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Abstract: The smart healthcare devices connected with the internet of things (IoT) for medical
services can obtain physiological data of risk patients and communicate these data in real-time to
doctors and hospitals. These devices require power sources with a sufficient lifetime to supply
them energy, limiting the conventional electrochemical batteries. Additionally, these batteries may
contain toxic materials that damage the health of patients and environment. An alternative solution
to gradually substitute these electrochemical batteries is the development of triboelectric energy
harvesters (TEHs), which can convert the kinetic energy of ambient into electrical energy. Here,
we present the fabrication of a TEH formed by a stainless steel substrate (25 mm × 15 mm) coated
with a molybdenum disulfide (MoS2) film as top element and a polydimethylsiloxane (PDMS) film
deposited on indium tin oxide coated polyethylene terephthalate substrate (PET/ITO). This TEH
has a generated maximum voltage of 2.3 V and maximum output power of 112.55 µW using a load
resistance of 47 kΩ and a mechanical vibration to 59.7 Hz. The proposed TEH could be used to power
potential smart healthcare devices.

Keywords: triboelectric energy harvesting; internet of things; molybdenum disulfide (MoS2); poly-
dimethylsiloxane (PDMS); PET/ITO; smart healthcare device

1. Introduction

The smart healthcare devices connected to internet of things (IoT) can be used for
continuous monitoring of the health of patients [1–4]. These devices with IoT allow the
communication of several physiological data between patients and doctors [5–9]. Thus,
these devices can be employed for monitoring the health of risk patients and taking
immediately appropriate actions. The smart healthcare devices integrated with IoT could
enhance the quality of the medical services to patients. In addition, these devices may
be useful for healthcare in pandemic like COVID-19 [10–13]. Several smart healthcare
devices are applied in clothes, wrist watches, bands and electronic-skin [14–18]. Most
of these devices must contain materials with stretchable and wearable characteristics to
be adjusted to different parts of the human body. In addition, novel wearable devices
are demanding power between 1 and 100 µW in function of their size and electronic
components [19]. Generally, these devices are powered using conventional electrochemical
batteries that have a limited operation time and may contain some toxic materials [20].
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These toxic components can generate environmental contamination and health damage.
Thus, renewable power sources are necessary to power smart healthcare devices. For
this, energy harvesters are green energy sources that can convert the ambient energy into
electrical energy using transduction mechanisms such as thermoelectric, electromagnetic,
piezoelectric and triboelectric [21–24]. The energy harvesters can use diode rectifiers to
convert the alternating current (AC) in direct current (DC). In addition, these energy
harvesters may use capacitors to store the electrical energy.

The triboelectric energy harvesters (TEHs) have important advantages to be used in
smart healthcare devices, including flexible and wearable materials, simple design, low cost
and easy fabrication process. Commonly, TEHs can scavenge energy from low frequency
sources [25,26]. For instance, Zhang et al. [27] reported a porous micro-nickel foam (PMNF)-
based TEH to scavenge natural vibration energy. This TEH (50 mm × 50 mm size) provides
an open-circuit voltage and a short-circuit current of 187.8 V and 71.9 µA, respectively.
Furthermore, the maximum output power of this TEH is 3.7 W/m2 at a frequency of
13.9 Hz. On the other hand, Ahmed et al. [28] developed a flexible and stretchable self-
powered keyboard TEH based on urethane, silicone rubbers and carbon nanotubes (CNTs).
This keyboard TEH can generate up to 2.5 V and a maximum output power of 0.3 µW.
Zhang et al. [29] fabricated an expanded polytetrafluoroethylene (ePTFE)/Nylon-based
TEH, which has a working area of 1 cm2. This ePTFE/Nylon TEH exhibits a maximum
output power of 1.01 mW/cm2 at 10 Hz with a load resistance of 1 MΩ. Although of
the great features of these TEHs, some of them have not simple designs and fabrication
processes that can reduce their costs. Additionally, more investigations on TEHs using
novel materials are required to improve their performance and decrease the fabrication
costs [30,31]. Thus, future TEHs could be used in smart healthcare devices and wearable
sensors. In this research topic, we propose a TEH composed by a top film of stainless
steel/molybdenum disulfide (MoS2) and bottom film of polydimethylsiloxane (PDMS)
with substrate of tin-doped indium oxide (ITO) coated polyethylene terephthalate (PET).

