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Abstract: An AlGaN/GaN heterostructure based hydrogen sensor was fabricated using a dual cata-
lyst layer with ZnO-nanoparticles (NPs) atop of Pd catalyst film. The ZnO-NPs were synthesized to
have an average diameter of ~10 nm and spin coated on the Pd catalyst layer. Unlike the conventional
catalytic reaction, the fabricated sensors exhibited room temperature operation without heating
owing to the photocatalytic reaction of the ZnO-NPs with ultraviolet illumination at 280 nm. A
sensing response of 25% was achieved for a hydrogen concentration of 4% at room temperature with
fast response and recovery times; a response time of 8 s and a recovery time of 11 s.
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1. Introduction

Hydrogen is presently being studied as an alternative energy source for eco-friendly
renewable energy generation instead of fossil fuels [1,2]. The successful utilization of
hydrogen requires highly sensitive and reliable safety sensors. For example, hydrogen
explosions occur at concentrations exceeding 4.65% [3–5]; therefore, the sensor must detect
low levels of hydrogen quickly and accurately.

Among various types of sensors, an FET-type sensor with a catalytic gate material
has been widely studied due to its compact size and low power consumption. A catalytic
reaction with a target gas changes the surface potential of FET, which in turn modulates
the FET current [5–7].

Gallium nitride (GaN) has a wide energy bandgap of 3.4 eV [8–13], which results in
a low intrinsic carrier density allowing GaN to maintain its semiconductor properties at
much temperatures higher than those possible with Si or GaAs. When an AlGaN/GaN
heterostructure is formed, a 2-dimensional electron gas (2DEG) channel is created with
high mobility at the interface [14–16]. Since the AlGaN thickness is generally of the order
of a few tens of nanometers, the channel current strongly depends on the surface potential
change, thus resulting in sensitive responses from the sensor. Therefore, an AlGaN/GaN
heterostructure would be a great candidate for the sensing platform.

Various catalysts have been investigated for use in hydrogen sensors, including metals
and metal oxides. Pt, Pd, and Ru are known to have high hydrogen solubility [17–26].
Metal oxides, such as ZnO, TiO2, SnO2, WO2, PdO, In2O3, and Fe2O3, have been studied
mostly as resistive sensors where adsorbed oxygen ions play an important role in the
reaction mechanism [27–40].

Since the typical catalytic reaction with hydrogen occurs at elevated temperatures [41],
the sensor module must be heated using a separate or integrated heater, which incurs extra
power and time for stabilization. In addition, thermal heating of the catalyst and sensor
platform degrades long-term reliability [42]. Therefore, there is a strong demand for a hy-
drogen sensor operating at room temperature without heating. A possible solution would
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be a photocatalytic reaction where the gas reaction with catalyst material is accelerated by
photoreaction. Indeed, it was reported that metal oxides reacted with hydrogen at room
temperature with exposure to ultraviolet (UV) light [43–47]. In this study, an AlGaN/GaN
FET sensor was fabricated using a dual catalyst layer with ZnO-nanoparticles (NPs) atop
of Pd catalyst film, which exhibited room temperature sensing capability of hydrogen with
UV illumination.

2. Experiment and Results

Figure 1 illustrates the synthesis process of ZnO-NPs. The precursor solution was
the hydrolysis of Zn(CH3COO)2·2H2O (Sigma-Aldrich, St. Louis, MO, USA) with KOH
(Samchun, Samchun, Seoul, South Korea, 95%) in methanol (Sigma-Aldrich, St. Louis, MO,
USA, 99.9%). ZnO-NPs formed after 2 h reaction were separated by centrifugation. A
detailed synthesis process and the characterization for the synthesized ZnO-NPs can be
found in ref [48].
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Figure 1. Synthesis process for ZnO-NPs.

The crystal structure of the ZnO-NPs was investigated using powder X-ray diffraction,
which is shown in Figure 2a. The crystal planes of the crystalline ZnO-NPs corresponding
to the observed diffraction peaks are indicated in the plot, confirming the successful
synthesis of ZnO-NPs. The internal and surface chemical bonding state of ZnO-NPs was
analyzed through X-ray photoelectron spectroscopy (XPS). Figure 2b represents the O
1 s spectrum of ZnO-NPs where three distinct binding energy peaks were observed at
529.6, 531.0, and 532.1 eV, which corresponded to the O atom in the Zn-O bonding (lattice
oxygen), oxygen sublattice imperfection (oxygen vacancy) and surface adsorbed O2

− of
ZnO-NPs, respectively [49–51]. This XPS result demonstrates the presence of the ionized
oxygen molecules at the ZnO-NP surface, which plays an important role in the catalytic
reaction under UV illumination. The absorption spectrum of ZnO-NPs as a function of
wavelength was also measured to estimate the optical bandgap of ZnO-NPs. Figure 3a,b
show the absorption spectrum and Tauc plot of the ZnO-NPs thin film from which the
optical bandgap was estimated to be 3.24 eV. The wide band gap of ZnO-NPs can selectively
absorb UV light that can remove the oxygen molecules adsorbed on the ZnO-NPs surface.
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Figure 3. (a) Absorption spectrum and (b) Tauc plot of ZnO-NPs thin film.

