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Abstract: As public awareness of the threats related to ultrafine aerosols increases, there is a growing
need for inexpensive, real-time exposure assessment devices. In this work, the well-established
technology used in the smoke detector with a radioactive source was tested in laboratory conditions
to check its suitability for determining the number concentration of the ultrafine aerosol. It has
been shown that the sensor output changes linearly with the change of diesel soot concentration
in the range up to 8.3 × 105 particles cm−3. The sensor has also been shown to be able to detect
rapid changes in aerosol concentration. Empirical equations describing the influence of air velocity,
temperature, relative humidity, and pressure on the sensor output were determined. The collected
results confirm that the ionization sensor can be used to assess ultrafine aerosol exposure, although
additional engineering work is required to increase the resolution of the output signal measurement
and to compensate for the effects of weather conditions. The presented method can be used for
concentration monitoring and risk assessment in environmental engineering, materials engineering,
cosmetics industry, textiles, sports, chemical, mining, energy, etc.

Keywords: nanoparticles measurement; ultrafine aerosol; ionization sensor; environmental monitoring;
environmental engineering; exposure assessment; occupational safety and health

1. Introduction

Engineered nanoobjects, their agglomerates, and aggregates (NOAA) can exhibit
properties that are different from their non-nanoscale (bulk) material equivalent [1–5]. The
matter at the nanoscale obtains new chemical, biological (including toxicological), mechan-
ical, and physical properties with enhanced performance over their micro counterparts [6].
Nanomaterials have found a broad range of applications in environmental engineering,
materials engineering, health, mining, aerospace, sports, and various other industries [5,7].

In the work environment, ultrafine aerosols can be created spontaneously as a byprod-
uct (e.g., due to combustion processes or welding) or due to the emission of nanoparticles
from technological processes such as grinding, crushing, polishing, or transporting. More-
over, engineered nanomaterials can be used as substrates or additives in many different
technological processes [8].

Inhalation is considered to be one of the main routes of human exposure to nanoob-
jects [9]. Nanomaterials are a very diverse group of chemicals; it is thus difficult to make
general statements about their potentially adverse health effects. Over the years, studies
have been conducted on the effects of NOAA impact on human health using the in vitro
models [10–13]. Besides direct exposure, NOAA can also be accumulated in soil and plants,
causing a risk not only to people directly involved in their production or processing [14].
Moreover, it needs to be taken into account that a specific nanocompound (in several forms)
may exhibit different biological activity depending on the production method and process-
ing [15,16]. In the case of the risk evaluation for workers handling particular nanomaterials
(and their different forms), it is easiest to begin with exposure assessment to NOAA in the
air [7,17]. Based on this assessment, occupational health and safety specialists can take
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appropriate steps if necessary. Currently, there is an absence of health-based regulatory
occupational exposure limits (OELs) for various NOAA. There are also no specific interna-
tional regulations, international protocols, or legal definitions for the production, handling,
or labeling of NOAA. However, there are general rules and recommendations to protect
the workforce proposed by Organization for Economic Cooperation and Development
(OECD), World Health Organization (WHO), and ISO [18–22]. The WHO has adopted
similar threshold values to nano reference values (NRV) for nanomaterials based on the
number concentration and density of NOAA proposed by the Social and Economic Council
(SER, Sociaal-Economische Raad), the advisory body to the Dutch government and the
parliament on national and international social and economic policy [23–25]. The NRVs
are limit values whose exceeding should result in the application of appropriate exposure
control measures. Generally, the threshold for metallic particles is 20,000 particles cm−3,

and for metal oxides, carbon black, fullerenes, dendrimers, polystyrene, etc. is 40,000
particles cm−3. These are temporary values and may change as knowledge of the toxicity
of nanomaterials progresses.

Documents mentioned above listed several direct-reading instruments for counter
methods providing real-time measurements of mass concentration (based on assumed
nanomaterial density) and the number concentration of NOAA in the air. There are also
gravimetric methods mentioned for post-factum mass concentration evaluation (inde-
pendent of knowledge on nanomaterial density). Moreover, cascade impactors can be
used to sample different aerosol fractions down to ultrafine particles [26]. The disadvan-
tages of the counter methods are their relativity (the effect of which is the discrepancy
between the indications of two different instruments) and the lack of appropriate methods
of calibration [21,27,28]. The disadvantages of gravimetric methods are their low accuracy
(which depends on the sensitivity of the scale), long analysis time (depending on weighing
procedures, filter conditioning), and susceptibility to physical stimuli (shock, vibrations,
handling by an analyst).