2. Materials and Methods

The materials used in the fabrication process of a TEH were as follows: ethanol (solvent
99.9%) and isopropyl alcohol (solvent 99.9%) were purchased by J.T. Baker (Houston,
Texas, USA); and ITO/PET substrates, ammonium molybdate tetrahydrate (83%) and
sodium sulfide hydrate (60%) were acquired from Sigma-Aldrich Chemical Company
(St. Louis, MO, USA); PDMS (Sylgard 184) with a volume ratio of 10:1 was obtained from
Dow Corning (Campbell, CA, USA).

The synthesis of MoS2 was implemented using a modified method of Li et al. [32] and
posterior exfoliation with ultrasound. The first step for molybdenum disulfide synthesis
was adding ammonium molybdate (250 mg) and sodium sulfide (47.35 mg) in 25 mL
of water with a few drops to 0.1 M NaOH to pH 7. Then, the solution was mixed by
the magnetic stirring machine (30 min). After the mixed solution was put into a teflon-
lined stainless steel autoclave and left to react for 24 h at 180 ◦C, the product was then
washed three times with ethanol by centrifugation (25 min at 13,000 rpm) and dried at RT.
Subsequently, the molybdenum disulfide (2 gm) was added in isopropyl alcohol (100 mL)
and then placed for a sonication process for 3 h at 30 amplitude. In order to scatter the MoS2
from the isopropyl alcohol, the sample was left to rest for a day. Finally, the precipitate
(MoS2) was separated from the supernatant and then left to dry (RT). Finally, MoS2 (500 mg)
and isopropyl alcohol (5 mL) were mixed to obtain a MoS2 dispersion by ultrasound for
30 min. Subsequently, the solution was spin coated (1 min at 100 rpm) on the stainless steel
substrate and then dried at RT.

The fundamental operation of TEH consists of the vertical contact separation of
their layers, which is established by contact electrification and electrostatic induction.
Figure 1 shows a schematic of the TEH, wherein two active materials and two electrodes
are placed as a sandwich structure. The two active materials, MoS2 and PDMS are assigned
as the top and bottom active materials, respectively. Each active material has a thickness,
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defined as d1 for the MoS2 and d2 for the PDMS, and a separation distance (d3) between
them. In the origin position, the active materials has no generation nor induction of
electrical charge. When the MoS2 and PDMS films are in contact due to an external force,
electrons are transferred from the MoS2 surface to the PDMS surface. At the pressed state,
these electrons generate a positive charge in the surface of MoS2 and a negative charge
on the surface of PMDS. These charges are better known as triboelectric charges (σ). In
the short-circuit condition, an induced charge (σ’) is generated once the top and bottom
electrodes are connected, flowing a current among them. The induced positive and negative
charges are accumulated on the top and bottom electrodes, respectively. Thus, a positive
current is generated, and the original separation (d3) is changed to a small separation
(d’) during the releasing state. At the released state, the maximum value of the induced
charge (σm) is obtained once the original separation distance (d3) is reached. Pressing the
TEH again results in the reduction of d3, leaving the top electrode with a higher electrical
potential than that of the lower electrode. Thus, electrons start to move from the bottom
electrode to the top electrode, decreasing the number of induced charges and releasing a
negative current. When the MoS2 and PDMS come back in contact, all the induced charges
counteract each other.

Figure 1. Schematic view of the fundamental operation in short-circuit condition of the TEH based on stainless steel/MoS2

and PET/ITO/PDMS.

