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Abstract: We assessed an effect of an embedded electro-conductive multiwalled carbon nanotube
nanopaper in an epoxy matrix on the release of the frozen actuation force and the actuation torque in
the carbon nanotube nanopaper/epoxy composite after heating above its glass transition temperature.
The presence of the nanopaper augmented the recovery of the actuation stress by the factor of two
in comparison with the pure epoxy strips. We proposed a procedure that allowed us to assess
this composite strengthening mechanism. The strengthening of the composite was attributed to
the interlocking of the carbon nanotubes with the epoxy. When reheated, the composite samples,
which contained stretched mutually intertwined nanotubes and epoxy segments, released a greater
actuation stress then the epoxy samples, which comprised of less elastic networks of crosslinked
segments of pure epoxy.

Keywords: carbon nanotube nanopaper; epoxy composite; Joule heating; glass transition; actua-
tion force

1. Introduction

A carbon nanotube (CNT) nanopaper, also called buckypaper, is an aggregate of
entangled carbon nanotubes (CNTs) produced by a filtering of a CNT suspension onto a
membrane support. After drying, the nanopaper is removed from the support, leaving a
free-standing electrically and thermally conductive structure. Properties of the nanopaper
can be tailored by a selective attachment of organic or inorganic moieties to CNT surfaces [1].
Such modified nanopapers can be used for monitoring of an extensional and compressive
deformation [2,3], vapor and gas adsorption [4,5], glucose level [6], liquid penetration [7,8]
or be used as photovoltaic electrodes [9], etc. Versatility of nanopapers can be extended
even further by embedding it into various materials. Such composites can be used as
motion sensors [10,11], electro- and thermo-mechanical actuators [12], antenna-based
gas sensors [13], adhesive films [14], thermoelectric devices [15], or built-in sensors for
monitoring of material structural health [16,17].

Recently, we have combined a multiwalled carbon nanotube nanopaper and an epoxy
resin into a reinforced thermosetting polymer matrix composite and demonstrated its
versatile use for the self-regulation of the epoxy curing temperatures as well as for the fast
and efficient debonding of objects glued by this MWCNT nanopaper/epoxy composite [18].
Further, our previous results have suggested a considerable shape memory potential of
these nanocomposites [18].

The shape memory in cured epoxies and their composites has been ascribed to an
interlocking of molecular segments of the epoxy and the embedded filler materials. When
such a composite is heated above its glass transition temperature Tg and subjected to
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an external load, bonding between its components rearrange to adapt to the external
load. Such an altered configuration is locked when the composite cools below its Tg,
yet, once the composite is re-heated above its Tg, the original shape is fully or partially
recovered [19]. The mechanisms affecting the shape memory in epoxy composites with
embedded carbon nanotube nanopaper have not been described as yet. In this paper, we
assessed how an electro-conductive multiwalled carbon nanotube nanopaper embedded
in an epoxy matrix modulated the release of the frozen actuation force and the actuation
torque from the carbon nanotube nanopaper/epoxy composite after its heating above its Tg.
We proposed a procedure, which allowed measuring of the strengthening of the composites
and analyzing of the electrothermal actuation controlled by Joule heating. By this method,
we determined that the presence of the electro-conductive multiwalled carbon nanotube
nanopaper increased the actuation stress and the actuation torque two-fold in comparison
with the pure epoxy.

2. Experimental
2.1. Materials

Purified MWCNTs were supplied by Sun Nanotech Co. Ltd., China. According to the
supplier, the nanotube diameter was 10–30 nm, the length 1–10 µm, the purity ~90% and
the volume resistivity 0.12 Ωcm. The diameter of individual nanotubes was between 10
and 60 nm. The length was from 0.2 µm up to 3 µm. The nanotube consisted of 15 to 35
rolled layers of graphene and the interlayer distance was ca. 0.35 nm [4,20].

