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Abstract: Large device variation is a fundamental challenge for resistive random access memory
(RRAM) array circuit. Improved device-to-device distributions of set and reset voltages in a SiNx

RRAM device is realized via arsenic ion (As+) implantation. Besides, the As+-implanted SiNx RRAM
device exhibits much tighter cycle-to-cycle distribution than the nonimplanted device. The As+-
implanted SiNx device further exhibits excellent performance, which shows high stability and a large
1.73 × 103 resistance window at 85 ◦C retention for 104 s, and a large 103 resistance window after 105

cycles of the pulsed endurance test. The current–voltage characteristics of high- and low-resistance
states were both analyzed as space-charge-limited conduction mechanism. From the simulated
defect distribution in the SiNx layer, a microscopic model was established, and the formation and
rupture of defect-conductive paths were proposed for the resistance switching behavior. Therefore,
the reason for such high device performance can be attributed to the sufficient defects created by As+

implantation that leads to low forming and operation power.

Keywords: SiNx RRAM; ion implantation; neuron mimicking device

1. Introduction

In the past few decades, resistive random access memory (RRAM) [1–26] has attracted
massive attention due to its simple process, high density, multilevel state, high operation
speed, and low power consumption [1–5]. The RRAM device has high potential to be im-
plemented for artificial intelligence (Al) and neuromorphic computing [6,7] in several kinds
of emerging memories. Resistance switching behaviors are highly related to the materials
of switching layer and electrodes. Numerous materials can serve as resistance switching
layers, such as AlOx [8], HfOx [9], GeOx [10,11], TiO2 [12], SiOx [13], and SiNx [14–16].
However, the resistance state is distributed randomly and difficult to control. Such a large
resistance distribution limits the vitally important memory array circuit size [17,18]. In
order to overcome this challenge, we pioneered the GeOx RRAM device, which performed
relatively improved distribution [10–12]. In addition, the all-non-metal SiNx RRAM device
was demonstrated, which reached reasonable distribution [15]. SiNx was chosen as a
switching layer due to its wide usage in integrated circuit as the passivation layer and
charge storage layer in NAND flash memory. However, previous SiNx works [14–16],
like other dielectric RRAM devices, did not exhibit good distribution for memory array
application [17,18]. Here we introduce a novel method to address this issue. It is important
to notice that high compliance current (Icc) and high forming voltage will damage the
dielectric layer and create unrecoverable defects, which will lead to poor retention time, de-
creased endurance cycles, and wide resistance distribution. Based on the discussion above,
we improved the RRAM device’s integrity by implanting arsenic (As) ions into the SiNx
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layer. The reason for choosing As ion (As+) for implantation is its heavy atomic mass to
create defects and a short stopping range within the switching layer. The As+ implantation
into SiNx cannot be used as a dopant, which is quite different from the As+ implantation
for the Si metal–oxide–semiconductor field-effect transistor. Besides, As is a semimetal;
however, its property becomes that of a semiconductor with a band gap of 1.2–1.4 eV if
amorphized [27], which is used for ion implantation in this case. As+-implanted RRAM
devices exhibited high stability of pulsed endurance and excellent 85 ◦C retention. In
addition, tight set and reset voltage (Vset and Vreset) distributions were achieved, which is
crucial for the application of a large-size cross-point memory array circuit [17,18].

2. Materials and Methods

A highly p-type doped P+ silicon wafer with a resistivity of 0.001–0.005 ohm-cm was
prepared and used as a bottom electrode. Through the standard RCA clean process, the
native oxide on the P+ silicon wafer was removed. Subsequently, a 35 nm thick SiNx was
deposited via plasma-enhanced chemical vapor deposition (PECVD) under a 300 ◦C tem-
perature, with a NH3, SiH4 (8% in Ar), and N2 gas flow of 6, 125, and 200 sccm, respectively.
Then, the As ions were implanted into a SiNx layer at a 10 keV energy and 1015 cm−2 dose.
Finally, a 50 nm Ni layer was deposited through an electron beam evaporator and used as
the top electrode. The ion implantation doping concentration and energy can influence the
number of created defects and the penetration depth of the As ions, respectively. The 35 nm
SiNx layer was chosen from the stopping and range of ions in matter (SRIM) simulation to
avoid As+ penetration into the bottom electrode at an implantation energy of 10 keV. This
energy value is the lowest energy available for a typical ion implantation equipment. An
ion implantation doping concentration of 5 × 1015 cm−2 is the highest available concen-
tration in a typical ion implantation equipment. The current–voltage (I–V) characteristics
were extracted by a semiconductor parameter analyzer (HP4155B) and a probe station.
Bias voltage was applied to the top electrode, and the bottom electrode was grounded.
AC endurance was obtained by a pulse generator (Agilent 81110A). The implanted As
atom profile and the created defect profile inside the SiNx layer were obtained from the
SRIM simulation. Figure S1a,b displays top and cross-sectional view images from scanning
electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. A
device dimension of 120 µm diameter was obtained, and a SiNx layer thickness of 35 nm
was measured.