In the open circuit condition, the MoS2 surface is positively charged, and the PDMS
surface is negatively charged. Once the relative positions of the MoS2 and PDMS films are
altered, the electric potential difference is changed. Therefore, electrons move through the
electrodes while the maximum electrical output is obtained. Figure 2 depicts a schematic
view of the setup to measure the electrical response of the triboelectric energy harvester.

A large TEH area can increase the charges accumulated of its triboelectric layers,
improving the output power [33]. However, the design of our TEH area was limited due
to the working size of the spin coating machine. Thus, we used PET/ITO/PDMS and
stainless steel/MoS2 films with a rectangular area of 25 mm × 15 mm. This area size is
similar to that reported in other TEHs to harvest energy from human body motions [34–39].

The PET/ITO substrate was washed with ethanol three times using an ultrasonic
bath (5 min). The stainless steel substrate was cleaned with chloroform into the ultrasonic
washer for 5 min and 10 min. Later, two more times (5 min and 10 min) using ethanol.
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Finally, the substrates were dried using compressed air and carried out cleaning and drying
at 25 ◦C.

Figure 2. Schematic view of the experimental setup to measure the electrical response of the triboelectric energy harvester.

On the other hand, the PDMS film was obtained by mixing the PDMS (100 mg) and
curing agent (10 mg) in chloroform (3 mL). Later, PDMS (100 mg/mL) solution was mixed
using the ultrasonic machine (30 min). Then, the PDMS film was coated on the PET/ITO
substrate employing spin coating (1 min at 100 rpm) and heated in an oven for 1 h at 150 ◦C
to PDMS crosslinking. Figure 3 shows the preparation procedure steps of the bottom and
top films of the TEH.

Figure 3. Images of the preparation procedure steps for the top and bottom films of the TEH: (a) substrates cleaning;
(b) substrates drying; (c) samples weighing; (d) solution preparation; (e) magnetic stirring; (f) ultrasonic bathing; (g) spin
coating; (h) drying.

An electromagnetic shaker was constructed using a woofer coupled (CIQA, Saltillo,
Coahuila, Mexico) to a signal amplifier TPA3118 (Texas Instruments, Dallas, TX, USA). A
function generator (METEX model MXG-9810A) (METEX, Seoul, Korea) is employed to
obtain the vibration amplitude and frequency of the shaker. The two layers of proposed
TEH were mechanically excited using the shaker and its output voltage was measured using
an oscilloscope (KEYSIGHT technologies model DSO3102A) (KEYSIGHT Technologies,
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Santa Rosa, CA, USA). Figure 4 shows the electrodes of the bottom and upper layers of the
TEH connected to the oscilloscope.

Figure 4. Experimental setup to measure the output voltage of the triboelectric energy harvester: (a) shaker, TEH and
oscilloscope, (b) upper view of the TEH mounted on the shaker and (c) electrical connections of the TEH.

The X-ray diffraction (XRD) study of MoS2 material was performed on an Eco D8
Advance of Bruker. The data were recorded in the range of 3–90◦ 2θ, at a rate 0.01◦/min,
40 KV voltage and 25 mA of emission current. The MoS2 morphology was determined
by transmission electron microscopy (TEM) with the FEI Titan microscope at 300 KV, by
casting few drops of a dispersion of materials in isopropyl alcohol (0.1 mg/mL) on a Lacey
carbon grid. AFM morphological study was performed on a Dimension™3100 from Digital
Instruments with a Pt-coated Si tip with a 15 nm nominal radius model (OSCM-PT Bruker).
The images were obtained at a scanning rate (256 lines) of 1 Hz.

3. Results and Discussion

The XRD analysis of MoS2 shows the reflection at 2θ = 14.3, 29.03, 32.6, 33.51, 35.87,
39.54, 44.15, 49.79, 55.98, 58,34, 60.15, 70.14 and 72.79 corresponded to MoS2 crystalline
planes respectively: (002), (004), (100), (101), (102), (103), (006), (105), (106), (110), (008), (108)
and (203) (JCDPS 37-1492). This result demonstrated the total conversion of the precursors
(ammonium molybdate and sodium sulfide) into MoS2, without signals or other associated
reflections for impurities (Figure 5).

