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Abstract: In this paper, one spin-selected vortex metalens composed of silicon nanobricks is designed
and numerically investigated at the mid-infrared band, which can produce vortex beams with
different topological charges and achieve different spin lights simultaneously. Another type of
spin-independent vortex metalens is also designed, which can focus the vortex beams with the
same topological charge at the same position for different spin lights, respectively. Both of the two
vortex metalenses can achieve high-efficiency focusing for different spin lights. In addition, the
spin-to-orbital angular momentum conversion through the vortex metalens is also discussed in detail.
Our work facilitates the establishment of high-efficiency spin-related integrated devices, which is
significant for the development of vortex optics and spin optics.

Keywords: metasurfaces; vortex beam; vortex metalenses; topological charge

1. Introduction

Metasurfaces are made up of subwavelength scatterers and possess great potential for
developing ultrathin optics [1–8]. In addition, metasurfaces are two-dimensional planar
nanostructures and are more suitable for integration devices. Different from conventional
optical devices, metasurfaces can manipulate the amplitude, wavefront and polarization
state of light with extreme freedom. By altering the geometry size and orientation of
unit cells, metasurfaces can shape the wavefront of the scattered light to the desired form.
Metasurfaces demonstrate the strong wavefront control capabilities and can be used to
develop various optical devices, including beam deflectors [9,10], metalenses [11–16], holo-
grams [17–20], vortex generators [21–25], and absorbers [26,27]. Additionally, metasurfaces
have received considerable interest in the field of spin photonics. Spin-selective optical ma-
nipulation plays an important role in spin photonics, quantum optics and integrated optics.
Recently, spin-selective transmission [28,29], beam deflection [30,31], focusing [32,33] and
holograms [34] have been successively implemented with metasurfaces.

Optical vortices have been a burgeoning research area in the past few decades since
their discovery in 1992 [35]. Different from plane waves, vortex beams possess helical
phase fronts characterized by exp(ilϕ) and orbital angular momentum (OAM) of l}, where
l is the topological charge, ϕ is the azimuthal angle and } is the reduced Planck’s constant.
Compared to spin angular momentum (SAM) with two values of ±}. OAM can take on
an arbitrary value. Therefore, vortex beams are extensively used in optical communica-
tion [36,37], quantum systems [38] and particle trapping [39]. Benefiting from the ultrathin
and miniaturized nature of metasurfaces, a variety of vortex beam generators based on
metasurfaces have been designed and studied [40–43]. Nevertheless, most vortex beam
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generators only produce one specific topological charge. Moreover, most vortex beam gen-
erators always generate a propagating vortex beam rather than converged vortex beams,
which is also very important in many optical applications, such as manipulate microparti-
cles. The vortex metalens can produce the converged vortex beam with a focal plane, which
can be designed by integrating the functions of vortex generators and lenses into a single
metasurface. Generally speaking, vortex metalens based on the Pancharatnam−Berry (PB)
phase is a bipolar metalens, which only achieve one kind of spin light [44–47]. Through
multiplexing two opposite polarity vortex metalenses based on the PB phase, the focusing
vortex beam with arbitrary topological charge can be produced for two opposite spin
lights [44,48]. However, under left circularly polarized (LCP) or right circularly polarized
(RCP) light incidence, one part of the metasurface units work and produce the convergent
vortex beam; other metasurface units do not work or play the opposite role. Therefore, the
multiplexed vortex metalens has an inevitably high signal-to-noise ratio and low efficiency,
as the theory limit of highest efficiency is 50%. This limits the practical application of
spin-related vortex metalenses. In addition, as far as we know, there have been no reports
on high-efficiency spin-related vortex metalenses. Meanwhile, the spin-to-orbital angular
momentum conversion through the vortex metalens has rarely been discussed before. On
the other hand, compared to mid-infrared wavelengths, dielectric metasurfaces have been
extensively studied in visible and near-infrared wavelengths. However, the mid-infrared
band also has a lot of potential value, such as space communication, molecule exploration
and imaging.