There is, however, a great limitation of the risk assessment connected to NOAA
exposure in the work environment, which is the general lack of high-quality exposure
data [29]. There is no international standard describing how such measurements should
be conducted and what devices should be used [30]. Several measurement systems exist
capable of in situ and on-line ultrafine aerosol number concentration determination. The
most popular are scanning mobility particle sizers (SMPS), combining differential mobility
analyzers (DMA) with condensation particle counters (CPC). Slightly less popular are the
systems consisting of DMA’s in combination with Faraday cup electrometers and electrical
low-pressure impactors. Moreover, there are portable devices capable of personal NOAA
exposure assessment using electrometer measurements of charged particles [31–33] or
oscillation change of the microelectromechanical resonant cantilever [34,35].

The main disadvantage of these systems is the high cost of purchase and operation. As
a result, they are only used for periodic measurements, which may not give full information
about the NOAA exposure. Therefore, there is a need for low-cost devices capable of
NOAA concentration determination. In 2019, a project focused on developing a workplace
monitoring strategy for measuring NOAA with low-cost sensors was initiated by CEN. The
main focus is on verifying the suitability of the available low-cost environmental sensors
for measuring the concentration of agglomerates and aggregates of nanoobjects. Based
on a review of literature sources, no low-cost devices capable of measuring the primary
nanoobjects concentration were identified.

Ionization smoke detectors are widely used fire safety devices whose technology dates
to the 1950s. Their main advantage over optical sensors is a faster response to flaming
fires when the particles created due to combustion are relatively small (in the range from
several nanometers to one micrometer). A schematic diagram of the ionization sensor
is presented in Figure 1. A small amount of radioactive material (typically americium-
241) is placed in the center of a disk, which is the negative electrode. On the top of the
bottom disk, there is an insulating material and a floating (or collection) electrode, which
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is electrically insulated from other components and connected to the electronic circuit
capable of electrostatic potential measurement. The volume beneath the floating electrode
is referred to as the reference chamber, while the volume above it, bounded from the top
by the positive electrode, is referred to as the active chamber. Alpha particles (identical to
helium-4 nuclei) emitted from radioactive material ionize the air causing the formation of
positive and negative ions. Due to the ions’ transport towards the electrodes with opposite
signs, electric currents are generated. If particle-free air is present in the active chamber, the
electric currents in both chambers are equal and the electrostatic potential of the floating
electrode is in equilibrium. If particulates enter the active chamber, some of the alpha
particles and generated ions attach to their surface, causing a change in the electrostatic
potential measured on the floating electrode. In the case of the smoke detector, this change
is compared with the threshold value and used to trigger the alarm.

Figure 1. Schematic diagram of the ionization chamber.

The application of modified smoke detectors for particulate matter sensing has been
previously proposed by several authors. Litton et al. [36] applied both optical and ioniza-
tion smoke detectors for concentration measurements of micrometer and submicrometer
aerosols. This idea was then developed by Edwards et al. [37]. It was shown that the ion-
ization sensor was approximately five times more sensitive to the presence of fine particles,
while the photoelectric sensor was about five times more sensitive to the presence of coarse
particles. The lower detection limit for fine particles was estimated to be at the level of
17 µg m−3. Moreover, it was stated that besides particle concentration, environmental con-
ditions such as temperature, humidity, and pressure will also influence the measured signal
value. Dahl et al. [38] proposed an application of the modified ionization smoke detector as
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a low-cost nanoparticle monitor. To overcome the influence of environmental conditions on
the output signal, measurements were conducted for filtered and untreated air. The lower
detection limit for 100 nm particles was estimated at the level of 15,000 particles cm−3. The
tested sensor showed a linear response for concentration change of KCl calibration aerosol,
candle smoke, and welding fumes.

In the present paper, the possibility of measuring the concentration of primary nanoob-
jects and their agglomerates and aggregates using an ionization sensor has been verified.
Response of the ionization sensor to NOAA concentration change was investigated in
laboratory conditions. Artificial diesel soot aerosol was chosen as a test medium. Diesel
soot is a common pollutant that can be found in outdoor air and at workplaces, which is
known to be a carrier for toxic and carcinogenic substances [39]. Moreover, the influence of
the air temperature, relative humidity, pressure, and velocity on the value of the output
signal was determined.

2. Materials and Methods

The ionization sensor from a smoke detector DIO-40 (POLON-ALFA, Bydgoszcz,
Poland was modified by exposing two signals: the supply voltage (Vsup) and the voltage
proportional to the electrostatic potential measured on the floating electrode (Vmea). Both
signals were processed by the operational amplifiers LM358 (gain equal 1) and measured
using a microcontroller ItsyBitsy 32u4 (Adafruit, New York City, NY, USA) with 10-bit
analog-digital converter (ADC) through voltage dividers (10 kΩ/4.7 kΩ). As the ionization
sensor was powered by 12 V DC, voltage dividers were necessary to shift signals to the
level safe for the ADC (0–5 V). The voltage resolution of the ADC was approximately
0.005 V. The electric diagram of the signal processing circuit is presented in Figure 2.