The morphological analysis was obtained by TEM (Figure 6), where we observed a few
transparent and exfoliated layers of MoS2 (indicated as dashed regions), coexisting with
stacked sheets (darkest regions). This indicate partial exfoliation for MoS2. The HRTEM
shows the lattice spacing of 0.62 ± 0.002 that corresponds to (002) facet of MoS2 (JCDPS
37-1492). Figure 7 shows the morphological analysis of PDMS film by tapping mode. The
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PDMS presents uniform morphology with root mean square roughness Rq = 0.775 nm and
roughness average Ra = 0.611 nm.

Figure 5. XRD result of MoS2 film of the triboelectric energy harvester.

Figure 6. Morphological analysis of molybdenum disulfide film: (a) TEM and (b) HRTEM of the MoS2 crystals.

Next, we connected to the TEH a load resistance of 47 kΩ to measure its output
voltage. For this, a mechanical vibration to 59.7 Hz was applied. Figure 8 depicts the
peak-peak output voltage of the TEH during 0.24 s. Based on this response, the maximum
output voltage of the TEH is close to 2.3 V. Thus, the maximum output power and power
density are 112.55 µW and 30 µW/cm2, respectively. This power overcomes the range from
1 to 100 µW that demands several smart healthcare devices reported in the literature [19].
However, future works must include more investigations about performance and reliability
of TEHs based on stainless steel/MoS2 and PET/ITO/PDMS.



Nanomaterials 2021, 11, 1533 7 of 10

Figure 7. Morphological characteristics tapping image of PDMS film.

Figure 8. Measurements of the output voltage of the triboelectric energy harvester using a load resistance of 47 kΩ and a
mechanical excitation at 59.7 Hz.

Table 1 depicts the main parameters of the performance of our TEH device in compar-
ison with other devices that include MoS2 films. These parameters consider the materials
films, contact area, test frequency, resistance, voltage and power density. Our TEH shows
good performance based on a simple and low-cost fabrication process.
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Table 1. Comparison of the main parameters of different TEH devices that contain MoS2 film.

TEH Structure
Materials

Contact Area
(cm2)

Frequency
(Hz)

Resistance
(Ω)

Voltage
(V)

Power Density
(µW/cm2) Ref.

PET/Al/PI
Glass/Al/PI/MoS2:PI/PI 3.75 5 5 × 106 120 2570 [40]

Cu/PVDF/MoS2-
cellulose

paper/PVDF/Cu
Cu/Polyimide

9 — 1 × 106 50 180 [41]

PET/PPy
PET/ITO/PDMS/PVDF-

ferroelectric/MoS2

1 10 10 × 106 -80 455 [42]

Al-MoS2-Glue/Paper
Al/Graphite-
Glue/Paper

9 3 3.2 × 106 3.82 7.44 × 10−2 [43]

ITO:PET/PVDF-
TrFE/MoS2

ITO:PET/Nylon11/MoS2

1 6.5 10 × 106 145 5 × 104 [44]

Steel-MoS2
PET/ITO/PDMS 3.75 59.7 47 × 103 2.3 30 Our work

Note: PI is polymide.

4. Conclusions

A TEH integrated by stainless steel/MoS2 and PET/ITO/PDMS films was presented.
This TEH was developed using a simple and low-cost fabrication process. XRD and
morphological analysis of the MoS2 film were implemented. In addition, morphological
characteristics of PDMS film was investigated using AFM. The electrical response of the
proposed energy harvester was measured applying a mechanical excitation to 59.7 Hz and
a load resistance of 47 kΩ. The maximum voltage and power density of the TEH were
2.3 V and 30 µW/cm2, respectively. This electrical performance of the energy harvester
could allow its potential application into smart healthcare device.
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