In this paper, we propose two high-efficiency broadband spin-related vortex metal-
enses based on silicon nanobricks with high transmission efficiency, the design of which
is based on both propagation and geometric phases, whereby each unit plays a positive
role under LCP or RCP light incidence. Our designed spin-selected vortex metalens can
focus the vortex beams with different spin states to the same position at the wavelength of
4500 nm, respectively, and the vortex beams possess different topological charges. We also
designed one spin-independent vortex metalens, in which the vortex beams can possess
the same topological charge and the same focusing plane for different spin lights. The
broadband characteristic of a vortex metalens is also studied, and the work bandwidth
is measured at about 1500 nm (in the range of 4000 nm–5500 nm). At the same time,
the spin-to-orbital angular momentum conversion through the vortex metalens is also
discussed. These spin-related optical vortex metalenses are significant for communication
systems and spin-controlled photonics.

2. Theoretical Analysis and Design Methodologies

To design a high-efficiency spin-related optical vortex metalens without functional
crosstalk, the metasurfaces are composed of subwavelength Si nanobricks on a CaF2
substrate with a refractive index of 1.4. Si is a high-refractive index dielectric material in
the mid-infrared range, which possesses a phase modulation ranging from 0 to 2π. The
complex permittivity of Si is extracted from data from Pierce [49]. Figure 1a shows a Si
nanobrick with three independent geometry parameters of (L, W, θ) and a constant height
H. The rectangular Si nanobricks possess different effective refractive indices along the two
axes, which can produce independent phases for two orthogonal linear polarizations. The
transmittance of the Si nanobrick can be described using the Jones matrix as [50]:

T = R(−θ)

(
txxeiϕxx 0

0 tyyeiϕyy

)
R(θ) (1)

where R(θ) is the rotation matrix, txx and ϕxx are the X linearly polarized (XLP) transmission
coefficient and propagation phase, and tyy and ϕyy are the Y linearly polarized (YLP)
transmission coefficient and propagation phase, respectively. The relation between the
electric fields of the input and output light is Eout = TEin. Under the incidence of circularly
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polarized (CP) light, the nanobrick should be a half-wave plate for achieving the high
polarization conversion efficiency.

The cross-polarized transmitted phases can be deduced as ΦRL = ϕxx + 2θ and
ΦLR = ϕxx − 2θ, respectively. Here, the nanobrick can work in LCP and RCP incidences,
simultaneously. The selection of nanobricks can be expressed as

ϕxx =
1
2
[(ΦLR − 2n1π) + (ΦRL − 2n2π)] (2)

θ =
1
4
[(ΦRL − 2n2π)− (ΦLR − 2n1π)] (3)

where n1 and n2 are integers. Therefore, a single nanobrick can completely control polariza-
tion and phase by choosing the suitable structure parameters. The amplitudes and phase
shifts of the irrational nanobrick under the XLP and YLP incidences have been simulated
by the finite difference time domain (FDTD) method at the wavelength of 4500 nm, as
shown in Figure 1b–e. The period of the unit was set as 2100 nm, and the height of the
nanobrick was 4000 nm to ensure all possible propagation phase combinations from 0 to
2π. The total phases of the spin-related optical vortex metalens, which can focus both the
LCP and RCP light into vortex beams, can be described as follows:

Φlcp = 2π
λ

(√
x2 + y2 + f 2

l − fl

)
+ ll · a tan(y/x)

Φrcp = 2π
λ

(√
x2 + y2 + f 2

r − fr

)
+ lr · a tan(y/x)

(4)

where λ is the incident wavelength, fl and fr are the focal length corresponding to LCP
and RCP incidences, respectively, and ll and lr are the topological charge corresponding to
LCP and RCP incidences, respectively. According to Equations (2)–(4), the different phase
responses of the optics vortex metalens for LCP and RCP light can be manipulated inde-
pendently and simultaneously by changing the geometrical parameters of the nanobricks.
Furthermore, the optics vortex metalens possesses spin-selectivity and high efficiency.
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Figure 1. (a) Schematic of the Si nanobrick with the rotation angle θ. The transmittances (b,c) and the
propagation phases (d,e) under XLP (b,d) and YLP (c,e) incidences of the irrotational Si nanobricks
as a function of L and W.

