxation of the wavevector selection rules due to
finite crystalline size [33]. The G peak is due to the bond stretching of all pairs of sp2

atoms in rings, the D peak is thus due to the breathing modes of sp2 atoms in rings.
However, the complete analysis of the ID/IG ratio and the IG band width remains elusive.



Nanomaterials 2021, 11, 1694 4 of 40

Raman spectra presents some striking similarities with reduced graphene oxide [34] RGO
excepted the weak ratio ID/IG < 1 in RGO. Classical analysis of nanocrystalline graphite
ID/IG∼1/La, La being the sp2 cluster size according to the Tuinstra–Koenig [35] model or
in 3D amorphous carbon ID/IG∼L2

a [33], is inconsistent with the expected size deduced
from the ID/IG ratio [33] and the G peak full width at half maximum (FWHM), which
is a measure of disorder and increases continuously as the disorder increases [36]. In
summary, large ratio ID/IG is inconsistent with narrow G and D bands. However, the G
mode does not require the presence of sixfold rings, and thus it occurs at all sp2 sites, not
only those in rings [33]. GLC cannot be transformed into crystalline graphite even at high
temperatures (3000 ◦C) and belongs to the class of “non-graphitising carbon” [37]. Thus,
there is a consensus that GLC is isotropic and fully sp2 hybridised. When it comes to this
issue, it is clear that Raman spectroscopy reaches its limits. For example, GLC matches very
well with the Raman spectrum of the graphite-tiled inverse opal. The carbon inverse opals
strongly diffract visible light [38] and the lattice parameter (mesoscale) does not match with
the nanoporous structure that characterises GLC. Pier et al. [39] reported carbon nanotubes
with striking Raman similarities with GLC.

The low-frequency region provides useful information. In the low-frequency region
between 150 and 550 cm−1, two Raman peaks located at 224 and 334 cm−1 are observed as a
signature of the curvature-related structures that are normally present in GLC. These peaks
are also found for fullerenes, carbon nanotubes or carbon onion structures, but they are
completely absent in the case of graphite [26]. This is the first observation of the “non-zero
curvature” in non-graphitisable networks. To illustrate the ambiguity, Figure 3 shows some
striking similarities between Raman bands observed in pyrocarbon [40] (graphitisable)
and GLC (non-graphitisable).

pyrocarbon

1000 1500 2000 2500 3000

In
te

n
si

ty

Raman shift (cm
-1
)

GLCT
d=1.5 g/cm3

d=2.2 g/cm3

He/Ne 633 nm laser wavelength

a

b

Figure 3. TEM and Raman observations: comparison between pyrocarbon [41] and GLC [26]: (a) GLC;
and (b) pyrocarbon. The Raman features are close but HRTEM patterns are quite different (except
T band and second-order features). To remove doubts about the structure, further spectroscopic
tools are necessary. (b) Reproduced with permission from López-Honorato, Carbon [41]; copyright
2010, Elsevier.

2.2. Other Spectroscopies

Raman spectroscopy is a powerful tool for GLC analysis. Thus, there is no doubt
that further investigations are needed. Transmission electron microscope (TEM) provides
supplementary information that could be compared to simulation. The model proposed
by Harris and Tsang [17,42] for microporous carbon produced by arc evaporation is based
on curved sheets of graphite. The curvature is introduced by including pentagons and
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heptagons, together with hexagons, as starting fragments. In all graphitisable compounds,
the intense electron irradiation in the microscope induces a transformation of the film
with the formation of quasi-spherical concentric fullerene particles (carbon onions). This
graphitisation is not observed in GLC and the stability of GLC under irradiation is one
of the signatures of GLC. Note that a combustion route is proposed in which oxygen
attacks the structural units that inhibit graphitisation [43]. The concentration of oxygen
atoms in the film seems to be a key parameter. Unfortunately, poor data are available
in the literature. Porous 3D-graphene-based materiala [44] have a TEM structure close
to GLC. These materials consist mainly of defected/wrinkled graphene sheets in the
dimensional size of a few nanometers, with at least some covalent bonds between each
other. Unfortunately, such samples used for supercapacitors are permeable and ID/IG is
lower than the expected value in GLC. TEM observations reveal that graphite foam [45] is a
porous structure massively sp2 hybridised regularly shaped but concave, while GLC is a
more complex structure with a mixing of concave and convex curvature.

3. Synthesis of GLC Thin Films
3.1. Experimental Set Up

Details are given elsewhere [46]. Carbon thin films (in the broadest sense a film of
thickness less than 100 nm) were deposited by pulsed laser deposition (PLD) at room
temperature by means of a pulsed KrF excimer laser (Lambda Physik; λ = 248 nm; pulse
duration τ = 20 ns; and repetition rate f = 10 Hz). The nature of the carbon target (graphite,
GLC, etc.) is not relevant. Carbon is-deposited onto silicon substrates. Thin films (10–30 nm)
are deposited onto Si. All the features are assigned to 2D/3D amorphous carbon (see
Figure 4). At this stage, the term 2D/3D amorphous should be explained. 3D amorphous
carbon is assigned to the absence of long-range periodicity and a wide distribution of bond
lengths, bond angles and hybridisations (namely, sp2/sp3). More recently, monolayers of
sp2-bonded amorphous carbon films have been synthesised [47,48]. Monolayer amorphous
carbon reveals a wide distribution of bond lengths, bond angles and topological defects, but,
contrary to 3D, amorphous carbon hybridisation is largely sp2. In our case, dealing with
the film thickness, the geometry is intermediate between a macroscopic sample (3D) and
a monolayer (2D). According to the electronic structure, the massively sp2 hybridisation
may suggest a striking similarity with sp2-bonded amorphous carbon extended to a 3D
network. GLC is also different from three-dimensional aggregation of graphene which
is not isotropic [48]. The 2D/3D amorphous carbon layers were irradiated in air at the
optimal fluence threshold of 0.15 J/cm2. The Raman features change with the number of laser
shots (Figure 4). Figure 5 displays the optimal irradiation for the production of GLC carbon.

3.2. GLC Characterisation

Figure 5 summarises all the features that corroborate the thin film GLC structure.
To guide the eye, the GLC films are compared with a commercial GLC sample obtained
by high-temperature pyrolysis (see details in [46]). The presence of sp3 precursors (see
XPS spectra) in the as-deposited sample ensures a non-graphitisation route during laser
annealing. This is the keypoint for the GLC synthesis and is discussed below.
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As sample

laser

 = 248 nm,  = 20 ns, f = 1-150 Hz 
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<< sputtering threshold : 0.15 J/cm2

 = 248 nm,  = 20 ns, f = 1-150 Hz 

sputtering regime 12-40 J/cm2

Figure 4. (Left) Synopsis of the PLD apparatus. (Right) Carbon thin film annealing. Raman fea-
tures are compatible with a 3D amorphous structure in the as-deposited film. After several laser
shots, the film presents the features of GLC (corroborated by other spectroscopic tools, see below):
(a) un-irradiated carbon; (b) 5 shots; (c) 10 shots; (d) 100 shots; (e) 200 shots; and (f) 1000 shots [46].
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Figure 5. Selected properties of thin films of GLC compared to amorphous carbon and commercial glass-like carbon. The
transformation of the 2D/3D amorphous phase in GLC in the thin film can be studied in detail contrary to the massive
pyrolysis process at high temperature (3000◦C). This is of prime importance to understanding the non-graphitisation
mechanism. (a–c) are assigned to commercial glass-like carbon (GC c.t.), as-deposited sample and irradiated sample
(1000 shots), respectively. (A–C) The three region in the Raman spectra (low-frequency, first-order and second-order spectra,
respectively). The two Raman peaks located at 224 and 334 cm−1 (A) are the signature of curvature-related structures which
are normally present in GLC. These peaks are also found for fullerenes, carbon nanotubes or carbon onion structures [49],
but they are completely absent in the case of graphite [26]. The second-order Raman spectra (C) are symmetric and differ
from graphitisable samples where asymmetry is observed [50]. (D) The core level lines in the C1s region observed in XPS.
Note the high percentage of sp3 hybridisation in the as-deposited sample. (E) The π–π plasmon band peak (merged with
π − π∗ interband transition) that characterises a massively sp2 structure in GLC. (F) The TEM observation showing the
open structure with a “spaghetti tangle” in GLC (c). The figures are taken from [46]. Reproduced with permission from
Diaf, Phys. Rev Mat.; copyright 2021, American Physical Society.
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4. Topology/Geometry

At first glance, TEM image reveals for all GLC some common features: graphitic
curved, tangled and twisted sheets or ribbons with saddle points (negative curvature)
connecting graphitic regions. Each property could be discussed in terms of “topology”.

4.1. Algebraic Topology VERSUS geometry: From Mathematics to Physics

In 2017, David Castelvecchi [51] reported in a paper a citation of Zahid Hasan, a
physicist at Princeton University in New Jersey. “Emergent phenomena in topological physics
are probably all around us even in a piece of rock”. This underlines how topological physics
helps to gain a deeper understanding of the nature of matter.