Figure 4a,b shows Transmission Electron Microscopy (TEM) and High-Resolution
TEM (HRTEM) images of ZnO-NPs, respectively. The size of ZnO-NPs was in the range of
5–10 nm. The lattice fringe spacings of 0.28 and 0.25 nm observed in HRTEM image are
related to (100) and (101) planes of the ZnO-NPs, respectively. Other crystalline planes
such as (102) and (110) were also confirmed from the Fast Fourier transform (FFT) pattern
shown in the inset of Figure 4b.
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The AlGaN/GaN epitaxial structure used for sensor fabrication comprised a 10 nm in
situ SiNx passivation layer, a 3.5 nm GaN layer, a 23 nm Al0.24Ga0.76N layer, and a 4.2 µm
GaN layer on a Si (111) substrate. After defining the ohmic contact region, the exposed
in-situ SiNx layer was etched using SF6-based inductively coupled plasma reactive ion
etching (ICP-RIE) and the underlying GaN and AlGaN layers were etched down to the
middle of the AlGaN layer using Cl2/BCl2-based ICP-RIE. A Ti/Al/Ni/Au metal stack
was evaporated as the ohmic contact metal and a rapid thermal annealing process was
carried out at 830 ◦C for 30 s in an N2 ambient. Then, device isolation was performed using
the same etching process used for the ohmic contact formation, with a larger etch depth
of 350 nm. The pad electrodes were formed using a Ti/Au metal stack. Then, the catalyst
area was defined by photolithography. In order to lower the standby current to achieve
high sensitivity [52], the catalyst area was also recessed using the same plasma etching
method used for the ohmic contact process. The final thickness of the AlGaN layer after
being etched was 10 nm. After evaporating a 30 nm Pd catalyst layer, the sensor surface
was passivated with a 100 nm SiNx film. The passivation film on the catalyst region and
pad contact area were etched using a SF6-based ICP-RIE. The synthesized ZnO-NPs were
spin coated on the Pd layer after being dispersed in chloroform/ethanol solution using an
ultrasonicator for 2 h. Finally, the sample was annealed at 120 ◦C for 1 h. The thicknesses
of the ZnO-NP layer was 170 nm. The fabricated sensor with the ZnO-NP/Pd dual catalyst
layer is illustrated in Figure 5, where the inset is the cross-sectional TEM image of the dual
catalyst layer.
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Figure 5. Cross-sectional schematic of AlGaN/GaN based hydrogen sensor with a dual catalyst layer.
The inset shows the cross-sectional TEM image of the dual catalyst layer of ZnO-NP/Pd.

Sensor characteristics were measured at room temperature with and without UV
illumination, where the UV light source was a 280 nm LED operated by a driving current
of 180 mA resulting in an optical power density of 1.82 W/cm2 at the catalyst surface. The
hydrogen concentration used for the tests was 4%.

The current–voltage characteristics without and with UV illumination at 280 nm are
compared in Figure 6a,b, respectively. While little changes were observed in the sensor
current under hydrogen injection without UV illumination, a significant increase was
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observed under hydrogen injection with UV illumination. The sensing mechanism is
illustrated in Figure 7. There are negatively ionized oxygen species (O2

−(ad)) adsorbed at
the ZnO surface in air, which have strong adhesive energy at room temperature, making it
difficult to react with hydrogen [44]. Therefore, the hydrogen sensing response at room
temperature is very low. With UV illumination, electron-hole pairs are generated in ZnO,
and holes react with O2

− (ad) to produce oxygen gas molecules. Additionally, the gas
molecules are ionized again by reacting with photogenerated electrons (O2

−(hν)). These
photoinduced ionized oxygen species have weak adhesive energy enabling hydrogen
reaction at room temperature [53]. Removing oxygen ion species from the surface acts as
a positive surface potential of the AlGaN/GaN FET sensor, which increases the sensor
current. Therefore, hydrogen sensing is possible at room temperature with UV illumination.
This effect is boosted in ZnO-NPs because of their large surface-to-volume ratios resulted
from the small size of ZnO-NPs. The increased standby current with UV illumination is
due to the removed O2

−(ad) from the surface.
The sensing response characteristics are defined by [54]:

Response [%] =

(
Igas − Iair

Iair

)
× 100, (1)

where Igas is the sensor current with 4% hydrogen injection, and Iair is the sensor current
without hydrogen injection. The extracted sensing response characteristics without and
with UV illumination are shown in Figure 6c,d, respectively. Remarkable enhancement
in the sensing response was observed with UV illumination. A response of ~25% was
observed at a bias voltage of 5 V.
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Figure 7. Schematic illustration of UV photocatalytic reaction of hydrogen with ZnO-NP.