The aqueous dispersion of MWCNTs containing 0.8 mg of nanotubes, 530 mL of
water with a surfactant system based on a solution of 15.4 g sodium dodecyl sulphate
as a surfactant agent and 8.5 mL of 1-pentanol as a co-surfactant agent was prepared by
sonication using the Dr Hielscher GmbH UP400St apparatus (ultrasonic horn S7, amplitude
88 µm, power density 300 W/cm2, frequency 24 kHz) for 15 min at 50% power of the
apparatus, 50% pulse mode at the temperature of about 50 ◦C. Subsequently, an aqueous
solution of NaOH was added to adjust pH to 10.

To make a MWCNT nanopaper from pristine nanotubes, the nanotubes were deposited
on a porous polyurethane electrospun non-woven membrane by a vacuum filtration.
Two hundred and fifty milliliters of the homogenized MWCNT dispersion was filtered
through a funnel of the diameter 90 mm. The resulting disk-shaped filtration cake was
washed in situ several times with deionized water (at 65 ◦C) and afterwards with methanol.
In turn, the filtering membrane was peeled off and the filtration cake was dried between
two filtration papers for 24 h at room temperature. The measured electrical conductivity of
the resulting MWCNT nanopaper was 11.97 S/cm. The thickness of the nanopaper was
around 300 µm.

The two-component epoxy resin Epox G 200 (Davex Chemical s.r.o., Prague, Czech Re-
public) was a transparent epoxy casting system with adjustable hardness and extended
processing time. The component A was an epoxy resin prepolymer (hydrogenated bisphe-
nol A polymer with epichlorohydrin [CAS: 30583-72-3]). The prepolymer was prepared
with a sufficient excess of epichlorohydrin, so the termination was by free oxirane rings,
which were capable of reacting chemically with amine groups. The component B (Trimethy-
lolpropane tris [poly(propylene glycol), amine terminated] ether [CAS: 39423-51-3]) was a
hardener or a curing agent containing three polymeric chains of poly(propylene glycol)
terminated by amine groups. Structural formulae of components are shown in Figure 1.

To prepare the electroconductive MWCNT nanopaper/epoxy composite strip (40 mm
× 20 mm), at first were two Cu strip electrodes glued at the opposite sides of the about
300 µm-thick nanopaper. Next, the porous nanopaper was laid on a polytetrafluorethylene
(PTFE) foil and its pores were filled up with ca. 0.2 mL of the above described epoxy resin
and curing agent at the A:B ratio 100:75. After filling, the nanopaper permeated by the
epoxy resin and curing agent mixture was covered with another PTFE foil and loaded
with a pressure of 300 kPa to avoid wrinkling in the course of curing by Joule heating at
temperature around 60 ◦C for 15 min. The measured electrical conductivity of the resulting
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MWCNT nanopaper/epoxy composite was 3.16 S/cm. The glass transition temperature of
the epoxy matrix with the embedded nanopaper, measured as the peak temperature by the
DSC, was 53.9 ◦C.
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Figure 1. Structural formula of the component A—hydrogenated bisphenol A polymer with
epichlorohydrin (left) and the component B—trimethylolpropane tris [poly(propylene glycol), amine
terminated] ether.

2.2. Methods of Measurements

The structure of the MWCNT nanopaper and the cross-section of the nanopaper/epoxy
composite were analyzed by the scanning electron microscope (SEM) Nova NanoSEM 450
(FEI Co., Lincoln, NE, USA). The surface temperature of the specimens was measured
by means of the thermal camera Flir E5-XT (FLIR Systems, Inc., Wilsonville, OR, USA),
which was able to create a detailed temperature pattern.

The sensor resistance was measured lengthwise by the two-point technique using
the fast-scanning data logger Multiplex datalogger 34980A (Keysight Technologies, Santa
Rosa, CA, USA), which stored the readouts once per second. The DC power supply AX 502
(AEMC Instruments, Dover, NH, USA) was used to power Joule heating of the composites.
Tensile tests were carried out using the Testometric M350-5CT system (The Testometric Co.
Ltd., Rochdale, UK).