Topological physics is truly exploding: it seems increasingly rare to see a paper on
solid-state physics that does not have the word topology in the title [51]. The expression
“topology” seems to be all the rage at the moment, but it is often used improperly and
to excess because there is some confusion between topology and geometry. We discuss
concepts which are to be understood at an intuitive level (more precise definitions, theo-
rems and proofs are required). From mathematics, there are three notions of equivalence
between metric spaces which are of increasing “importance”: Homeomorphism concerns
the topology→ bi-Lipschitz transformation which is familiar to physicists as “fractal world”
→ isometries (e.g., crystallography for physicists) (see the Appendix A for the formal defi-
nition). Topology is concerned with those properties of geometric figures that are invariant
under continuous transformations (homeomorphism). In other words, topology is the
study of the geometrical properties of an object that remains unchanged when continuously
transforming the object [52]. Intrinsic and extrinsic geometry are definitively associated
to a metric space: a set together with a metric on the set. The metric is a function that
defines a concept of distance between any two members of the set, which are usually
called points (atoms in our case). Even though there is no frontier between topology and
geometry in mathematics, this is not the case in physics. Geometry concerns the study of
the lattice defined by a set of points with known coordinates, while topology targets the
thermodynamics and especially the kinetics of the reaction/transformation of the material
under external field (photon, temperature, particle irradiation, etc.). The driving force
is that the time evolution follows some of the rules dictated by topology and especially
the classification theorem [53]. As long as GLC appears during the transformation of an
amorphous carbon under external field, it is a key issue to understand the topology rules
for following this transformation, in particular, for evidence of the graphitisation process
(or not).

4.2. Dimension

The concept of dimension has many aspects and meanings within mathematics, and
there are several very different definitions of what the dimension of a set should be. The
intuitive feeling of dimension for physicists is called the topological dimension dt. In
carbon films, we have to consider dt = 2 (the graphene which is a flat surface embedded in
E2 Euclidean space) and dt = 3, when the curvature is non-zero such as fullerenes.

4.3. Connection between Thermodynamics and Topology

Except the phase transition that (often) corresponds to an energy jump, the evolution
of the surface under an applied force is continuously deformed according to the principle of
minimum energy path. In carbon, the continuous deformed lattice is associated to a change
in the hybridisation according’s to POAV (Pi-orbital vector analysis) theory [54]. Then, the
transformation (graphitisation or not) mimics a homeomorphism in the mathematics point
of view. Note that not all the operations in topology have a physical meaning. Two surfaces
in space are homeomorphic if we can bend, stretch, squeeze or shrink one into the other and/or if we
can cut one and then, after some bending, stretching, squeezing or shrinking, glue it back together
(making sure to join the points on either side of the cut exactly as beforehand) to form the other [55].
If we cut some bonds, it costs a lot energy even though the gluing restores the energy (the
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gluing operation is illustrated below). The net balance energy is zero but the barrier is large.
We restrict to “equivalent shapes” where if and only if one may be continuously deformed
into the other without any cuts, self-intersections or singular points in the objects. In other
words, we just consider in physics the homotopic transformation. Two continuous paths in
a topological space are homotopic if one path can be continuously transformed to the other
(in other words, cuts are avoided because of the excessive energy cost to do them).

4.4. Topology of Surfaces: Geometry Aspect

We recall the background of the topology dedicated to surfaces. Readers can find
further information in specialised books [56–58].

4.4.1. Curvature

Two important measures of curvature are under consideration. The mean curvature H
is defined to be the average of the principal curvatures k1 and k2

H =
1
2
(k1 + k2) (1)

The Gaussian curvature K is defined to be their product

K = k1k2 (2)

The Gaussian curvature for example determines whether a surface is locally convex
(K > 0) or locally a saddle (K < 0). The area A =

∫
dA, where dA is the area element, is

preserved by isometries. The total Gaussian curvature G =
∫

KdA is topological invariant
for a closed surface (see the Gauss–Bonnet theorem). The total mean curvature H =

∫
HdA

depends on the external geometry of the surface. The Gauss–Bonnet theorem is a relation-
ship between surfaces in differential geometry. It is a bridge between geometry (surface
curvature) and topology (Euler characteristic, see below). The most important notion of
curvature for us is the Gaussian curvature which measures the deviation of formulas for
triangles from the Euclidean ones. It allows us to relate the differential geometry of the
surface to its topology. For compact surfaces S (no boundary, see below), the Gauss–Bonnet
theorem states that, by integrating the Gaussian curvature K(s) over an orientable surface,∫

S
dsK(s) = 2πχ(S) (3)

χ(S) is the Euler characteristic for the surface S. For a sphere, integration yields 4π and 0
for the plane and the torus and −4π for the double torus. The mean curvature of a surface
at a point is an extrinsic quantity. The Gaussian curvature is an intrinsic quantity. The
principal curvatures are extrinsic quantities.

4.4.2. Euler Characteristic

The Euler characteristic is a topological invariant and also a homotopy invariant.
Euler’s formula states for a polyhedron with a collection of vertices V edges E and faces F

V − E + F = 2 (4)

We also have the conditions: an edge must start and finish to an edge; when two edge
meet, they must meet in a vertex; and faces must be distorted polygons. The connection
with a surface is obvious; if we remove one face, the remaining polyhedron can be flattened
into the plane. The general form for Euler’s formula is written as

∑
k

Fk − E + ∑
n

Vn = χ (5)

where k corresponds to k-membered rings (k = 4–8 in standard sp2 carbon compounds with
k = 6 in graphene) and n is the coordination number (n = 3 in sp2 carbon).
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The Euler characteristic is related to the genus g (the number of torii in a connected
sum decomposition of the surface; in other words, the number of “holes” or “handles”) by
the simple formula for a closed orientable surface

χ = 2(1− g) (6)

where g is the genus. For a closed non-orientable surface (k is the non-orientable genus),

χ = 2− k (7)

Table 2 gives some topological invariants for common surfaces.

Table 2. Topological invariants for selected surfaces. The closed surfaces have no boundary β = 0
(see Section 5.2). ω is the orientability number, which is 0 and 1 for orientable and non-orientable
surfaces, respectively (see Section 5.1).

Surface β ω χ g

sphere 0 0 2 0
n-fold torus 0 0 2–2n n
Klein bottle 0 1 0
projective plane 0 1 1
closed disc 1 0 1
cylinder 2 0 0 1
Möbius band 1 1 0 2
closed orientable band 2 0 0 1

The Euler characteristic is well defined for carbon clusters having a positive curvature
(fullerenes, nanotubes, onions, etc.) or TPMS. As long as GLC is a complex lattice, the Euler
characteristic becomes a “local” parameter. One defines χ in algebraic geometry (in terms
of Betti numbers) where, assuming a finite number of singularities [59,60] (known as the
“mountain dweller relation”),

χ = v− s + t (8)

with v,t and s the valleys, tops and saddles, respectively. Table 3 gives v, t and s for the four
square gluing diagram (see Section 4.6).

Table 3. χ calculated by algebraic geometry.

v s t χ

torus 1 −2 1 0
sphere 1 0 1 2
Klein bottle 1 1 0 0
projective plan 1 0 0 1

This procedure is more appropriate for complex structures such as GLC where the
geometry and the topology are defined “slab” by “slab”. Then, in GLC, the topological
invariants are defined locally into a slab.

4.4.3. Geometry of 2D Surface

In mathematics, and more precisely in geometry, Poincaré’s uniformisation theorem
asserts that any surface admits a Riemannian metric of constant curvature. Geometric
classification of surfaces are:

(i) the sphere of Gaussian curvature +1;
(ii) the Euclidean plane of Gaussian curvature 0; and
(iii) the hyperbolic plane of Gaussian curvature −1.
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In 2D, all Riemannian surfaces are homeomorphic to the three constant curvature ge-
ometries S2, E2 and H2. The two former are embedded in E3 and can be easily represented
in Euclidean space. H2 is not embedded in E3 and the polynomial equation is a sufficient
approximation for physicists (who like approximations). All the sp2 forms (each atom has
a three-fold coordination) are described as a polygonal tiling of the surface, where each
vertex corresponds to a carbon atom, each edge to a covalent bond and each polygon to a
carbon ring. The surface covered by the polygonal tiling of carbon rings is characterised by
its connectivity or order of connection n. GLC is definitively a 2D surface with different
local properties characterised by the local or global Gaussian curvature.

4.5. The Classification Theorem

Every proof of the classification theorem [58] for compact surfaces comprises two
steps [53]: (1) The topological step consists in showing that every compact surface can be
triangulated. (2) The combinatorial step consists in showing that every triangulated surface
can be converted to a normal form in a finite number of steps, using some (finite) set of
transformations.

Theorem 1 ([61,62]). Every compact (connected) surface is equivalent to one of the following three
types of surfaces (see below for the definition):

(i) a sphere;
(ii) a connected sum of projective planes (if it is non-orientable); or
(iii) a connected sum of torii (if it is orientable and not a sphere).

A compact surface is classified in terms of its boundary number β, its orientability number ω
and its Euler characteristic χ. These numbers are topological invariants and are preserved
under homeomorphism. Then, we can speculate that, under laser annealing, these num-
bers remain constant during a “continuous deformation” (called homotopy). This is of
prime importance for a comprehensive study of the non-graphitisable versus graphitisable
process.