Figure 2. Diagram of ionization sensor signal processing circuit.

To investigate the output signal stability, the sensor was mounted in a laminar flow
cabinet. Raw sensor output values were read by the microcontroller with the frequency
of 50 Hz and sent to the PC. Measurements were conducted without airflow and with an
airflow of 0.5 m s−1.

The schematic of the test setup is presented in Figure 3. To examine the ionization
sensor output in different atmospheric conditions, it was mounted in a pipe with a cross-
section of 100 cm2. Airflow was generated using HEPA filtered air from the central
compressed air system. The air velocity was measured by an IRIS 100 damper connected to
a P26 (Halstrup Walcher, Kirchzarten, Germany) differential pressure transmitter sending
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the measured values to the PC. The air velocity was kept constant at 0.15 m s−1 during
all tests except when its influence on the sensor output was examined. Value of the
output signal Vout was calculated every second directly on the microcontroller according to
Equation (1):

Vout = Vsup − Vmea (1)

where Vsup and Vmea are the average values of the supply voltage and voltage proportional
to the electrostatic potential measured on the floating electrode, respectively, calculated
from 50 consecutive measurements.

Figure 3. Schematic of the test stand used to determine the influence of the environmental conditions on the ionization
sensor output signal value.

The test aerosol consisted of ultrafine particles (carbon soot) generated using PALAS
GFG 1000 spark discharge generator in an argon atmosphere (4 LPM, 2 sparks s−1) diluted
with air filtered and dehumidified using 3074B (TSI, Shoreview, MN, USA) air supply unit.
Aerosol concentration was controlled by a throttle valve placed on the excess stream from
the aerosol generator. Particle size distribution was determined using NanoScan SMPS
Model 3910 (TSI, Shoreview, MN, USA) condensation particle counter with 13 channels
in a size range from 10 to 420 nm. According to the user manual, the device is capable of
measuring the aerosol particle concentrations in the range of 102–106 particles cm−3. A
schematic diagram of the test setup is presented in Figure 3.

To determine the influence of air temperature on the sensor output, a coil pipe im-
mersed in a heating/cooling medium was used. To elevate humidity, part of the air stream
was passed through a container with heated distilled water. The influence of air pressure
on the sensor output was examined in a sealed container filled with air filtered and dehu-
midified using TSI 3074B air supply unit. Air temperature, relative humidity, and pressure
were measured using BME280 (Bosch Sensortec, Reutlingen, Germany) sensor connected
to a microcontroller Uno (Arduino, Turin, Italy) and registered on the PC.

To assess the possibility of detecting rapid concentration changes, a comparison test
with the AeroTrak 9000 (TSI, Shoreview, MN, USA) was conducted. The AeroTrak 9000 is a
nanoparticle aerosol monitor that measures the surface area concentration of particles by
sensing the charge of particles using an electrometer. In contrast to the TSI NanoScan SMPS,
data are acquired with a resolution of 1 s allowing the detection of rapid concentration
changes. Both the ionization sensor and AeroTrak were installed under the fume hood
(the ventilator was turned off during the measurements). The test aerosol was generated
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using the GFG 1000 (Palas, Karlsruhe, Germany) generator with graphite electrodes. The
spark frequency setting was used to change the aerosol concentration (1 Hz, 5 Hz, 15 Hz,
30 Hz, 60 Hz, 120 Hz), while the inert gas (Ar) flow was kept at the constant level of 4 LPM.
The AeroTrak monitor was set to measure the surface area concentration of particles that
deposited in the alveolar region of the respiratory tract. In this experiment, there was no
forced airflow through the ionization sensor chamber, therefore, its operation was similar
to a typical smoke detector application.

3. Results
3.1. Output Signal Stability

Results from the output stability test are presented in Table 1. Without any airflow
present, the measured voltage values were equal to 3.400 and 2.248 in the case of the supply
line and output from the floating electrode, accordingly. Although a slight decrease in both
signals was observed under laminar flow conditions, its value, as well as the values of the
standard deviations, were comparable with the voltage resolution of the applied ADC.

Table 1. Stability of the raw sensor output signals during 20 s of measurements with a frequency of 50 Hz.

Conditions
Supply Voltage (V) Floating Electrode (V)

Avg. St. Dev. Min. Max. Avg. St. Dev. Min. Max.

without air flow 3.400 0.007 3.382 3.407 2.248 0.010 2.224 2.268

laminar flow 0.5 m s−1 3.397 0.008 3.382 3.407 2.243 0.006 2.219 2.258

Aerosol particle size distribution is presented in Figure 4. It has a lognormal distribu-
tion with a maximum frequency peak of 26.9% for particles with a size of 27.4 nm and a
mean size of 35.3 nm.