The sensing repeatability and time transient characteristics were examined at room
temperature using a bias voltage of 5 V. Hydrogen gas with 4% concentration was injected
for 20 s and paused for the subsequent 40 s, and this process was repeated. As shown in
Figure 8a, stable operations with good repeatability characteristics are observed for both
the cases with and without UV illumination. The magnified time transient characteristics
are shown in Figure 8b, where the response and recovery times with UV illumination
are 8 s and 11 s, respectively, whereas those without UV illumination are 12 s and 18 s,
respectively. The response and recovery times were defined as the durations required for
the response current to reach 90% and 10% of the saturation current, respectively.
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The hydrogen concentration dependent response characteristics were also investigated
at room temperature with UV illumination during which the hydrogen concentration was
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varied from 0.1% to 4%. The hydrogen gas was injected for 20 s at each concentration and
the sensor was biased at 5 V. As shown in Figure 9, the sensing current exhibited strong
dependency on hydrogen concentration over the entire range; the current increases with
increasing hydrogen concentration.
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sensor at room temperature with UV illumination.

In Table 1, the sensor characteristics are compared with other hydrogen sensors
reported at room temperature. The hydrogen sensor fabricated in this work exhibited very
fast response and recovery characteristics with a wide detection range. It is suggested that
the sensing response can be further improved by employing a thinner AlGaN barrier layer
that can reduce the standby current (Iair in Equation (1)) level [55].

Table 1. Comparison of hydrogen sensor characteristics reported at room temperature.

Sensor Type Catalyst Catalyst Structure Hydrogen
Concentration

Response
Time

Recovery
Time

Sensor
Response Ref

Resistive Au/ZnO Nanoparticle 0.0005% 4 s 24 s 21.5% [44]
Resistive ZnO Nanoline 0.01% ~12 min ~20 min 19% [53]
Resistive Pd Nanowire 0.15% ~10 min ~10 min 9.1% [56]
Resistive Pt Nanoparticle/nanowire 0.2% - - 62% [57]
Resistive Pd Nanoparticle/nanofiber 0.1% ~6 s ~3 s 12.09% [58]
Resistive Pt/SnO2 Nanoparticle/nanoparticle 0.1% ~20 s ~80 s 10,500% [59]
Resistive ZnO Nanorod 0.05% ~15 min ~20 s 4.2% [60]
Resistive W18O4 Nanowire 0.0002% - - ~1% [61]
Resistive VO2 Nanobelts 0.014% ~840 s ~455 s ~1800% [62]
Resistive SnO2 Nanoparticle 0.1% 205 s 116 s 600% [63]
Resistive SnO2 Nanobelts 2% ~220 s ~220 s 50% [64]
Resistive Pd Nanoparticle/nanotube 1% 2 min 1.5 min 9.5% [65]

Diode
(AlGaAs MOS) Pd Thin film 1% 58 s - 155.9%

[66]
Diode

(AlGaAs
Schottky)

Pd Thin film 1% 400 s - ~5%

Diode
(GaN Schottky) Pt Thin film 1% 15 s 19 s 1 × 105% [67]

FET
(AlGaN/GaN) ZnO/Pd Nanoparticle/thin film 4% 8 s 11 s 25% This

work
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3. Conclusions

UV-assisted photocatalytic hydrogen sensing capability was demonstrated at room
temperature using an AlGaN/GaN based sensor with a dual catalyst layer of ZnO-NP/Pd.
A sensing response of 25% with a response time of 8 s and a recovery time of 11 s was
achieved for a hydrogen concentration of 4% at room temperature under 280 nm UV
illumination. The room temperature operation can thus eliminate the process of heating
that is generally required for hydrogen catalytic reactions using conventional materials.
Therefore, the proposed sensor has advantages of less power consumption and no need for
stabilization. To the best of our knowledge, this is the first demonstration of the operation
of a UV-assisted AlGaN/GaN hydrogen sensor at room temperature.
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