For the following, we need other definitions:
For two surfaces A and B, the connected sum of A and B is formed by cutting a disk

from A and a disk from B and gluing the surfaces together along the boundary.
One obtains a surface with a boundary by taking any surface without a boundary and

punching some holes in it by removing open discs. Using connecting sum, two surfaces
can be connected by “gluing” the edges of the open disks together.

4.6. Planar Model

A planar model of a surface is a polygon whose vertices and edges are identified, or
glued together,“ in some specified way” (cut and paste methods are used in the proof of the
classification of surfaces). This abstract concept is the basis of the common crystallography
where polygons are duplicated with some rules. We can create a cylinder by using a piece
of paper and gluing the ends together. Stretching the cylinder and gluing them, the two
opposite sides gives a flat torus (a donut from a cooking point of view). Native people
of the 2-torus look forward and see them from behind. They have the illusion of seeing
a copy of them. The flat torus mimics the periodic BVK (Born–Von Karman) conditions
in solid state physics commonly observed in standard crystallography (A 2D crystal is a
periodic arrangement of units, e.g., squares). The torus is homeomorphic to the unit square
[0, 1]× [0, 1] with opposite sides identified. Following the homeomorphism transformation
rules, different pathways are possible given at the end the flat torus (see Figure 6).
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4-gon

Figure 6. Two pathways for the flat torus formation corresponding to BVK conditions or Wallpaper
group in crystallography.

Other conditions than BVK are possible from a mathematical point of view. This is the
so-called problem of the gluing diagram. Even though it is difficult to build up a crystal
with other periodicities, let us keep in mind that the inhabitant in the flat torus pathway is
an electron’s wave function moving in momentum space. In certain conditions (large spin–
orbit coupling in 3D topological insulator, band inversion and heavier compounds [63]),
electronic wave functions “see” other gluing instructions. Other possibilities for the square
gluing can be considered [64,65]. There are six ways for gluing a square. They give four
classes: Klein bottle, RP2 (projective surface), sphere and torus (Figure 7). Figure 7 shows
the four ways for gluing a square to make a closed surface. Both torus and sphere are
embedded in E3 Euclidean space, while Klein bottles are not (a Klein bottle is embedded in
E4). For example, the Klein bottle (pseudo)representation in E3 needs to allow the surface
to intersect itself. A projective plane is a two-dimensional projective space, but not all
projective planes can be embedded in three-dimensional projective spaces. Note that a
Klein bottle has no boundary as observed in a sphere, which is an orientable surface. Other
surfaces can be obtained starting with polygons (with even number of sides) and pairwise
gluing together the edges of the polygons. In graphene, the topology corresponds to the
case of hexagons. The result is a “twist” torus which is similar to morphing a Möbius
strip into a torus (the original 2D surface is just “blown up” to 3D without considering
homeomorphism) (Figure 8).

If we consider the periodic arrangement of atoms, the single way is the torus, but, if
we consider the properties of the electronic wave functions (see, e.g., the case of topological
insulators), other ways can be considered. Figure 8 shows the case of the hexagon (which
is the template for graphene). The case of the pentagon is interesting. One obtains a
punctured torus: the pentagon is the homeomorphic of the hexagon where we “subtract” a
triangle. Gluing the triangle gives a cone. Because of the “subtracted” cone, this is not a
closed surface (this is a surface with a boundary). Another interesting case is the octagon
tiling (in hyperbolic space, Figure 9). We restrict now to the space resulting from gluing
opposite edges of an octagon assuming “antipodal edges” as when building a torus from
a square. The result is indeed a two-holed torus. In a similar way, one could obtain a
three-fold torus by identifying the twelve edges of a dodecagon in pairs, as well as, in
general, an n-fold torus from a 4n-sided polygon, for all natural numbers n. As long as
even parity is needed for periodic conditions, joining the opposite edges of odd parity
polygons such as pentagons is not possible. One solves the problem by introduction an
edge which is a forbidden region in the momentum space. One obtains a punctured torus.
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T2 S2 K2 P2

a
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( )

Figure 7. Four cases for the square gluing. The gluing instructions are given by arrows. A gluing dia-
gram for a polygon is an assignment of a letter and an arrow to each edge of the polygon. The shaded
figure (top left) gives the BVK conditions in standard crystallography. The electronic wave functions
trajectories in the momentum space that correspond to special geodesics are drawn on the torus. The
direction in momentum space is given in the Brillouin zone for selected commensurable paths.

180°

A

A
B

B

G

K

K’

G

K

K’

Moebius string (morphing 2D to 3D)

6-gon
twist

forbidden pathway

a

a

b

b

c

c

(aba-1b-1cc-1)

Figure 8. Gluing instructions (aba−1b−1cc−1) for a hexagon corresponding to the hexagonal tiling
in E2, the prototype of graphene (wallpaper group). (Bottom left) Gluing instructions are not
compatible with a simple flat torus. Gluing “c” gives a cylinder. Direct paste of the cylinder edges are
not compatible with gluing instructions for “a” and “b”. After a twist of 180◦, gluing instructions are
compatible given a twisted torus. The twisted torus can be seen as morphing a Möbius Strip into a
torus (O. Seipel Wolfram Demonstrations Project Open content licensed under CC BY-NC-SA). Note
that the fundamental group basis (aba−1b−1cc−1) . . . is canonical since two loops intersect only at
the base point [66].
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d
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a
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substracting

Figure 9. Two pathways for gluing an octagon: (Left) direct pathway [67]; and (Right) pedestrian
pathway starting with a square. The octagon comes from a square where fours corners at cut off (red
regions). Gluing each pair of sides give the flat torus minus a rhombohedron corresponding to the
four corners gluing. After gluing D sides, one obtains two new gaps whose boundaries correspond
to C sides. C sides are then glued together giving a second torus as shown in the figure. One obtains
by homeomorphism and connected sum a double torus with a genus g = 2.

4.7. Special Points

Coming back to the square. Imagine an inhabitant living at M point in the Brillouin
zone. First, check that the inhabitant is the same. To do this, he can move in momentum
space with the periodic conditions. Starting from one selected M point, the inhabitant visits
all four corners labelled M before coming back home. The inhabitant position in the torus
is given arbitrarily in Figure 10 (that depends on the initial conditions). If we consider an
inhabitant in the hexagon, the problem is different. An inhabitant living at K point visits
three sites before coming back home. Likewise, an inhabitant living at K’ visits the three
other points in the hexagon. From a topological point of view, one needs two inhabitants
for visiting the six corners. These two inhabitants are entangled but different (twin state).
This is the keypoint for the Dirac points at K and K’ [68]. The graphene properties at the
special K and K’ points are the topological properties of the hexagon. The figure shows
the two inhabitants in the torus which are entangled but a different position in the torus
(they are symmetric). This is the starting point for topological aspects of 2D graphene-like
materials [69].
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G

K

K’ G

K

K’

K K’

M

M

Figure 10. Comparison between the square (upper side) and the hexagon (lower side). In the
square, the inhabitant occupies the four corners at the “same time” since all M points are equivalent
(inhabitant visits the four corners). In the hexagon, one needs two “entangled” inhabitants for
spanning the six corners in the hexagon (each inhabitant visits three corners). The “trajectories” are
symmetric. We need two distinct points K and K’ at the origin of the geodesics.

4.8. Periodicity: Space Tiling

In Section 4.4.3, the geometry of surfaces deals with a “continuous or smooth surface”.
In GLC and other compounds, the geometry deals with a discrete surface. We need a
tiling or tessellation of a flat surface, which is the covering of a plane using one or more
geometric shapes, called tiles, with no overlaps and no gaps (Figure 11). Prior to discussing
the periodicity, one can introduce some general tools (proofs are beyond the scope of this
paper and can be found in seminal geometry books).

tesselation

geometry physics  of sp2 carbon

S2 spherical

H2 hyperbolic

E2 Euclidean

Figure 11. From continuous to discrete geometry in the three spaces: graphene (hexagon tiling), C60

(hexagon and pentagon tiling) and TPMS (hexagon and n-gon n > 7 tiling).



Nanomaterials 2021, 11, 1694 15 of 40

4.8.1. The Local Gauss–Bonnet Theorem

The Gauss–Bonnet theorem (i.e., the global Gauss–Bonnet theorem) is introduced
in Equation (3) for smooth surfaces. For discrete surfaces (tiling), we use the local Euler
characteristic associated to the symmetry operator (translation, rotation, inversion, etc.).
The local Gauss–Bonnet theorem relates the curvature integrated over the surface area
within a surface patch P bounded by a p-sided polygon with geodesic edges (the geodesic
curvature of a curve is a measure of the amount of deviance of the curve from the shortest
arc between two points on a surface) and internal vertex angles vi: [70,71].

χloc = (2− p)π +
p

∑
i=1

vi (9)

Conway introduced the orbifold (i.e., the orbit manifold introduced by Thurston)
notation [72,73] for representing types of symmetry groups in two-dimensional spaces of
constant curvature. Groups representable in this notation include the point groups on the
sphere S2, the frieze groups (surface repetitive in one direction) and wallpaper groups of
the Euclidean plane E2 and their analogues on the hyperbolic plane H2. The orbifold first
introduced by Thurston [72] is obtained by taking the quotient of the Euclidean space by the
group under consideration (E2, S2 and H2). Classification of two-dimensional crystalline
patterns using orbifolds is given in the seminal paper by Hyde et al. [70]. Conway et al. [73]
calculated the contributions to the total Euler characteristic χloc of an orbifold due to all
possible orbifold features (Table 4).