Figure 4. Size distribution of the test aerosol.
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3.2. Response to the Aerosol Concentration Change

Figure 5 demonstrates the ionization sensor output in response to ultrafine aerosol
concentration changes. Each data point is calculated as an average from 3 min of measure-
ments (3 measurements performed by NanoScan SMPS and 180 measurements performed
by the ionization sensor). Sensor output increases linearly with the aerosol concentra-
tion increase, which can be explained by the decrease of Vmea due to the bonding of ions
generated in the chamber with the surface of aerosol particles. The relationship can be
approximated for the measured aerosol concentration up to 8.3 × 105 particles cm−3 by
the following equation (coefficient of determination R2 = 0.986):

Vout = 1.010 × 10−7 × cn + 1.111 (2)

where cn is the number concentration of aerosol particles in particles cm−3. The value of
the Pearson correlation coefficient calculated for 48 data points (1-min averages) was equal
to 0.990. Air parameters during measurements: temperature: 25.5 ± 0.1 ◦C, relative air
humidity: 0%, pressure: 100.70 kPa, velocity: 0.15 ± 0.02 m s−1.

Figure 5. Dependence between ionization sensor output and ultrafine aerosol particles concentration.

3.3. Response to the Air Velocity Change

The ionization sensor used in a smoke detector is designed to work in the absence of
any viscous drag forces. The influence of air velocity on the sensor output is presented
in Figure 6. It can be seen that the sensor output increases with increasing air velocity
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(leaching of the ions from the measurement chamber causes the decrease of Vmea) and the
relationship can be approximated in a measured air velocity range by linear regression
(R2 = 0.955):

Vout = 0.110 × U + 1.104 (3)

where U is the air velocity in m s−1. The value of the Pearson correlation coefficient calcu-
lated for 18 data points (1-min averages) was equal to 0.973. The average air parameters
during experiment: temperature 26.2 ± 0.1 ◦C, relative humidity: 3.7 ± 0.1%, pressure:
100.77 kPa. The average concentration of particles was below 102 particles cm−3 specified
as the lower detection limit for the counter used.

Figure 6. Ionization sensor output signal change in relation to air velocity.

3.4. Response to the Relative Air Humidity Change

Figure 7 presents the sensor output response in relation to the relative air humidity
change. In the humidity range from 0 to 43.9% the relation was linear (R2 = 0.958):

Vout = 0.083 × 10−2 × H + 1.111 (4)

where H is the relative air humidity in %. Higher values of the humidity could not
be tested due to the limitation of the particle counter used. The value of the Pearson
correlation coefficient calculated for 21 data points (1-min averages) was equal to 0.960.
The average air temperature during the experiment was equal to 27.2 ± 0.1 ◦C, and the
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average concentration of particles was below 102 particles cm−3. The average air velocity
was 0.15 ± 0.02 m s−1.

Figure 7. Relation between ionization sensor output and relative air humidity.

3.5. Response to the Air Temperature Change

The influence of the air temperature change on the ionization sensor output signal
is presented in Figure 8. In the measured range from 19.2 to 32.2 ◦C the sensor output
decreases with air temperature increase. The relationship can be approximated by a
polynomial equation (R2 = 0.951):

Vout = 0.334 × 10−3 × T2 − 2.091 × 10−2 × T + 1.412 (5)

where T the is the air temperature in ◦C. The value of the Pearson correlation coefficient
calculated for 14 data points (15-s averages) was equal to −0.928. Relative air humidity
was equal to 0% during this experiment. The average concentration of particles was below
102 particles cm−3. The average air velocity was 0.15 ± 0.02 m s−1.
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Figure 8. Ionization sensor output signal change in relation to air temperature.

3.6. Response to the Air Pressure Change

The air pressure influence on the sensor output is presented in Figure 9. The measured
voltage at the sensor output increases linearly with increasing air pressure. The relation
can be approximated by a linear regression function (R2 = 0.999):

Vout = 8.857 × 10−3 × P + 0.231 (6)

where P is the air pressure in kPa. The value of the Pearson correlation coefficient calculated
for 7 data points (1-min averages) was equal to 0.999. The average air parameters during
the experiment: temperature 22.7 ± 0.1 ◦C, relative humidity: 3.6 ± 0.2%. The average
concentration of particles was below 1 × 102 particles cm−3. Measurements were conducted
without airflow.

3.7. Ability to Detect Rapid Aerosol Concentration Changes

In Figure 10, the ionization sensor output is compared with the results of the surface
area concentration measurements conducted using TSI AeroTrak 9000. Peaks in the output
values can be observed for both sensors, although they were broader and slightly shifted
to the right in the case of the ionization sensor due to the lack of forced airflow through the
measurement chamber. Moreover, good agreement occurred in the presence of the peaks
in the whole aerosol concentration range. The Pearson correlation coefficient calculated
for 1679 data points was 0.77, which means that there is a strong correlation between the
output values from both sensors. It can also be seen that the amplitude of signal peaks
increases with the increasing sparking frequency setting of the GFG 1000 generator.
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Figure 9. Sensor output signal in response to air pressure change.