Two different tests of a strengthening mechanism of electrothermal actuation were
done to assess the role of an embedded MWCNT nanopaper. In the first test, the stretched
MWCNT nanopaper/epoxy composite strips and the epoxy strips were heated above
their respective Tg, and then let to cool down at ambient temperature while subjected to a
given tensile strain. Afterwards, the stretched glassy strips were reheated to the rubbery
state while measuring an increase of the actuation force in the strips. The composite
strips were heated by Joule heating and the epoxy strips by warm air. In the former,
two electrodes were attached lengthwise to the opposite sides of the strip. These electrodes
were made of Cuprexit (a thin copper layer supported by a 0.22 mm thick fiberglass plate)
to which conductive wires were soldered. In the latter, a hot air blower Triac PID (Leister
Technologies AG, Sarnen, Switzerland) was used for heating. The distance of the blower
from the epoxy strip was about 30 cm and the temperature of the outgoing air was 200 ◦C.
In both cases, the temperature was measured in the center of the strip by a thermal camera
as well as times necessary for reaching of given temperature values.

The second test assessed a straightening of bent strips, which was induced by Joule
heating in the MWCNT nanopaper/epoxy composite samples or by warm air in the pure
epoxy. The composite and epoxy strip were warmed about 12 ◦C above their Tg, i.e., to
65 ◦C and 47 ◦C, respectively. At these temperatures, the samples went from being rigid
and glassy to being rubbery, flexible, and highly formable. When a bending force was
applied, the strips were easily bent by hand at right angles around a cylinder with a 5 mm
diameter. The altered shape held after the strips had cooled down to room temperature.
The bent strips were attached to a pad by a double-sided tape, heated again to 65 ◦C
and 47 ◦C, respectively, and fully or partially straightened. The straightening angle was
measured visually by a comparison with a scale.
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3. Results

The poly(propylene glycol) chains themselves are very movable, capable to rotate
around a single chemical bond. The chains contain oxygen, which has a relatively low
rotational barrier and therefore the conformation of the chains can change easily under,
e.g., an applied mechanical stress. The reaction of the two components A and B leads
to a formation of a three-dimensional polymer network of a final epoxy matrix. At the
A:B ratio 100:100, an excess of the component B causes that some poly(propylene glycol)
branches remain unbounded because of a lack of oxirane rings with a high molecular
mobility potential, and the epoxy is elastic. At the ratio 100:50, the proportion of functional
groups for crosslinking between components A and B is more equimolecular. The epoxy
contains less free unbounded poly(propylene glycol) branches, which results in a resistance
against conformation changes, stiffness and a higher Tg. According to the supplier, the
ratio of the epoxy components (A/B-hard/elastic) 100:50 yields a hard epoxy of hardness
79 Shore D, while the component ratio of 100:100 yields a flexible one (44 Shore A). The
glass transition temperatures Tg of the epoxy with component ratio 100:100, 100:75 and
100:50 were determined by the differential scanning calorimetry (DSC) analysis (DSC 1,
Perkin Elmer, Waltham, MA, USA) to be 18.4, 35.1 and 58.1 ◦C, respectively. The chosen
mixing epoxy component ratio of 100:75 enabled that once the experimental epoxy samples
were heated above their Tg of 35.1 ◦C, they were able to be formed manually. The curing
time of such experiments samples was 48 h at room temperature. The exothermic heat of
the curing was determined by the DSC analysis as −275 J/g and the peak temperature
140 ◦C at the heating rate 10 ◦C/min. The cured epoxy was elastic and flexible (without any
damage at bending over radius 70 mm), its ultimate tensile strain was 3.45% and hardness
66 Shore D.

A tensile test was carried out to determine the fracture tensile stress and the strain of
the MWCNT nanopaper/epoxy composite and the cured epoxy at the temperature 75 ◦C,
which was above their respective Tg temperatures. The composite elongated with strain up
to the fracture stress of 2.4 MPa at the strain 5.5% and the cured epoxy up to the fracture
stress of 0.95 MPa at the strain 7.5%. The strain dependency of stresses for the rubbery
MWCNT nanopaper/epoxy composite and the epoxy was linear and the Young’s moduli,
which are defined as E = σ/ε (where σ denotes tensile stress and ε axial strain) were 46 MPa
and 24 MPa, respectively.