Table 4. Isometry (symmetry operator), orbifold symbol and associated Euler characteristic χi
loc. All

orbifolds contain a foundation sphere [70].

Isometry Orbifold Symbol χi
loc

(sphere) 1 2
pair of translations o -2

rotation centre A (1-A)/A
reflection line * -1
rotoreflection (*) i (1-i)/2i

glide line x -1

An integer n to the left of an asterisk indicates a rotation of order n around a gyration
point. An integer n to the right of an asterisk indicates a transformation of order 2n which
rotates around a kaleidoscopic point and reflects through a line (or plane). Note that, for a
sphere, χi

loc = χ = 2 (g = 0). One defines the fractional Euler characteristic χo summing
all the Euler characteristic χi

loc (see Section 5.7.2)

χo = 2− ∑
orbi f oldi

χi
loc (10)

4.8.2. 2D Crystallography

In classical crystallography (that means in Euclidean space), the curvature is zero and
the 2D crystal symmetry is given by the so-called wallpaper group. In 2D, all Riemannian
surfaces are homeomorphic to the three constant curvature geometries E2, S2 and H2. We
summarise some plane, elliptic and hyperbolic groups in Tables 5–7, respectively, for the
Coxeter class.



Nanomaterials 2021, 11, 1694 16 of 40

Table 5. Isometries of E2 limited to the Coxeter class (for the definition, see [74]). χo is the fractional
Euler characteristic (see Section 5.7.2) [70].

Isometry Orbifold Symbol Group Number χo

* 632 p6m 17 0
*333 p3m1 14 0
*442 p4m 11 0
*2222 pmm 6 0

Table 6. Isometries of S2 limited to the Coxeter class. χo is the fractional Euler characteristic (see
Section 5.7.2) [70].

Isometry Orbifold Symbol Group Number χo

*235 - - 1/60
*234 m3m 221–230 1/24
*233 4̄3m 215–220 1/12
*22k - - 1/2k
*226 6/mmm 191–194 1/12
*224 4/mmm 123–142 1/8
*223 6̄2m 189 1/6
*222 mmm 47–74 1/4
*kk - - 1/k
*66 6mm 183 1/6
*44 4mm 99–110 1/4
*33 3m 156–161 1/3
*22 mm2 25–46 1/2

* m 6–9 1

Table 7. Isometries of H2 limited to the Coxeter class and χo > −1/12. χo is the fractional Euler
characteristic (see Section 5.7.2). Negative characteristics correspond to groups acting in the hyperbolic
plane [70].

Orbifold Symbol χo

*237 −1/84
*238 −1/48
*245 −1/40
*239 −1/36

*23 (10) −1/30
*23 (11) −5/132

*23 (12), *246, *334 −1/24

Figure 12 shows selected configurations in the three spaces. We focus now on the H2

group. The octagon gluing depicted in Section 4.6 corresponds to the octagonal tiling, which
is a regular tiling of the hyperbolic plane. This is the simple way to observe that genus is
at least two in hyperbolic space (octagon gluing gets a double torus). It is represented by a
Schläfli symbol of 8, 3, having three regular octagons around each vertex. The case of TPMS
tiling the hyperbolic space H2 is discussed in [75]. TPMS have a genus g ≥ 3. The observed
cavities in R3 “created” by hyperbolic space characterise GLC. In other words, n-gons with
n ≥ 7 are necessary to observe low density carbon compounds with cavities.
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C20

C60

graphene

S2 E2 H2

*532 *632 *932
orbifold symmetry group

Poincaré disk model of the hyperbolic plane
Octogonal tiling

*832

Poincaré disk model of the hyperbolic plane
Heptagonal tiling

*732

Figure 12. (left) Different orbifold (symmetry group, 532∗, 632∗ and 932∗) corresponding to E2, S2

and H2, respectively. The two fullerenes C20 (Ih) and C60 (Ih) belong to the 532∗ symmetry group.
Graphene belongs to the 632∗ symmetry group [76]. (right) Poincaré disk model of the hyperbolic
plane showing the tiling with heptagons or octagons (Platonic tessellation). The case of octagon tiling
corresponds to the double torus in Figure 9.

4.9. TPMS

TPMS [77–80] have two properties: translational symmetry in three axes and a minimal
surface, which is a surface that locally minimises its area. This is equivalent to having
zero mean curvature. TPMS are ubiquitous in many fields. For example, the areas of
zero electrostatic potential within an array of electric charges in an ionic crystal can be
represented as a zero equipotential surface (ZEPS), which separates space into domains of
positive and negative potential. These areas coincide with TPMS [81]. TPMS are oriented
surfaces in E3 that have constant vanishing mean curvature H = 0 and that are periodic
with three linearly independent lattice vectors. Gaussian curvature is negative, which
corresponds to hyperbolic space. The minimal genus of triply periodic minimal surfaces is
3 (to ensure triple periodicity). Any TPMS divides E3 into two domains K and K̄ in positive
and negative normal direction from S, respectively. Both domains are continuous (i.e.,
connected), hence the term bicontinuous. In general, K and K̄ may not be congruent [82].
Among the huge zoology in TPMS (see Figure 13), the gyroid separates space into two
oppositely congruent labyrinths of passages. This structure is still interesting because of the
chirality, and the gyroid structure is closely related to the K4 crystal [83] (Laves phase, see
Section 5.5). The gyroid has space group I4132 (No. 214). The Schoen gyroid (G) [77] may
be approximated using the periodic nodal surface expansion. Integration of the Enneper–
Weierstrass canonical representation of the G minimal surface in R3 with the Weierstrass
function enabled us to obtain analytical expressions for the Cartesian coordinates of the
fundamental patch of the surface [84]. The fundamental equations are written as follows

x = exp(iθ)<
∫ ω

ω0
(1− τ2)R(τ)dτ (11)

y = exp(iθ)<
∫ ω

ω0
i(1 + τ2)R(τ)dτ (12)

z = exp(iθ)<
∫ ω

ω0
2τR(τ)dτ (13)

with
R(τ) =

1√
τ8 − 14τ4 + 1

(14)



Nanomaterials 2021, 11, 1694 18 of 40

The Bonnet angle θ is 0 and 38.0147◦ in D surface and gyroid surface, respectively [84].
Other methods are under consideration [80]. A trigonometric approximation given by the
lowest-order terms of a Fourier expansion of Schoen gyroid surface is written as [85]

cos(x) sin(y) + cos(y) sin(z) + cos(z) sin(x) = t |t=0 (15)

Crystallographic structures of sp2 hybridised carbon need a tessellation of the minimal
surfaces. As discussed above, we need k-gons with k ≥ 7 at least. The number of hexagons,
which is the standard tessellation of a flat surface, is free (see Equation (19) with k = 6).
Euler’s relationship is written as follows (Equation (5)):

∑
k

Fk − E + ∑
n

Vn = χ (16)

with an additional relation
E = ∑

n

n
2

Vn (17)

The sp2 hybridisation needs n = 3 (thus, E = 3/2V); each vertex shares three edges,
and one edge connects two vertices. Moreover, in a convex polyhedron with n = 3, the
vertex number V is related to the number of k-membered polygons by the relation

3V = kFk (18)

For a tetrahedron, V = 4, k = 3 and Fk = 4; for a cube, V = 8, k = 4 and Fk = 6; for a
dodecahedron, V = 20, k = 5 and Fk = 12, etc. Combining Equations (16)–(18) gives [22]

6χ = ∑
k
(6− k)Fk (19)

Since the genus is 3, the unit cell is a three-hole torus, and, according to Table 2,
χ = −4. According to Euler’s theorem, the smallest Schwarzite is obtained with 24
heptagons (k = 7, F7 = 24) in the unit cell of both types (D or P), for any number of
hexagons (except 1). This is one solution of the tessellation of the three-hole torus called the
Klein 7, 38 tessellation [86] (F = 24, V = 56, E = 84). The table giving all platonic tessellations
of genus 3 is presented in [86]. Among them, Equation (4.9) gives an additional condition.
This is the “opposite” case of the pentagonal dodecahedron (χ = 2 and F5 = 12) with 12
pentagons giving a positive curvature (and then a sp3 hybridisation). D-type schwarzites
have the structure of a diamond lattice so that the unit cell can be split into two identical
elements having 12 heptagons each (two congruent labyrinths). P-type schwarzites have
the structure of a simple cubic lattice. Strictly speaking, sp2 hybridization needs k = 6
and n = 3. Other k membered rings bring strain energy and destabilize the lattice, the
network stability needs k not too far from the primitive value k = 6. Platonic tessellation
can be obtained with octagons (Dyck 8, 36 tessellation) [86]. The three smallest cases of
Schwarzites and their crystallographic data are given in [87]. Table 8 displays the data for
a gyroid structure with N = 384 atoms per unit cell using hexagonal and octagonal rings of
carbon (Archimedean tiling F8 = 12 see Figure 14 ). The number of Archimedean maps as
a function of the genus in hyperbolic plane is given in [88]. Figure 15 displays the D-P-G
TPMS with (*246) orbifold.
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D DD DG IWP

N P PW S

Figure 13. Some TPMS embedded in E3. We must keep at mind that this is a pseudo-representation
(Hilbert’s theorem states that H2 is not embedded in E3). In the following, we focus on the Schoen
gyroid surface labelled “DG” (see the frame).