Figure 10. Comparison of ionization sensor and TSI AeroTrak 9000 responses to diesel soot concentration changes.

The average air parameters during experiment: temperature 25.2 ± 0.3 ◦C, relative
humidity: 49.3 ± 0.8%, pressure: 100.73 ± 0.02 kPa.
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4. Discussion

The calculated value of the output signal noise level of 0.010 V agrees with the value
provided by Litton et al. [36]. According to Equation (2), this converts into a difference
of ±1 × 105 particles cm−3 in aerosol concentration measurements. Such a noise level
seems too high for the planned application, although as it can be seen in Figure 5, by
averaging the measurement results in 3-min time frames, it was possible to achieve a strong
linear correlation with the reference device. To decrease the noise level several hardware
modifications could be made. The microcontroller used in this experiment has a 10-bit
precision ADC. This means that the voltage values from 0 V to 5 V are read as digital values
from 0 to 1023, accordingly. Therefore, a change of the measured voltage by 0.010 V results
in a change of digital value by 2. By incorporating 12-bit precision ADC, where 5 V is read
as a value of 4095, the same voltage change value will result in a change of digital value by 8.

During the stability test, a slight difference was observed in the mean voltage values
measured in the reference chamber without the airflow and under the laminar flow con-
ditions, although the minimum and maximum measured values were the same (Table 1).
In the conducted experiments, a USB power line from the PC was used as a 5 V reference
value for ADC. Although since the output signal from the ionization sensor was calculated
as a difference between the two measured voltages, this should have no impact on the
measurement accuracy, application of a high precision external reference voltage source
could improve the output signal stability.

Presented experimental results showed that the output signal from the modified
ionization sensor used in the smoke detector could be applied to ultrafine aerosol particle
number concentration determination. As it can be seen in Figure 5, the mean values of
ionization sensor output signal measurements are well aligned in a linear relationship
with the aerosol number concentration determined using the NanoScan particle counter,
which is in good agreement with the results presented by other authors [36,38]. It can be
concluded that the measuring range of the nanoobject sensor using the ionization detector
will be similar to that of other devices based on the electrometric principle of measuring the
concentration of nanoaerosols. The Grimm MiniWRAS particle counter has a measuring
range of 3000 to 500,000 particles cm−3. The Testo DiSCmini portable counter has a
measuring range of 1000 to 1,000,000 particles cm−3, as does the NanoScan counter used as
a reference device. It can also be noted that the calculated standard deviations of the sensor
output signal mean values are similar in the whole measured particle concentration range,
while in the case of the reference device (TSI NanoScan SMPS), the standard deviation
increases with increasing concentration. This is probably due to the coincidence error,
which is a typical problem in the case of optical particle counters.

From a comparison test with the TSI AeroTrak 9000, it can be seen that the ionization
sensor can respond quickly and with high sensitivity to the rapid changes in aerosol
concentration (Figure 10). The amplitude of the ionization sensor output signal peaks is
well aligned with the amplitude of the peaks registered using AeroTrak monitor, although
they differ in width due to the previously mentioned reason. It should be noted that there
is a difference in the way the output signal is generated for these devices. As already
mentioned, in the case of the ionization sensor, the change in the electrostatic potential
between the electrodes is recorded as a result of a decrease in the number of charge carriers.
In the case of the AeroTrack sensor, the particles are charged with hydrated protons
generated by the corona discharge. The output signal is then generated by passing the
positively charged particles through an electrometer.

It needs to be noted that the presented results of comparison tests with commercial
nanoparticle sensing devices are valid only for the specific test aerosol used. Other par-
ticulates may differ in surface parameters such as charge value and distribution, specific
area, or affinity to water, which may affect how they will interfere with ions in the active
chamber. This entails the need for calibration for a specific type of particulate, optimally
carried out in the place where the sensor will be used. Alternatively, a diffusion charger
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could be applied similarly, as it was done, for example, in the TSI AeroTrak, although this
would greatly increase the device complexity.

To build a measuring device using the tested ionization sensor, some additional
engineering work needs to be done. To ensure that only ultrafine particles are being
measured, an impactor with the appropriate cutoff point needs to be designed and installed
on the inlet [40]. One of the inputs for the impactor design is the air velocity, which
determines the value of the inertial force acting on particles. Besides the previously
mentioned issue with the leaching of ions from the measurement chamber, it needs to be
noted that precise control of airflow is important in all types of particle counters—both
the number of particles and volume of the sampled aerosol are needed to determine
the concentration. Therefore, it is important to implement a closed-loop control system
allowing for maintaining the air velocity at a constant level. Although, as shown in Figure 6,
the standard deviation of air velocity measurements conducted with the IRIS 100 damper
increases proportionally to its value, it does not seem to affect the stability of the ionization
sensor output. However, it can be expected that the formation of vortexes at higher air
velocities may affect the sensor performance. It seems that the value of 0.1–0.2 m s−1