Similar data taken for illustration from our paper [18] for the temperature of 25 ◦C,
which was below their respective Tg temperatures, are shown also in Figure 2. The MWCNT
nanopaper broke sharply at the fracture stress 1 MPa and the strain 0.75%. The glassy
cured epoxy experienced at first a strain hardening through a plastic deformation and then
a necking owing to the plastic deformation until the fracture stress of 13.5 MPa and the
strain 3.45%. On the other hand, the MWCNT nanopaper/epoxy composite cured by Joule
heating at 4.4 V and the terminal temperature of 61 ◦C strengthened until the fracture stress
of 24 MPa at the strain 2.9% as seen in Figure 2. The epoxy matrix increased the fracture
strain of the glassy MWCNT nanopaper/epoxy composite almost four times compared
to the MWCNT nanopaper. The Young’s modulus of the cured epoxy, the MWCNT
nanopaper/epoxy composite and the MWCNT nanopaper was 1.15 GPa, 1.15 GPa and
133 MPa, respectively.
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Figure 2. Left panel: tensile tests of the MWCNT nanopaper (squares), the glassy MWCNT nanopaper/epoxy composite
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Next, we assessed a strengthening mechanism of the electrothermal actuation in the
MWCNT nanopaper/epoxy composite. The extended MWCNT nanopaper/epoxy com-
posite and the epoxy strips were cooled down from 75 ◦C to the ambient temperature of
25 ◦C and then reheated to the rubbery state at 75 ◦C at the rate 2.7 ◦C/s and 3.3 ◦C/s
for the composite and the pure epoxy strips, respectively. When the strips were heated
again, the stress response in the pre-deformed strips initially began to decrease due to
the thermal expansion of the strips. Then, the actuation stress started to increase at the
Tg transition between the glassy and the rubbery strip state as the raising temperature
gradually released frozen arrangements of the epoxy crosslinked structure and concur-
rently longitudinally stretched and transversely compressed the nanotube structure of
the MWCNT nanopaper. The recovered stress in the rubbery composite strips between
the minimum and the maximum stress values plotted in Figure 3 was 1.5 and 0.88 MPa
after their initial deformation of 2.71 and 1.36%, respectively. The analogous stress in the
rubbery epoxy strips was 0.57 and 0.22 MPa after the initial deformation of 2.42 and 1.21%,
respectively. Since the Tg temperature of 35.1 ◦C was exceeded in about 3 s after the start of
heating, the stress in the epoxy strips regained rapidly. On the other hand, a stress recovery
in the composite strips proceeded slightly slower, since the Tg temperature of 53.9 ◦C was
not exceeded until 8 s after the start of heating. Obviously, the sooner the frozen actuation
stress was released, the shorter was the stress recovery time.
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The final actuation stress in the composite strips was two-times higher than the
actuation stress in the epoxy strips at the corresponding strain pre-deformation, which
corresponded to the ratio of their Young’s moduli as shown in Figure 4, since the stress
and the strain of the composite and pure epoxy samples after reheating had the same
values (Figure 3) as during the tensile tests (Figures 2 and 4). The embedded nanopaper
thus manifested as the reversibly elastically deformable element with a strong interlocking
into an epoxy matrix responsible for the increase of the actuation force in the MWCNT
nanopaper/epoxy composite.
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Figure 4. Comparison of the recovered stress after the reheating of the MWCNT nanopaper/epoxy
composite (red filled circles) and the epoxy (blue filled triangles) strips to the temperature of 75 ◦C
together with the results of the tensile test performed at the same conditions from Figure 3.