Table 8. Crystallographic data corresponding to the three smallest cases of D, P and G Schwarzites [87].
d is the lattice parameter. The last line displays the gyroid illustrated in Figure 14. D688 indicates that
he surface can be discretised by subdividing it into hexagons and octagons. Note that a gyroid on
a smooth surface has a group I4132 (No. 214). Tessellation brings supplementary conditions with a
Wyckoff position splitting for group–subgroup pair Ia3̄d (No. 230) > I4132 (No. 214).

Name Space Group d in Å N x y z

D688 Pn3̄m(224) 6.148 24 1:2 0.33342 0.66658
P688 Im3̄m (229) 7.828 48 0.31952 0.31952 0.09373
G688 Ia3̄d(230) 9.620 96 0.92205 0.12094 0.95502

gyroid Ia3̄d (230) 18.599 384 0.18812 0.20968 0.77090
0.07632 0.20151 0.84364
0.02066 0.15594 0.87348

projection perpendicular plane (111)

Unit cell

tiling (6,8)

Gyroid TPMS
continuous surface

modified TPMS t=1

t=0

N=384 atoms

Figure 14. Gyroid TPMS with N = 384 atoms after tiling with hexagons and octagons (see Table 8,
last line). The modified structure with t = 1 is discussed below.
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de

P surface

D surface

G surface

Figure 15. (a) Tiling of a hyperbolic plane with an orthoscheme triangle having angles π/2,π/4 and
π/6 (*246) orbifold. (b) Region corresponding to the P-D-G TPMS. To do that, a part of the hyperbolic
plane is cut out depending on the the type (P, D or G) [89]. (c–e) Projections in E3 of P, D and G
TPMS, respectively [90]. Figures (c–e) adapted from [91].

We note that TPMS are not surfaces of constant negative curvature in E3 (just in H2,
but H2 is not embedded in E3) [92]. For P,D and G primitive TPMS, the variance [93]
∆ =< (K− < K >)2/ < K >2 is minimal, its value is 0.219 and is the price to pay for a
projection of a TPMS in E3. Moreover, the crystallographic restriction of rotation orders to
2, 3, 4 and 6 ensures that many hyperbolic orbifolds cannot be embedded in E3 to form
three-periodic patterns.

Electronic properties of Schwarzite are discussed in the literature (for a review,
see [87,94,95]). colorOwens et al. [95] reported the electronic structure as a function of the
distribution of non-hexagonal rings. All structures that have squares also have an occupied
Dirac cone. Topological node-line semi-metal behaviour was evoked by Weng et al. [96],
and similarly for the topology of the Dirac cone. According to the type of lattice, TPMS are
found to be either metal-like or insulator-like.

5. GLC Properties: What Have We Learnt from Topology and Geometry

With this rudimentary knowledge of topology and geometry, we discuss now topo-
logical invariants deduced from the uniformisation theorem and the serious consequences in
GLC properties.

5.1. Orientability Number

A surface is orientable if a person in the space cannot be moved continuously on that
surface and back to their starting point so that they look like their own mirror image. Most of
the common forms—fullerenes, nanotubes, onions, nanocones, graphene, etc.—are orientable.
The most popular non-orientable form is the Möbius strip. Note that ribbons can be orientable
when they form loops with an odd number of twists. Orientability number w is 0 if the surface
is orientable and 1 if the surface is non-orientable. The orientability plays an important role
in chemistry. For example, the annulenes with (4n + 2)π electrons exhibit a more stable
π system with Hückel “topology”, and those with 4nπ electrons prefer a Möbius twisted
structure. Figure 16 displays the principle of Möbius topology [97,98]. A Möbius annulene will
necessarily be larger than benzene in order to accommodate the ring twist while maintaining
a reasonable steric overlap of the π-orbitals. There is no direct evidence of Möbius strips in
GLC observed by HRTEM, but there is no proof that they are not allowed.
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Hückel antiaromatic Möbius aromatic

Lk=0Hückel topology

b a

4npelectrons

4np electrons 4np electrons

Möbius topology Lk=1

symmetry Cs
symmetry C2

crystal structure crystal structureDFT structure DFT structure

Figure 16. (a) Effect of the non-orientability in the Hückel scheme [97] showing the breakdown of
the aromaticity rule. Note that there is a “−β term” (β is the overlapping integral) in the secular
equation of the Möbius annulene, representing the sign inversion. (b) Topological parameters of
the annulene derivatives with Möbius and Hückel topology. Lk, Tw and Wr come from knot theory.
Lk is the linking number for the parity giving the orientability number (w = 0 for even Lk parity
and w = 1 for odd Lk parity), Tw (twist) is a real number equal to the sum of the dihedral angles of
the vectors normal to the π plane and Lk = Tw + Wr [98,99]. (a) Reproduced with permission from
Herges, Chem. Rev. [97]; copyright 2006, American Chemical Society. (b) Adapted from [99].

5.2. Boundary Number

Let us recall that a boundary is a line or border around the outside of a shape. It
defines the space or area. A surface may or may not have a boundary. The number of
these boundary components is the boundary number. Note that a boundary can be created
by punching the surface with holes having a sizeable area (open disks). A surface with
boundary is a topological space obtained by identifying edges and vertices of a set of
triangles according to all the requirements of a surface except that certain edges may not
be identified with another edge. These edges are called boundary edges and their vertices
are called boundary vertices [100,101]. Confusingly, surfaces with a boundary are not
surfaces from a mathematical point of view, but we continue to use the term “surface”.
This operation costs a lot of energy (that corresponds in graphene to introducing a set of
vacancies). At a medium range order, where GLC appears as a collection of spaghetti with
ribbons tubes and other forms, this number takes some importance. Figure 17 shows some
examples. Note that the boundary number depends on the orientability (see Figure 18).
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first path

second path

irradiated graphene

a
b

c

b =2

b >3

b =1

Figure 17. Some examples of boundary number: (a) β = 2, the two paths are drawn; (b) β = 1 in Kr+

irradiated graphene after annealing [102]; and (c) some paths drawn in the Jenkins and Kawamura
model [12] (the structure is too complex for a precise determination of β). (b) Reproduced with
permission from Yoon, ACS nano [102]; copyright 2016, American Chemical Society.

w=1
b =1

w=0
b =2

a b

Figure 18. (a) Non orientable surface (Möbius string) showing one boundary (ω = 1 and β = 1).
(b) Orientable surface showing two boundaries (ω = 0 and β = 2). The ribbon comes from “Knot-
Plot”, copyrighted by Rob Scharein.

5.3. Topological Invariants from Knot Theory: Graphitisation Process

Figure 19 shows the knot formation in several carbon compounds. Under these
conditions, it is logical to question the relevance of knot theory and its implication in the
GLC property. Knot theory is beyond our discussion and we just consider some aspects.
A theorem due to Horst Schubert states that every knot can be uniquely expressed as a
connected sum of prime knots [103]. These irreducible knots are given by the Rolfsen knot
table depicted in Figure 20 up to seven crossings. Of course, a knot can be untied if the
loop is broken. The linking number is a numerical invariant that describes the linking of
two closed curves in three-dimensional space. The linking number represents the number
of times that each curve winds around the other. The linking number is always an integer,



Nanomaterials 2021, 11, 1694 23 of 40

but it may be positive or negative depending on the orientation of the two curves. A twist
knot is a knot obtained by repeatedly twisting a closed loop and then linking the ends
together. The winding number is an integer representing the total number of times that the
curve travels counterclockwise around the point. It is also topologically invariant and is an
example of a topological quantum number in physics. Likewise, writhe is the total number
of positive crossings minus the total number of negative crossings (see Figure 20a). In the
Alexander–Briggs notation, links are written by the crossing number with a superscript to
denote the number of components and a subscript to denote its order within the links with
the same number of components and crossings. Note that the number of inequivalent prime
knots dramatically increases with the crossing number (e.g., 3 with a crossing number of 6
and 165 with a crossing number of 10). Figure 20b,c shows that the determination of the
prime knot (or connected sum) is a hard task [104]. In Figure 20b, the additional twisting in
the loop (called nugatory crossing) changes the crossing number, but the knot remains the
same. Similarly, in Figure 20c, changing the crossing sign induces a transformation towards
another knot [104]. In summary, we can say with some confidence that the graphitic sheets
or ribbons tangle depicted in Figure 19 give irreducible knots. These knots avoid the
graphitisation process since graphitisation needs a complete disentanglement prior to a
good stacking of graphene sheets under annealing (see Figure 21).