3. Results and Discussion

The spin-selected vortex metalenses can simultaneously focus both LCP and RCP
light into converged cross-polarized vortex beams with different topological charges. The
designed parameters are λ = 4500 nm, fl = fr = 12 um, ll = 1, lr = 2, respectively. Firstly,
according to Equation (4), the phases ( Φlcp, Φrcp) at any position of the vortex metalens
under LCP and RCP incidences can be obtained. Secondly, the propagation phase ϕxx and
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rotation angle θ can be obtained, according to Equations (2) and (3). Lastly, according to
Figure 1b–e, the specific length and width (L,W) of the nanobrick can be easily selected.
The schematic diagram and top view of the designed spin-selected vortex metalens are
shown in Figure 2a,b, respectively.
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Figure 2. (a) Schematic of the spin-selected vortex metalens. (b) Top view of spin-selected vortex
metalens, and the designing concept and specific parameters’ selection of a unit cell.

Under the LCP incidence, Figure 3a shows the donut-shaped electric field intensity
distribution at the focal plane. Figure 3b shows the corresponding intensity distribution
in the x-z plane with two symmetrically distributed focal points, which illustrates the
vortex beam as being approximately focused in the preset position. Figure 3c shows the
phase distribution at the focal plane, which means that the topological charge is l = 1 for
the generated vortex beam. Under the RCP incidence, Figure 3d,e show the electric field
intensity distribution at the focal plane and x-z plane, respectively, and Figure 3f shows the
phase distribution at the focal plane, which demonstrates that the converged vortex beam
with l = 2 is generated at a nearly preset position. Therefore, the converged vortices with
different topological charges can be formed through our designed vortex metalens for the
LCP and RCP incidences, respectively. Different from multiplexed optical vortex metalens,
our designed vortex metalens can achieve a high efficiency of 70.3% and 68.4% under LCP
and RCP incidence, respectively.
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Light can transport angular momentum via two components, namely SAM and OAM;
the formation of the vortex beam is generally related to the interaction of SAM and OAM.
Generally, it is believed that the vortex generator based on the PB phase can produce spin-
dependent vortex beams, and that the interaction of SAM and OAM of light is symmetric
for two incidences with opposite spins. However, for our designed spin-selected optical
vortex metalens, the interaction of SAM and OAM of light is asymmetric for two incidences
with opposite spins. Under the LCP light incidence, the SAM of incident light is }, and
incident OAM is 0, while the SAM of output light is −}, and output OAM is }. Therefore,
the optical vortex metalens obtains the angular momentum of } based on the angular
momentum conservation. Under the RCP light incidence, the SAM of incident light is
−}, and incident OAM is 0, while the SAM of output light is }, and output OAM is 2}.
Therefore, the optical vortex metalens obtains the angular momentum of −4}. It should be
noted that if the designed vortex metalens is freestanding and tiny enough, it will rotate
under the incidences of both LCP and RCP light. In any case, the asymmetrical interaction
between the SAM and OAM will promote the development of multi-function devices.

The spin-independent vortex metalens was also designed and investigated, which
demonstrated that the cross-polarized vortex beams with the same topological charges
can be focused on the same positions for both LCP and RCP incidences. The designed
parameters are set as λ = 4500 nm, fl = fr = 9 um, ll = lr = 1, respectively. The schematic
diagram and top view of the designed spin-independent vortex metalens are shown in
Figure 4a,b, respectively. In addition, the design concept of the arbitrarily located nanobrick
is shown in detail in Figure 4b.

Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 9 
 

 

 
Figure 4. (a) Schematic of the spin-independent vortex metalens. (b) Top view of spin-independent 
vortex metalens, and the designing concept and specific parameters’ selection of a unit cell. 