After an extension of the composite over the nanopaper ultimate strain 0.8%
(Figure 3), the embedded nanotube network could be partially disrupted, yet it still formed
a conductive structure capable of both Joule heating of the composite during the tests
of the reversible elastic deformation. Recently, we have observed partial cracks in the
glassy MWCNT nanopaper/epoxy composite sensor integrated into the glass fiber/epoxy
composite after its tensile straining of 0.94%, which was lower than the 2.9% fracture strain
of the composite (Figure 5) [7]. The cracks ran perpendicularly to the direction of the
extension. The resistance of such a cracked sensor was higher than of the intact one. This
indicated that even though such damage had interrupted the nanotube network locally by
a misconnection of the nanotubes, it did not fully disrupt the electrical conductivity of the
embedded nanotube network, since an entanglement of carbon nanotubes and electrical
conductance over the whole nanopaper remained.
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The structural integrity of the nanopaper was tested only in compression. In the course
of the compression, the nanopaper extended in the direction transverse to the direction
of the compression force. The deformation of a material transverse to the direction of
loading is called the Poisson effect. Its size is characterized by the Poisson’s ratio, which is
the ratio of the positive transverse strain to the negative axial strain ν= −εtransverse/εaxial.
The measured Poisson’s ratio ranged from 0.5 at a small compression to 0.29 at the final
compression by the stress of 4 MPa, which induced a compressive strain of around 50%.

A SEM analysis of the nanopaper surface after the compressive deformation indicated
that the integrity of the nanotube network was disrupted by randomly located cracks. These
local cracks ran transverse to the extension direction and they were partially bridged by the
remaining interconnected nanotubes (Figure 6). The view that cracks occur only locally is
proved by a measurement of nanopaper electrical conductivity during compression/release
cycles up to a maximum compressive stress of 8.7 MPa and a compressive strain of 55% [3].
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In the second shape recovery test, the return of the bent MWCNT nanopaper/epoxy
composite strip and the epoxy strip to their original straight shapes was assessed. After
heating above Tg, the straight strips were bent at a right angle, and once the samples cooled
to the room temperature, this shape was fixed.

When the bent strip was reheated by Joule heating with an electric current of different
actuating voltages, the frozen actuation stress in the embedded MWCNT nanopaper and the
epoxy matrix was released, which drove the bent strip to restore to some degree its original
straight shape. Depending on the final transformation temperature, the rearrangement
of the deformed networks of the embedded nanotubes and the crosslinking of epoxy
molecules was fully or partially restored to their arrangement before bending (Figure 7).
Such a shape change was enumerated as a straightening ratio Sr (%) = (αi − αf)/ αi ×
100, where αi denotes the initial bending angle (90◦) and αf the final bending angle. At
the final transformation temperature of 76.2 ◦C the straightening of the bent strip to the
straightened one (Sr = 100%) was achieved in about 43 s. At 47.1 ◦C, i.e., at the temperature
below Tg (53.6 ◦C), the final unbent angle 64◦ and the maximum Sr only 29% was achieved
in about 600 s. The corresponding straightening speed, which was defined as Sr

max/t,
where Sr

max denoted the maximum straightening ratio, was Sr
max/t = 100/43 = 2.3 at the

temperature of 76.2 ◦C and Sr
max/t = 29/621 = 0.05 at the temperature of 47.1 ◦C.
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The released nanotube structure and the crosslinked epoxy molecular network at
the temperature above Tg exerted a torque, which unbent the composite strip. Specifi-
cally, the strength of the unbending torque in the MWCNT nanopaper/epoxy composite
straightened the strips from the right-angled shape bent down (Figure 8). The torque was
varied by an addition of weights at the moving end of up to 4.5 g. Unlike the heating of
the composite without weights (Figure 7), where the heating and the unbending started
simultaneously, the MWCNT nanopaper/epoxy composite and the epoxy strips loaded
with the weights were first heated to temperatures about 12 ◦C above their Tg (i.e., to
65 ◦C and 47 ◦C, respectively), and then the strips were released to unbend. The strip
straightening ratio started with the full (i.e., 100%) straightening at the zero load and ended
with the incomplete straightening of 49% at the maximum load of 4.5 g (Figure 8). The
compressive deformation at the inner surface of the bent strip (the bend radius 5 mm) and
the tensile deformation at the outer surface of the strip (thickness about 400 µm) were,
according to the theory of simple beam bending, about 4%.