200 nm

a

b

c

d

Figure 19. (a) Random knot [105] compared to several morphologies of carbon compounds; (b)
nanotubes tangle [106]; (c) GLC [26]; and (d) multi-walled carbon nanotube buckypapers [107]. (b)
Reproduced with permission from Li, Carbon [106]; copyright 2008, Elsevier, (d) Reproduced with
permission from Smajda, Carbon [107]; copyright 2007, Elsevier.
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b c

a

Figure 20. (a) Part of the Rolfsen knot table [108] giving the prime knot configuration up to seven
crossing. (b) Conway’s fundamental tangles giving the sign (to do that, one defines a direction in
the knot) illustration with a knot where additional tangle is introduced (that corresponds to type I
Reidemeister move). The knot is the same, but the writhe number is different. The initial knot (the
trefoil knot 31) has a crossing number (all are positive) of 3 and writhe is 3. After additional tangle
(noted nugatory crossing), the crossing number is 4 and the writhe is 3− 1 = 2 since the new crossing
is negative. (c) Transformation of a knot by changing the sign of the crossing (twice). The final result
is a loop (the unknot 01). Adapted from [104].

amorphous

crystal (towards graphite)

topological defects (five membered rings) development of non-zero curvature

boundaries
vacancy defect
(dangling bonds)

defect transformation 

under heating (healing process) 

1100 K

1500 K

1700 K

2000 K

Planar defect, line defect
edge dislocation…

embossing removal
(only six fold rings)

Figure 21. The Marsh–Griffith model of the carbonisation/graphitisation process [109]. The graphiti-
sation needs a complete disentangle of the knots that underlines the role of the irreducible knots.

5.4. Electron Conductivity

In the samples corresponding to Figure 5, the conductivity ratio between2D/3D
amorphous region and GLC after annealing is about 1/60, indicating a metal-like character
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in GLC. In all sp2 forms, the conductivity is due to π electrons. The conductivity mechanism
in GLC is complex. Consideration is given to the topology of the whole network, which
is “amorphous”, and the particular overlap of the π bonding electrons. A long time ago,
Saxena et al. [29] reported a conductivity that is the sum of a temperature-independent
contribution due to diffuse boundary scattering and a hopping contribution following a
standard Hopping–Mott conduction law in T−1/4. Ferrer-Argemi et al. [30] found that
electrons and phonons are being thermally activated and that the lattice disorder dominates
the scattering of the carriers. The low electron activation energy (8–14 meV) questions
the conductivity behaviour at room temperature. Since the disorder depends on the
preparation, we can attend a large spread in conductivity. The local curvature, in particular
at saddle points (crossing region), changes the electronic structure: in some cases, twisted
π states across the Fermi level result in metallic properties (see Figure 22a). Likewise, it
has been recognised that a pentagonal/heptagonal pair that “mimics” a graphene sheet
(haeckelite) gets a metal-like character [110,111] (Figure 22b). Metal-like character is
also observed in other haeckelites [112]. Let us remember that 5–7 haeckelite is not a
Archimedean tessellation (regular tessellations of the plane by two or more convex regular
polygon) contrary to 4–8 haeckelite which is Archimedean. Then, the final result of the 5–7
pair is either a distortion of the regular polygon or a local non-zero curvature. Note that
4–8 haeckelite opens a gap of 0.36 eV with respect to the graphene (0 eV) [113]. Since the
positive curvature opens a large gap (1.67 eV in C60 [113]), we can say with some degree of
confidence that negative curvature is responsible to the gap filling in agreement with the π
overlapping in Figure 22a.

a
b

graphene haeckelite

Figure 22. (a) π orbital misalignment in the crossing region as a function of the local curvature
(positive or negative). The positive ones correspond to the case of fullerene family. π orbital is
mapped by a line. Note the strong overlapping between π orbitals in the region of negative curvature.
(b) Metal-like character observed in e-DOS in 5–7 haekelite [110]. Haekelite is a surface where two
hexagons are replaced by a heptagon/pentagon pair. Note that 4–8 haekelite is an Archimedean
tessellation, while 5–7 haekelite is not. Semi-regular tessellations (or Archimedean tessellations) have
two properties: they are formed by two or more types of regular polygon, each with the same side
length. Each vertex has the same pattern of the polygons around it. (b) Reproduced with permission
from Terrones, Phys. Rev. Lett. [110]; copyright 2000, American Physical Society.

5.5. Isotropy

Coming back to the pioneering work of Franklin [7], the conceptual model has all
the assets that we need. The keypoint is the crossing between graphitic sheets giving the
global isotropy.
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Sunada [114] proposed a theorem dedicated to isotropy (in the sense of mathematics)
and valid for carbon networks

The degree of a three-dimensional crystal lattice with the strong isotropic property is three or
four. The one with degree four is the diamond lattice, while the one with degree three is the K4 lattice.
Hexagonal lattice is a unique two-dimensional crystal lattice with the strong isotropic property

Degrees 4 and 3 correspond to sp3 and sp2 hybridisation in carbon form. The K4 crystal
is a regular graph of degree 3 and is constituted by a set of decagonal rings (Figure 23) [115].
There is a big difference between the K4 crystal and the diamond crystal: K4 has a chi-
rality, while diamond does not. K4 crystal, a purely mathematical chiral object, was first
proposed for carbon [116], boron [117] or phosphorus [118]. Such a lattice is interesting as
long as it can explained by a metal-like behaviour. However, K4 belongs to the Kagome
family [119] and presents large open pores permeable to gases. In other words, the GLC
carbon definitively does not have the K4 structure. Another possibility is the connection of
graphitic sheets, wires or ribbons by an elemental cell of Schwarzite structure (Figure 24);
thus, TPMS (Schwarzites) represented another path to explore. The concept of isotropy is
well known in the standard theory of linear elasticity. Isotropy is assumed when elastic
constants are the same for all orientation angles and the Poisson coefficient (which reflects
the transverse strain response to the applied uniaxial load) is higher than 0.2 [120]. For
example, pyrolytic carbon is partially isotropic: the Poisson coefficient is about 0.4 [121],
but elastic properties depend on orientation angle and question the nature of isotropy in
such materials. Theoretical Schwarzites structures have a Poisson coefficient ranging from
0.2 to 0.35 [122]. There is a large spread in the values reported for GLC because of the
strong complexity of the network. GLC has a relatively low Poisson coefficient (0.17) [123]
but is assumed “isotropic” [124]. Manoharan et al. reported a size effect with an increasing
significance of surface elastic properties at the nanometer length-scale [125]. Once again,
the network complexity between the graphitic sheets (curved, twisted, tangled or not)
and the crossing region with a local hyperbolic geometry questions the validity of the
elastic model. Hyperbolicity plays an important role. Li [126] predicted that hyperbolic
two-dimensional carbon materials have an in-plane negative Poisson’s ratio behaviour.

K4 crystal

Figure 23. K4 crystal is the prototype of an isotropic lattice (note that the “isotropy” in mathematics is
stronger than the “common” isotropy in physics) with a connectivity 3 [115]. The structure is formed
by a set of decagonal rings with a large open porosity and a very low density.
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a

b

c

Figure 24. (a) Franklin’s view of the GLC; (b) part of HRTEM pattern corresponding to the GLC
produced by PLD and laser annealing (see Figure 5); and (c) an elemental cell of a Schwarzite TPMS
structure [22].

5.6. Porosity Versus Gas Diffusion

Diffusion (or permeability) in carbon compounds depends to the geometry of pores.
Kowalczyk et al. [127] reported a theoretical study of the hydrogen storage in various car-
bon latices including gyroid (TPMS), diamond nanoporous carbon materials and nanotubes.
Among them, TPMS present the lowest value of hydrogen adsorption. Song et al. [128]
reported a permeability to helium of about 10−9 m2/s for low-density isotropic pyrolytic
carbon and 5× 10−11 m2/s for high-density anisotropic pyrolytic carbon. As a comparison,
a IG-110 nuclear grade carbon has a permeability of 10−5 m2/s. Smajda et al. reported for
multi-walled carbon nanotube buckypapers a permeability ranging 3–12× 10−9 m2/s [107].
Such values are far from the expected permeability in GLC ranging 1–10× 10−13 m2/s.

Porosity is probably the most amazing issue in GLC. GLC are totally impermeable
to gas with a large open structure (see the low density and the TEM observation). The
first naive answer is that GLC are impermeable to gas because of closed pores. This
is in agreement with the apparent porosity of 0.2–0.4% in GLC as compared to 8–15%
in impregnated carbon [129]. The permeability K is related to both parameters in the
Tomadakis–Sotirchos model [130]: the fibre diameter d f (in GLC, it would be the diameter
of the spaghetti) and the porosity ε [131].