should be a good compromise between the response time of the sensor and its stability.
Perhaps the biggest challenge in using an ionization sensor to determine nanoparticles

concentration will be to account for the influence of air parameters. This problem also
occurs with the current state-of-the-art devices, e.g., those using electrometers. In theory,
the available low-cost temperature, relative humidity, and pressure sensors (which may
have rice grain size) could be used to account for changes in these parameters with respect
to the calibration conditions (Equations (4)–(6)). While this may be possible for pressure
and temperature (not trivial due to the polynomial relationship), it is questionable in the
case of relative humidity. Moisture present in the air will influence both the electrical
parameters of the air and the surface charge of the particulates, which may influence
how ions in the active chamber interfere with them. To overcome this issue without an
excessive increase of technical complexity (thus device cost), a resistive heater made of
conductive PTC rubber may be applied to avoid operation under moisture condensation
conditions. Moreover, it needs to be noted that obtained polynomial relationship between
the air temperature change and the ionization sensor output is in contrast with the results
presented by [37], where a linear equation was proposed to fit the results obtained using
the theoretical model.

Alternatively, particle concentration measurements can be performed by comparing
the outputs from the ionization sensor measured for the sampled aerosol and HEPA filtered
air. In this case, additional tests should be carried out to confirm that the relationship
between the output signal value and the aerosol concentration presented in Figure 5 is
similar regardless of the air parameters.

5. Conclusions

Based on the literature review and experimental results, it was demonstrated that
the ionization sensor from a commonly used smoke detector could be used to roughly
determine the concentration of the ultrafine aerosol. Due to the widespread adaptation,
such sensors are easy to source and low-cost. This makes it possible to build a low-cost
device for continuous monitoring of the concentration of ultrafine particles. Currently
available devices capable of performing such measurements, due to the high purchase and
maintenance costs, are used only for periodic measurements. Continuous air quality moni-
toring is important for processes where nanoparticles are used as substrates or additives,
but also for processes where ultrafine particles may be released as a result of an accident or
failure. This will allow to improve work safety and reduce costs related to accidents and
other unforeseen events by enabling quick detection.
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3. Kijeńska, E.; Zhang, S.; Prabhakaran, M.P.; Ramakrishna, S.; Swieszkowski, W. Nanoengineered biocomposite tricomponent

polymer based matrices for bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 807–815. [CrossRef]
4. Nima, P.G.V. A study on the assessment of optical properties of silver nano particles. Int. J. Nanotechnol. Appl. 2016, 6, 5–16.
5. Gajanan, K.; Tijare, S.N. Applications of nanomaterials. Mater. Today Proc. 2018, 5, 1093–1096. [CrossRef]
6. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [CrossRef]
7. Dolez, P.I. Chapter 1.1—Nanomaterials definitions, classifications, and applications. In Nanoengineering; Dolez, P.I., Ed.;

Elsevier: Amsterdam, The Netherland, 2015; pp. 3–40.
8. Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials:

History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [CrossRef] [PubMed]
9. SCENIHR. Risk Assessment of Products of Nanotechnologies; European Commission, Scientific Committee on Emerging and Newly

Identified Health Risks: Brussels, Belgium, 2009.
10. Cheng, L.-C.; Jiang, X.; Wang, J.; Chen, C.; Liu, R.-S. Nano-bio effects: Interaction of nanomaterials with cells. Nanoscale 2013, 5,

3547–3569. [CrossRef]
11. Mukherjee, D.; Porter, A.; Ryan, M.; Schwander, S.; Chung, K.; Tetley, T.; Zhang, J.; Georgopoulos, P. Modeling in vivo interactions

of engineered nanoparticles in the pulmonary alveolar lining fluid. Nanomaterials 2015, 5, 1223. [CrossRef]
12. Cosnier, F.; Bau, S.; Grossmann, S.; Nunge, H.; Brochard, C.; Viton, S.; Payet, R.; Witschger, O.; Gaté, L. Design and characterization

of an inhalation system to expose rodents to nanoaerosols. Aerosol Air Qual. Res. 2016, 16, 2989–3000. [CrossRef]
13. Geiser, M.; Jeannet, N.; Fierz, M.; Burtscher, H. Evaluating adverse effects of inhaled nanoparticles by realistic in vitro technology.