The straightening of the heated bent composite strips was compared to the straighten-
ing of the epoxy strips under comparable conditions, see Figure 9. The ability of the epoxy
strip to regain the straight shape was less than that of the MWCNT nanopaper/epoxy
composite strip. When the composite and epoxy strips were loaded with approximately
the same weights of 4.5 and 4.1 g, respectively, the composite strip was able to achieve
the straightening ratio of 49%, yet the epoxy strip merely achieved the straightening ratio
of 6%. Alike the stress recovery in the pre-deformed straight strips (Figure 3), the frozen
stress in the bent strips was released more rapidly in the epoxy strips than in the composite
strips. In the first tests, the underlying mechanism was chiefly a faster surpassing of Tg
in the epoxy strips (Tg = 35.1 ◦C) than in the composite strips (Tg = 53.9 ◦C), while in the
second tests, the underlying mechanism was mainly affected by the entanglement of the
epoxy segments and the carbon nanotubes of the porous nanopaper as discussed in the
following Section. The differences found in the times and straightening ratio values of the
strips with comparable loads suggested higher actuation torques for composite strips than
for epoxy strips. On the other hand, the straightening of the composite strips proceeded
more slowly than that of the epoxy strips.
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Figure 9. The time course of the straightening of the epoxy strips loaded with indicated weights
at 47 ◦C.

The embedded nanopaper substantially increased the glass transition temperature
Tg of the composite in comparison to the pure epoxy (53.9 ◦C and 35.1 ◦C, respectively).
The DSC analysis after the physical aging of the epoxy and the MWCNT nanopaper/epoxy
composite specimens suggested only one enthalpy relaxation peak, whose area represented
the amount of energy involved in the specimen transition from the glassy state to the
rubbery state. The physical aging was initiated by a change in the temperature of the
pure epoxy and the composite from equilibrium at approximately Tg + 20 ◦C for 20 min
to the annealing temperature Tg − 5 ◦C, which was reached by a cooling at the rate
10 ◦C/min. After the required period of aging ta the samples were reheated at the rate of
10 ◦C/min to Tg + 20 ◦C. The obtained DSC curves and the peak temperature plot shown
in Figures 10 and 11 indicated an increase in the magnitude of the endothermic peak to
higher temperature Tp as the aging time increased [21]. A shift in the peak temperatures of
the composite may be affected by the entanglement of the epoxy segments and the carbon
nanotubes of the porous nanopaper formed during the epoxy resin crosslinking. This issue
is discussed in detail in the following Section. On the other hand, the enthalpy loss during
the epoxy and composite physical ageing in the glassy state, as calculated by integrating
the area under the DSC curve corresponding to the aging time, was not altered by the
presence of the embedded nanopaper, see Figure 11.
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4. Discussion