K =
ε

8(log ε)2

(ε− εp)α+2d2
f

(1− εp)2((α + 1)ε− εp)2 (20)

where in 3D random networks α = 0.661 and εp = 0.037. As long as such models developed
for fibre carbons can be applied in GLC, the low permeability suggests a porosity close
to εp. The issue is more complex and could be clarified thanks to the topology of mazes.
One introduces an additional parameter: the tortuosity t. The tortuosity in gyroid TPMS is
illustrated in Figure 25. For TPMS gyroid structures, diffusion properties can be controlled
by a proper choice of gyroid size and density [132]. Furmaniak et al. [133] reported a
theoretical study of Ar adsorption. These authors found a filling process depending on the
pore diameter. Tortuosity factor and porosity are the two microstructure parameters that
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control the effective gas diffusion coefficient [134–137]. The Tomadakis–Sotirchos model
expression for tortuosity is as follows

t = (
1− εp

ε− εp
)α (21)

Then, tortuosity tends to infinity (if ε ' εp) in agreement with a low porosity. Figure 25
shows the effects of pore geometry on the macroscopic permeability (k) and pore fluid
diffusivity (D) in the global permeability [138]. Unfortunately, the tortuosity t remains a
poorly understood concept because the term targets different fields: geometrical, electrical,
hydraulic, diffusional, etc. tortuosity. Ben Clennel [139] defined tortuosity as the parameter
which describes the sinuosity and the interconnectedness of the pore space as it affected transport
processes. From a topological point of view, tortuosity can be defined by the simple formula
(geometrical aspect):

t =
∑i di
dEuc

(22)

where i is the number of elemental steps. A 2D example is given in Figure 26 where the
tortuosity is just the percolating distance divided by the bird’s eye distance (the Euclidean
distance). To illustrate this point, tortuosity can be easily computed in the special case
of 2D fractal space filling curves (Hausdorff dimension 2) [140] (Figure 26). For example,
Peano and Hilbert curves gave tortuosity within a simple relationship (dEuc = 1 for the
square side):

tHilbert = (3 +
n−1

∑
i=1

2i)/dEuc (23)

tPeano = (3n + 1)/dEuc (24)

where n is the iteration step in the fractal sequence: t increases rapidly with the iteration n

TPMS GTPMS P

perm=1 perm=0.142 perm=0.074

Figure 25. (Left) Synopsis of the effects of pore geometry on the macroscopic permeability (k) and
pore fluid diffusivity (D) in carbon compounds [138]. (Right) The fluid permeability is illustrated for
a cylinder and two TPMS. The permeability (k = perm) is less in TPMS P Schwarz structure because
the open channel area is lower than the one in the cylinder. Gyroid TPMS has the lower permeability
because of the large tortuosity. Reproduced with permission from Nakashima, Proceedings of the
National Academy of Sciences [138]; copyright 2007, National Acad Sciences.
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dEucl

Hilbert curve n=4

dEucl

Peano curve n=3 dEucl

Figure 26. (Left) Tortuosity in a maze (t ' 5.4). (Right) Tortuosity in two space filling (fractal) curves,
Peano and Hilbert curves. The number of iterations is n.

The increasing of the tortuosity dramatically affects the permeability because of the
increasing of the net pathway and the fact that a rigid molecule can be stuck in a tight
corner of the structure [137]. In addition, the gas–carbon interaction potential might be
influenced by the surface curvature and ring structure, which could change the localisation
of the electron density that affects the diffusion [141].

5.7. GLC Stability
5.7.1. Willmore Energy

Willmore defined a functional on the space of embedding of a given surface. The
Willmore energy W̄(S) is a quantitative measure of how much a given surface deviates
from a round sphere. The Willmore conjecture can be viewed as a question about the “best
possible” immersion of a surface in R3 [142]. Willmore energy is written as

W̄(S) =
∫

S
H2dA =

1
4

∫
S
(k1 + k2)

2dA (25)

or another functional, umbillic or anisotropic energy,

W(S) =
∫

S
(H2 − K)dA =

1
4

∫
S
(k1 − k2)

2dA (26)

and the bending energy

B(S) =
∫

S
(H2 − K)dA =

1
4

∫
S
(k2

1 + k2
2)dA (27)

A remarkable property of Willmore energy is its invariance under conformal trans-
formations of R3 [143]. For a surface with mean constant curvature, using Gauss–Bonnet
theorem in a closed surface,

W(S) =
1
4

B(S) + π(2− 2g) (28)

It was conjectured by Willmore that W̄(S) ≥ 4π for any compact surface in R3 with the
minima W̄(S) = 4π in a round sphere. This minimal value explains why the equilibrium
shape of the soap bubble is the sphere. Willmore conjectured (proved 2014) that for a torus
W(T2) ≥ 2π2 [144]. In carbon, one defines four asymptotic forms according to K value:

- The graphene with k1 = k2 = 0 then K = H = 0 and W(S) = 0.
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- The (spherical) fullerenes with k1 = k2 = k everywhere, thus K > 0 and H > 0,
W̄(S) = 4π and W(S) = 0.

- The nanotubes with k1 > 0 and k2 = 0, thus W(S) = W̄(S). The fourth belongs
to the minimal surfaces, among them the triply periodic minimal surfaces (TPMS)
with H = 0, G < 0 W̄(S) = 0. From a physical point of view TPMS are metastable
structures. The excess in “strain” energy is evidenced after relaxation of a P-TPMS
unit cell with boundaries [122] (Figure 27). Then, GLC cannot accommodate large
holes that characterise giant Schwarzites (with a high number of hexagons) because
of a complete relaxation. This is not the case for the smallest Schwarzites which are
not smooth surfaces. Willmore energy states for smooth surfaces. One can define
the discrete Willmore energy after tiling [145]. The physical stability is obtained
minimising the discrete Willmore energy. We can discuss now the case of discrete
surface in terms of local Euler characteristic.

prior relaxation
unit cell

after relaxation
unit cell

*642

1 nm

Figure 27. Relaxation of a unit cell (P-TPMS) showing the decrease of the Gauss curvature and
the flatness after relaxation [122]. Both structures are topologically equivalent to the P surface.
Reproduced with permission from Miller, Carbon [122]; copyright 2016, Elsevier.

5.7.2. Defect Formula: “Mathematical” Stability

In order to classify the “stability” of a lattice (from a physical point of view), we can
introduce the cost of a orbifold (that is interpreted with caution as a cost energy without
formal proof). To do that, we use the defect formula [73] (Equation (10)):

χo = 2−∑ χi
loc (29)

summed over all the characters of the orbifold symbol, where these defects (i.e., a local
Euler characteristic) are tabulated in Table 4. χ0 is the orbifold Euler characteristic (or
fractional Euler characteristic) and corresponds to the cost of the orbifold [146,147]. The
trivial case is the sphere where χ = 2, thus χo = 0. For example, the orbifold symbol
of the graphene in the Conway notation is *632, the crystallographic symbol being P6m.
The symmetry operators in graphene are, respectively, a reflection line (orbifold symbol *,
χi

loc = 1) and three rotation centres with angles π/6 (χi
loc = 5/12), π/3 (χi

loc = 2/6) and
π/2 (χi

loc = 1/4) (orbifold symbols 6, 3 and 2, respectively). Using Table 4, Equation (29)
gives (see Table 7)

χo(graphene) = 2 + (−1− 5/12− 2/6− 1/4) = 0 (30)

Note that, for the Coxeter class, 2D plane groups have a zero cost orbifold regardless
of the type of tiling. Likewise, let us consider the fullerene C60. We can project the net onto
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S2, giving a symmetric pattern with identical vertices defined by a spherical triangular
asymmetric domain, with 2, 3 and 5 mirror lines meeting at each vertex. The Coxeter
orbifold is *235 or equivalently, the Ih point group in classical crystallography in E3. Then

χ0(C60) = 2 + (−1− 1/4− 1/3− 2/5) = +1/60 (31)

In a physical description, C60 is less “stable” than graphene. In 2D spherical orbifolds,
*235 has the low cost energy (Ih symmetry), truncated octahedron formed by regular
squares and hexagons (m3m) has a larger cost (*432 with χo = 1/24, see Table 6). Fullerenes
with icosahedral symmetry are expected to be more stable than standard crystallographic
forms.

The smallest possible genus for triply periodic minimal surfaces is g = 3, and most
classically known examples are in this class. The most symmetric one that we know is
the *246 one that defines the P,D and G TPMS with a genus 3. Then, the lowest cost is
|χo|=1/24, much more than |χo| = 1/60 in C60. A low |χo| value, for example, *237, breaks
the translation symmetry in E3. Subgroups of *246 orbifold give different TPMS with larger
|χo|, as depicted in Figure 28. A complete list of the 131 subgroups of *246 commensurate
with P,D and G TPMS is given in [90].

*238

*2424
I-WP

*249
*246
P,D,G

*2224
tP, tD CLP

co

1/6

1/4

1/2

1/24
1/48

1/12
1/16

1/8

1/3

*22222
oPb, oDb, oCLP

*222222
oPa, oDa

graphene

decreasing
« stability » 

*2626
rPP

*446
C(P)

*24(12)

*2225
H, hCLP

reference
flat surface

TPMS

Figure 28. Group and subgroups relation of P,D and G TPMS. As mentioned in Table 7, *238 orbifold
has a lower cost |χo| but is not triply periodic in E3; adapted from [146].