Nanomaterials 2017, 7, 49. [CrossRef]
14. Shrivastava, M.; Srivastav, A.; Gandhi, S.; Rao, S.; Roychoudhury, A.; Kumar, A.; Singhal, R.K.; Jha, S.K.; Singh, S.D. Monitoring

of engineered nanoparticles in soil-plant system: A review. Environ. Nanotechnol. Monit. Manag. 2019, 11, 100218. [CrossRef]
15. Oberdorster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D.;

et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening
strategy. Part. Fibre. Toxicol. 2005, 2, 8. [CrossRef]

16. Shin, S.; Song, I.; Um, S. Role of physicochemical properties in nanoparticle toxicity. Nanomaterials 2015, 5, 1351. [CrossRef]
[PubMed]

17. Singh, S.; Nalwa, H.S. Nanotechnology and health safety–toxicity and risk assessments of nanostructured materials on human
health. J. Nanosci. Nanotechnol. 2007, 7, 3048–3070. [CrossRef] [PubMed]

18. ISO. Nanotechnologies—Occupational Risk Management Applied to Engineered Nanomaterials—Part 1: Principles and Approaches;
International Organization for Standardization: Geneva, Switzerland, 2012.

19. ISO. Nanotechnologies—Occupational Risk Management Applied to Engineered Nanomaterials—Part 2: Use of the Control Banding
Approach; International Organization for Standardization: Geneva, Switzerland, 2014.

20. OECD. Harmonized Tiered Approach to Measure and Assess the Potential Exposure to Airborne Emissions of Engineered Nano-Objects and
Their Agglomerates and Aggregates at Workplaces; Organisation for Economic Co-operation and Development: Paris, France, 2015.

21. OECD. Strategies, Techniques and Sampling Protocols for Determining the Concentrations of Manufactured Nanomaterials in Air at the
Workplace, Series on the Safety of Manufactured Nanomaterials; Organisation for Economic Co-operation and Development: Paris,
France, 2017.

22. WHO. Who Guidelines on Protecting Workers from Potential Risks of Manufactured Nanomaterials; World Health Organization: Geneva,
Switzerland, 2017.

http://doi.org/10.1039/C1CS15237H
http://doi.org/10.1080/00914037.2016.1163561
http://doi.org/10.1016/j.matpr.2017.11.187
http://doi.org/10.1016/j.arabjc.2017.05.011
http://doi.org/10.3762/bjnano.9.98
http://www.ncbi.nlm.nih.gov/pubmed/29719757
http://doi.org/10.1039/c3nr34276j
http://doi.org/10.3390/nano5031223
http://doi.org/10.4209/aaqr.2016.01.0034
http://doi.org/10.3390/nano7020049
http://doi.org/10.1016/j.enmm.2019.100218
http://doi.org/10.1186/1743-8977-2-8
http://doi.org/10.3390/nano5031351
http://www.ncbi.nlm.nih.gov/pubmed/28347068
http://doi.org/10.1166/jnn.2007.922
http://www.ncbi.nlm.nih.gov/pubmed/18019130


Nanomaterials 2021, 11, 1625 15 of 15

23. van Broekhuizen, P.; Dorbeck-Jung, B. Exposure limit values for nanomaterials—Capacity and willingness of users to apply a
precautionary approach. J. Occup. Environ. Hyg. 2013, 10, 46–53. [CrossRef] [PubMed]

24. van Broekhuizen, P.; van Veelen, W.; Streekstra, W.H.; Schulte, P.; Reijnders, L. Exposure limits for nanoparticles: Report of an
international workshop on nano reference values. Ann. Occup. Hyg. 2012, 56, 515–524. [CrossRef]

25. Buist, E.H.; Oosterwijk, M.T.T. Applicability of Provisional Nrvs to Synthetic Nanomaterials. A study within the Frame of the Project
Update of the Nrvs; TNO: Zeist, The Netherlands, 2017.

26. Kumsanlas, N.; Piriyakarnsakul, S.; Sok, P.; Hongtieab, S.; Ikemori, F.; Szymanski, W.W.; Hata, M.; Otani, Y.; Furuuchi, M. A
cascade air sampler with multi-nozzle inertial filters for pm0.1. Aerosol Air Qual. Res. 2019, 19, 1666–1677. [CrossRef]

27. Hsiao, T.-C.; Lee, Y.-C.; Chen, K.-C.; Ye, W.-C.; Sopajaree, K.; Tsai, Y.I. Experimental comparison of two portable and real-time size
distribution analyzers for nano/submicron aerosol measurements. Aerosol Air Qual. Res. 2016, 16, 919–929. [CrossRef]

28. Levin, M.; Witschger, O.; Bau, S.B.; Jankowska, E.; Koponen, I.K.; Koivisto, A.J.; Clausen, P.A.; Jensen, A.; Mølhave, K.; Asbach, C.;
et al. Can we trust real time measurements of lung deposited surface area concentrations in dust from powder nanomaterials?
Aerosol Air Qual. Res. 2016, 16, 1105–1117. [CrossRef]

29. Fleischer, T.; Jahnel, J.; Seitz, S.B. Technology assessment beyond toxicology—The case of nanomaterials. In Responsibility in
Nanotechnology Development; Arnaldi, S., Ferrari, A., Magaudda, P., Marin, F., Eds.; Springer: Dordrecht, The Netherlands, 2014;
pp. 79–96.