We embedded an electro-conductive MWCNT nanopaper in an epoxy matrix, and
assessed its effect on the release of the frozen actuation force and the actuation torque
after heating of the composite above its Tg. At corresponding deformations, the recovered
actuation stress in the composite strips was almost two-times higher than the recovered
actuation stress in the pure epoxy strips, which corresponded to the ratio of their Young’s
moduli as shown in Figures 2 and 4. A more elastic composite, which requires a greater
stress to deform, indicates a strong interlocking of nanopaper into an epoxy matrix. In the
course of setting of a temporary shape of a rubbery epoxy strip, the segments between
chemical crosslinks adapt to the external stretching load and elongate [19]. It results in a
longitudinal orientation of most of the segments and a dislocation of crosslinked points [22].
Upon cooling and maintaining the deformed shape, secondary crosslinks are formed among
the orientated segments. These secondary crosslinks are the main principle of the fixation
of the molded shape [22]. After a reheating above Tg, the shape recovery is initiated by
detaching of the secondary crosslinks and releasing of the stored strain energy. After the
elongation and the subsequent locking of the shape of the MWCNT nanopaper/epoxy
composite strip by a cooling below Tg the embedded nanopaper was held in the stretched
state by the frozen epoxy. Apparently, the individual nanotubes of the extended nanopaper
network, which were intertwined with each other and with epoxy segments, were straight-
ened longitudinally and their mechanical bonds shifted. When the nanopaper elongated
longitudinally, it simultaneously compressed in the transverse direction. Successive cy-
cles of loading and unloading causing a compressive deformation up to about 55% of a
self-standing MWCNT nanopaper proved that the nanotube rearrangement is steady and
reversible [3]. Similarly, reversible properties of the MWCNT nanopaper in tensile tests
up to the tensile strain of 0.15% are presented in [23]. When the MWCNT nanopaper was
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subjected to compressive deformations, its integrity was compromised by local cracks as
shown in Figure 6. When the nanopaper was embedded in an epoxy matrix, the embedding
provided a support of the deformed nanopaper. Even at high nanopaper deformations, the
MWCNT nanopaper/epoxy composite did not disintegrate at temperatures both below
and above Tg and the nanotube network remained conductive, since it was still possible to
use Joule heating to heat the composite as shown in Figure 7. When compared to the pure
epoxy, the embedded nanopaper strengthened the frozen reversible actuation force in the
composite as shown by a comparison of the straightening ratios in Figures 8 and 9. Once the
composite heated over the Tg to the transformation temperature of the shape memory, the
epoxy matrix softened and the shape recovery stress in the embedded MWCNT nanopaper
was released by detaching of the secondary crosslinks and by releasing of the stored epoxy
strain energy of stretched segments within chemical crosslinks. At the same time, when
the frozen actuation force in the epoxy was released, the deformed nanopaper nanotubes
began to relax to their initial positions before deformation and thus the actuation force of
the composite increased when compared to the pure epoxy.

The dependence of the release of the reversible force in the composite on the release of
frozen polymer epoxy segments was confirmed by the measurement of different degrees of
release of the frozen force at different temperatures (Figure 7). An interconnected network
of polymer segments is constructed during the curing process of the epoxy and intensive
molecular interactions between chemical groups on the carbon nanotube surface, epoxy and
the curing agent may participate in the curing reaction, leading to the higher crosslinking
density. When the liquid compounds infiltrated into the porous structure of a nanopaper
with an average pore size of about 20 nm, the polymer segments intertwined with the
carbon nanotubes of the nanopaper, and thus were constrained in the nanoscale interspaces,
which restrained their mobility. This mechanical interconnection not only increased the
strength of the rubbery MWCNT nanopaper/epoxy composite as discussed above, but it
may also be the cause of a shift in the peak temperatures of the composite (Figure 10).
While the polymer cross-linked polymer network in the pure epoxy is not restricted in
its release during the glass/rubber transition, the constrained polymer network inside
the pores of the nanopaper needs a higher energy that has to be added in the form of
heat to release a frozen Brownian motion of the network segments [24]. Consequently, the
strengthening mechanism of the electrothermal actuation was thus also affected, and the
straightening of composite strips proceeded more slowly than that of the epoxy strips.

5. Conclusions

We proposed a measurement that allowed us to assess and analyze the strengthening
mechanism of the electrothermal actuation by Joule heating in a composite consisting of a
multiwalled carbon nanotube nanopaper embedded in an epoxy matrix. The measurement
was performed by reheating of the straight glassy composite and pure epoxy strips, which
held in the pre-stretched state by the frozen actuation stress, and by monitoring the release
of the actuation stress in the strip samples during the glass/rubber transition. We found
that the regained actuation stress in the composite strips was two-times higher than the
similar stress in the pure epoxy strips at corresponding pre-stretched levels. This was
because the more elastic structure of the stretched mutually intertwined epoxy segments
and nanotubes of the nanopaper released when reheated a greater actuation stress than the
less elastic stretched network of crosslinked segments of the pure epoxy.
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