5.7.3. “Physical” Stability

Coming back to smooth surfaces, Willmore energy [145] is the mathematical view
of the old problem of the elasticity theory. Willmore energy does not consider physical
parameters such as “elasticity”. A more reliable functional was derived by Helfrich [145].
For a compact oriented surface S embedded in R3,

H(S) = a
∫

S
H2dA + b

∫
S

KdA (32)

where a and b are related to the flexural bending rigidity and bending stiffness, respec-
tively [148]. Both parameters are related through the Poisson ratio ν [149]

ν = 1 +
a
b

(33)
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a = −b means that, when the material is compressed, it will not undergo any expansion.
This is the case in Willmore model. The previous equation can be rewritten as

H(S) =
∫

S
(2BM H2 + BGK)dA (34)

where BM and BG are the bending rigidity and the Gaussian bending stiffness, respectively [148].
BM and BG are determined by DFT calculations: BM = 1.44 eV and BG = −1.52 eV [148]. The
surface occupied by an atom in the graphene lattice is S0 = 3

√
3d2

C−C/4 = 3.63 Å2

This model can be applied to nanotubes [148], fullerenes [148] and TPMS [22].

ESWCNT = Egraphene − S0BMR−2/2 (35)

ESWCNT = Egraphene − 1.9R−2 (36)

R the radius in Å, energies in eV

E f ullerenes = Egraphene − S0(BM + 2BG)R−2 (37)

E f ullerenes = Egraphene − 3.58R−2 (38)

In the same way, one defines the Willmore energy in TPMS.

ETPMS = Egraphene − 1.52 < R >−2 (39)

<R> is the mean radius. In fact, the values of BM and BG are difficult to estimate. The
topology of GLC is determined by the local values of both parameters, which are highly
sensitive to the t parameter in Equation (15). Schwarzites are favoured when−BG < BM/2,
nanotubes grow in the region BM/2 < −BG < 3/2BM and fullerenes−BG > 3/2BM (these
relations are identical to those in [22] with κ = 2BM and κ̄ = −BG). Figure 29 displays
the stability regions for the different families. Let us keep at mind that the transformation
Schwarzite/fullerene or Schwarzite/nanotubes is unlikely for topological reasons: the
genus is different and the curvature inversion needs the transformation of n-gons n > 7 to
n-gons n < 6 with a prohibitive energy cost due to the bond breaking.

fullerenes

nanotubes
graphene

schwarzites

-B
G

(e
V

)

2BM (eV)

-BG >3BM /2

BM /2 < -BG <3BM /2

-BG < BM /2
Benedek et al

Wei et al 

Koskinen et al

Figure 29. Domain of stability as a function of κ and κ̄ (see text). The values were given by
Benedek et al. [22], Koskinen et al. [150] and Wei et al. [148] (adapted from [22]).

This model can be compared to POAV framework (Figure 30). We recall that, in the
π-orbital axis vector analysis (POAV) [54,151], the hybridisation is defined with geometrical
consideration. Curvature (negative or positive) induces a misalignment of the orbitals (with
respect to the planar graphene). A weak misalignment has several consequences [152].
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First, the parallel alignment of p-orbitals is destroyed and the π bonding is less efficient.
Weakening a π bond tends to raise the energy of the π bonding molecular orbital and
lower the energy of the π∗ molecular orbital. A second consequence is the mixing between
s-orbitals with the pz-orbitals perpendicular to the basal plane that make up the primitive π
system. Introducing the interorbital angle θπσ, for fullerenes (N atoms) having a spherical
shape [153],

sin(θπσ −
π

2
) =

2π1/2N−1/2

33/4 , (40)

the mean hybridisation n is written as

n =
2

1− 4π√
3N

(41)

and the energy to graphene is given by a simple relationship

∆E(eV) = −3.1× 10−3(θπσ −
π

2
)2 (42)

Willmore

Figure 30. Relative energy to graphene in different models [153], POAV (bottom solid line) (Equa-
tion (42)), parameterised tight binding [154] (open square) and ab initio calculations [155] (filled
square). For the latter, the energy is the difference between the total all electron local density func-
tional density minus the total energy in the isolated atoms within the same formalism divided by
the number of atoms. Since the authors do not report the value in graphene, a scaling factor has
been taken by fitting the value in C60. The relative energy depends on the isomer under considera-
tion. The hybridisation calculated from the POAV Equation (41) is also displayed. Values given by
Equation (38) are also displayed.

5.8. GLC Modeling from TPMS Structure
5.8.1. Constant Mean Curvature

Our starting point is the Barborini et al. model [14]. It is clear that gyroid TPMS in the
standard form is far away the GLC structure. The first step is to modify the density. The
problem is achieved by studying gyroids of Constant Mean Curvature (CMC). To do this,
one considers the deformation of a minimal surface by embedding it into a continuous
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family of constant mean curvature surfaces [156,157]. Grosse-Brauckmann [156] used
Brakke’s Surface Evolver to deform the TPMS keeping the same symmetry. Deformations
of minimal surfaces are obtained by minimising the Willmore or bending energy under a
volume constraint. The density is a key parameter. Figure 31 shows the case of a volume
fraction of 18.75% compared to the minimal gyroid (50%). A simple approximation is
obtained from Equation (15) adjusting t factor (t > 0). The tubular form of the non-
minimal CMC gyroid structure present striking similarities with an idealised GLC structure.
Of course, GLC is not a crystal. Benedek et al. [22] introduced a randomisation of the
trigonometric approximation given by Equation (15) (see Figure 32)

cos(x′) sin(y′) + cos(y′) sin(z′) + cos(z′) sin(x′) = t |t=0 (43)

where x′ = f (x, y, z), x′ = g(x, y, z), z′ = h(x, y, z), f,g,h are defined functions. To take
into a account the film growth anisotropy, the simple form was proposed [22] x′ = xz−β,
y′ = yz−β and z′ = z1−β/(1− β). All the trial functions must minimise the Osserman’s
vector equation [158] giving the condition for a non-parametric minimal surface

(1 + |∂ f
∂y
|2 ∂2 f

∂z2 − 2(
∂ f
∂z

.
∂ f
∂y

)
∂2 f

∂y∂z
+ (1 + |∂ f

∂z
|2)∂2 f

∂y2 (44)

with in our case f ≡ x. Note that all the trial functions (x′ = f (x, y, z). . . ) except a linear
scaling violate this equation. In other words, the complexity (randomisation) is paid for a
lack of stability.

50%

TPMS
mean curvature zero constant mean curvature

t=1.2t=0
t=1.35

7.9%18.75%

Figure 31. (top) CMC gyroid with various volume constraint deduced from Brakke’s Surface
Evolver [156]. (bottom) CMC gyroid obtained with varying t parameter in Equation (15). (top)
Reproduced with permission from Große-Brauckmann, Experimental Mathematic, [156]; copyright
1997, Taylor Francis.
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Figure 32. Random gyroid with β = 0.4 and t = 1.3 in Equation (44) with the parameters in
reference [22].

5.8.2. Modified TPMS Structures: Strengths and Weaknesses

The simulation of the GLC structure by a mathematical analytic equation (after tes-
sellation) is of prime importance to do calculations (eDOS, pDOS, etc.) Moreover, these
structures (including randomisation) do not have any edges. This may explain the chemical
robustness: the physi-chemisorption is on the dangling bonds of the edge atoms. Never-
theless, all the modified TPMS check the two congruent labyrinths and then are “unknot
structures”. As mentioned previously, “unknot structure” is the best way for graphitisation
(let us keep at mind that GLC are non-graphitisable structures). To summarise, random
CMC are a good ground to model GLC. The low difference in cohesive energy between
structures with positive curvature (fullerenes, onions, etc.) and negative curvature such as
TPMS favours a mixing between them in GLC carbon. Random CMC trie to capture the
essence of all the GLC properties but requires improvement

6. Conclusions

Thanks to the uniformisation theorem (geometry) and the classification one (topology),
some amazing properties of GLC can be understood at first glance. The presence of n-gons
with n > 7 opens the door for the hyperbolic geometry and its fascinating world. Material
properties are governed by mathematics and physics (or chemistry). Mathematics addresses
the universal rules independently for the nature of bonding as long as the topology ignores
the physical characteristics of atoms and atomic forces. It is interesting to separate universal
properties related to mathematics and non-universal or “local” properties related to physics.
The famous phrases “topological robustness” and “topological protected states” make
sense. GLC and the entire sp2 carbon family (or other 2D compounds) are good candidates
to do this. The possibility to synthesise GLC with well controlled conditions should allow
in the future a better possible confrontation of problems thanks to topology. It remains a
fascinating subject to study with many secrets yet to be discovered.

Appendix A

According to the Tyson course [159], we can define from a mathematical point of view
the frontier between topology and geometry.

Let (X, d) and (Y, d0) be metric spaces (X is a set, while d is a metric on X) and let
f : X → Y. Topology: f is a homeomorphism if f and f−1 are both continuous without
other conditions. Topological properties are unchanged under arbitrary homeomorphisms.
This is the domain of the thermodynamic kinetics.
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Bi-Lipschitz map: f is a bi-Lipschitz transformation if f and f−1 are both Lipschitz, in
other words if L < ∞ is a number such that

1
L

d(x, y) ≤ d′( f (x), f (y)) ≤ d(x, y). (A1)

d is the distance d : X × X → R. Metric properties are unchanged under arbitrary bi-
Lipschitz maps. This is the domain of the fractal world where L is the scaling factor.

Geometry: f is an isometry if L = 1. This is the domain of the standard crystallography.
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