Under LCP and RCP light incidence, Figure 5a,d show the donut-shaped electric field 
intensity distributions at the focal plane. Figure 5b,e show the corresponding intensity 
distributions in the x-z plane. Figure 5c,f show the phase distributions at the focal plane. 
As expected, the vortex beams with the topological charges l  = 1 are focused very well 
at the almost preset position, which is 8.5 μm behind the metalens. Under the LCP light 
incidence, incident SAM and OAM are   and 0, respectively. While output SAM is −
, output OAM is  . Under the RCP light incidence, the incident SAM is − , and incident 
OAM is 0, while output SAM is  , output OAM is  . The optical vortex metalens obtains 
the angular momentum of   and 3−   under the LCP and RCP light incidence, respec-
tively, and the focusing efficiency reaches up to 58.2% and 66% for LCP and RCP inci-
dences, respectively. Under the XLP light incidence, as shown in Figure 5g–i, there is the 
same focusing vortex beam as CP incidence. Therefore, the optics vortex metalens, which 
is designed based on the propagation phase and geometric phase, has high-efficiency po-
larization-independent properties for CP and LP incident lights. 

 

Figure 4. (a) Schematic of the spin-independent vortex metalens. (b) Top view of spin-independent
vortex metalens, and the designing concept and specific parameters’ selection of a unit cell.

Under LCP and RCP light incidence, Figure 5a,d show the donut-shaped electric field
intensity distributions at the focal plane. Figure 5b,e show the corresponding intensity
distributions in the x-z plane. Figure 5c,f show the phase distributions at the focal plane. As
expected, the vortex beams with the topological charges l = 1 are focused very well at the
almost preset position, which is 8.5 µm behind the metalens. Under the LCP light incidence,
incident SAM and OAM are } and 0, respectively. While output SAM is −}, output OAM
is }. Under the RCP light incidence, the incident SAM is −}, and incident OAM is 0,
while output SAM is }, output OAM is }. The optical vortex metalens obtains the angular
momentum of } and −3} under the LCP and RCP light incidence, respectively, and the
focusing efficiency reaches up to 58.2% and 66% for LCP and RCP incidences, respectively.
Under the XLP light incidence, as shown in Figure 5g–i, there is the same focusing vortex
beam as CP incidence. Therefore, the optics vortex metalens, which is designed based on
the propagation phase and geometric phase, has high-efficiency polarization-independent
properties for CP and LP incident lights.
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We also studied the multispectral characteristics of our designed spin-independent
vortex metalens. Under the LCP incidence with the wavelength of 5500 nm, the focal lengths
reduced quickly with the increase in wavelength, as shown in Figure 6b. Figure 6a,c show
the electric field intensity and phase distribution at the focal plane, respectively, which
demonstrate that the vortex beam with the topological charge of l = 1 is produced. Under
the RCP incidence with the wavelength of 4000 nm, Figure 6d,e show the electric field
intensity at the focal plane and x-z plane, and Figure 6f shows the phase distribution at
the focal plane, which means the converged vortex beam with l = 1 is produced at higher
position. The shift of the focal length originates from the chromatic aberration of the
lenses. Therefore, the vortex metalens exhibits excellent broadband characteristics in the
mid-infrared band of 4000 nm–5500 nm.
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door for future applications in spin optics and vortex optics, but may also have a profound 
impact on nanoparticle manipulation and quantum-information processing. 
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4. Conclusions

In summary, we have proposed an approach to design the broadband spin-related
vortex metalens that can generate a focusing vortex beam for different spin lights. We
have designed one spin-selected vortex metalens, which can focus the LCP and RCP vortex
beams with different topological charges to the same position, respectively. We have also
designed one spin-independent vortex metalens, which can focus the LCP, RCP and XLP
vortex beams with the same topological charge to the same position, respectively. Different
from the multiplexing of vortex metalens with a complicated design and high crosstalk,
our designed vortex metalenses possess high efficiency and good quality for both LCP and
RCP incident light. The interactions between SAM and OAM have also been investigated
and discussed in detail. Our proposed approach may not only open a new door for future
applications in spin optics and vortex optics, but may also have a profound impact on
nanoparticle manipulation and quantum-information processing.
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