30. Kuhlbusch, T.A.J.; Wijnhoven, S.W.P.; Haase, A. Nanomaterial exposures for worker, consumer and the general public. NanoImpact
2018, 10, 11–25. [CrossRef]

31. Iavicoli, I.; Fontana, L.; Pingue, P.; Todea, A.M.; Asbach, C. Assessment of occupational exposure to engineered nanomaterials in
research laboratories using personal monitors. Sci. Total. Environ. 2018, 627, 689–702. [CrossRef] [PubMed]

32. Kuula, J.; Kuuluvainen, H.; Rönkkö, T.; Niemi, J.V.; Saukko, E.; Portin, H.; Aurela, M.; Saarikoski, S.; Rostedt, A.; Hillamo, R.; et al.
Applicability of optical and diffusion charging-based particulate matter sensors to urban air quality measurements. Aerosol Air
Qual. Res. 2019, 19, 1024–1039. [CrossRef]

33. Todea, A.M.; Beckmann, S.; Kaminski, H.; Bard, D.; Bau, S.; Clavaguera, S.; Dahmann, D.; Dozol, H.; Dziurowitz, N.; Elihn, K.;
et al. Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment. Sci. Total Environ.
2017, 605–606, 929–945. [CrossRef]

34. Wasisto, H.S.; Merzsch, S.; Waag, A.; Uhde, E.; Salthammer, T.; Peiner, E. Portable cantilever-based airborne nanoparticle detector.
Sens. Actuators B Chem. 2013, 187, 118–127. [CrossRef]

35. Wasisto, H.S.; Merzsch, S.; Uhde, E.; Waag, A.; Peiner, E. Handheld personal airborne nanoparticle detector based on microelec-
tromechanical silicon resonant cantilever. Microelectron. Eng. 2015, 145, 96–103. [CrossRef]

36. Litton, C.D.; Smith, K.R.; Edwards, R.; Allen, T. Combined optical and ionization measurement techniques for inexpensive
characterization of micrometer and submicrometer aerosols. Aerosol Sci. Technol. 2004, 38, 1054–1062. [CrossRef]

37. Edwards, R.; Smith, K.R.; Kirby, B.; Allen, T.; Litton, C.D.; Hering, S. An inexpensive dual-chamber particle monitor: Laboratory
characterization. J. Air Waste Manag. Assoc. 2006, 56, 789–799. [CrossRef]

38. Dahl, A.; Anders, G.; Mats, B. A Low Cost Nanoparticle Monitor for Screening Measurements in Indoor Environments. In
Proceedings of the 11th International Conference on Indoor Air Quality and Climate, Copenhagen, Denmark, 17–22 August 2008.

39. Yang, H.-H.; Dhital, N.B.; Wang, L.-C.; Hsieh, Y.-S.; Lee, K.-T.; Hsu, Y.-T.; Huang, S.-C. Chemical characterization of fine particulate
matter in gasoline and diesel vehicle exhaust. Aerosol Air Qual. Res. 2019, 19, 1439–1449. [CrossRef]

40. Marple, V.A.; Willeke, K. Impactor design. Atmos. Environ. 1976, 10, 891–896. [CrossRef]

http://doi.org/10.1080/15459624.2012.744253
http://www.ncbi.nlm.nih.gov/pubmed/23216200
http://doi.org/10.1093/annhyg/mes043
http://doi.org/10.4209/aaqr.2019.02.0066
http://doi.org/10.4209/aaqr.2015.10.0614
http://doi.org/10.4209/aaqr.2015.06.0413
http://doi.org/10.1016/j.impact.2017.11.003
http://doi.org/10.1016/j.scitotenv.2018.01.260
http://www.ncbi.nlm.nih.gov/pubmed/29426194
http://doi.org/10.4209/aaqr.2018.04.0143
http://doi.org/10.1016/j.scitotenv.2017.06.041
http://doi.org/10.1016/j.snb.2012.09.074
http://doi.org/10.1016/j.mee.2015.03.037
http://doi.org/10.1080/027868290883333
http://doi.org/10.1080/10473289.2006.10464491
http://doi.org/10.4209/aaqr.2019.04.0191
http://doi.org/10.1016/0004-6981(76)90144-X

	Introduction 
	Materials and Methods 
	Results 
	Output Signal Stability 
	Response to the Aerosol Concentration Change 
	Response to the Air Velocity Change 
	Response to the Relative Air Humidity Change 
	Response to the Air Temperature Change 
	Response to the Air Pressure Change 
	Ability to Detect Rapid Aerosol Concentration Changes 

	Discussion 
	Conclusions 
	References