3. Results

In Figure 1a, the forming process of the As+-implanted and normal nonimplanted SiNx
RRAM devices is displayed. Before the forming process in Figure 1a, the resistances of the
As+-implanted and nonimplanted SiNx RRAM devices were 3.45 × 109 and 37.5 × 109 ohm
at 1 V, respectively. Thus, the resistance of the nonimplanted device was 10.9 times
higher than that of the As+-implanted device before forming. During the forming process,
a relatively high voltage was applied to break the Si–N bonds and created the defect-
conductive path for electrons. The forming current and voltage were highly related to
device performance. In the forming process of the nonimplanted device, Icc was increased
from 100µA with a 100 µA increment. When Icc increased to 500 µA, the resistance state was
able to switch to LRS. In sharp contrast, the resistance state of the As+-implanted device can
be switched to LRS even at a low 100µA. The forming voltage of the As+-implanted RRAM
device was 7.1 V under 100 µA Icc. In contrast, the nonimplanted SiNx device needed a high
500 µA Icc current and 11 V applied voltage to achieve the forming process. Thus, the As+-
implanted SiNx device exhibited a significantly lower initial power than the nonimplanted
devices, which was due to a large number of defects created by ion implantation for
current conduction. Such low forming power will decrease the nonrecoverable defects,
which is important for device switching performance. A negative voltage applied to the
top electrode causes a slightly higher forming voltage and is unfavorable for low power
operation. Figure S2 shows the device-to-device distribution of the forming voltage. The
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mean value (µ) of the As+-implanted and nonimplanted devices are 7.03 and 10.96 V,
respectively. Besides, the standard deviation (σ) is largely improved by As+ implantation.
After the forming process, the reset and set processes were executed to switch the resistance
states of the RRAM devices. The higher high- and low-resistance-state (HRS and LRS)
currents of the nonimplanted RRAM device, after the forming process, resulted from the
excessive defects created by the high forming voltage and current. Figure 1b displays the
set and reset characteristics of the As+-implanted and normal SiNx RRAM devices. The
RRAM device implanted with As ions exhibited a lower reset current and voltage than the
nonimplanted device. Such lower reset power in combination with low forming power
can decrease the unrecoverable damage to the switching layer during the device set–reset
operation. On the other hand, the nonimplanted SiNx device shows higher HRS and LRS
currents, which are related to excess electric-field-induced defects from the high forming
voltage and high Icc. The high defects not only increase the off-state HRS leakage current,
but also increase both the voltage and current to switch the LRS back to HRS. Such high
HRS and LRS currents will decrease the on-state/off-state resistance window, which is
crucial for high-memory-density multiple-state memory array.
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Figure 1. The I–V characteristics at (a) the forming process and (b) the set–reset process of the As+-implanted and
nonimplanted SiNx RRAM devices.

Figure 2a,b shows the 85 ◦C retention and pulsed endurance characteristics, respec-
tively, which are the crucial performance indexes for RRAM devices. For retention mea-
surements, the device was switched to LRS, and the read voltage was applied at 1, 10,
100, 1000 and 10,000 s to record the LRS current. The same methodology was applied to
measure the HRS current. The on-state/off-state resistance window of the As+-implanted
device showed a slight decrease from 1.96 × 103 to 1.73 × 103 after a 104 s retention test at
85 ◦C. In sharp contrast, the normal SiNx RRAM device showed severe degradation, which
decreased from 3.95 × 102 to 45 after 104 s retention at 85 ◦C. To switch the resistance state
properly during the endurance test, pulse voltages of +6 and −6 V with a 2 µs width were
applied for both devices. For the pulsed cycling test, the resistance window of normal SiNx
RRAM devices was decreased rapidly from 1.4 × 102 to 17 after a 104 cycle operation. For
comparison, the As+-implanted SiNx RRAM device exhibited an excellent 103 resistance
window, even after 105 endurance cycles. The poor retention and endurance data of the
normal SiNx RRAM device can be attributed to high reset current and high forming voltage.
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Figure 2. The (a) 85 ◦C retention and (b) pulsed endurance characteristics of the As+-implanted and nonimplanted SiNx

RRAM devices.

In Figure 3a,b, we analyzed the device-to-device and cycle-to-cycle Vset–Vreset distri-
butions of the As+-implanted and nonimplanted SiNx RRAM devices. The coefficient of
variation (CV) was used to evaluate the distribution, which was defined as the σ divided by
µ (CV = σ/|µ| × 100%). For the RRAM devices, lower CV values of device-to-device and
cycle-to-cycle result in better uniformity and stability, respectively. The operation voltages
of the device-to-device distribution were obtained from the average of the first 10 cycles
of the 25 devices. The Vset and Vreset CV values of the nonimplanted SiNx RRAM devices
were 17% and 19.8%, respectively. On the other hand, the As+-implanted device showed
better uniformity with 10.7% and 9.8% Vset and Vreset CV values. For the cycle-to-cycle
measurements, a voltage sweep rate of 0.5 V/s was used. For the As+-implanted device,
the Vset and Vreset were ramped at 0~4 and 0~−2 V, respectively. The Vset and Vreset of the
nonimplanted device were ramped at 0~5 and 0~−3 V, respectively. For the cycle-to-cycle
distribution, the As+-implanted device also exhibited excellent Vset and Vreset CV values of
only 2.2% and 3.8%. In sharp contrast, the normal SiNx device exhibited Vset and Vreset CV
values of 8.3% and 7.6% cycle-to-cycle distribution. Figure S3a,b exhibits the cycle-to-cycle
and device-to-device distributions of the set–reset resistances (Rset–Rreset), respectively. The
As+-implanted RRAM exhibited significantly tighter distribution of Rset and Rreset than
those of the nonimplanted case. In Table 1, we summarize the SiNx RRAM device distri-
bution data [15,16]. The As+-implanted SiNx RRAM device in this work exhibited good
device-to-device (D2D) uniformity and excellent cycle-to-cycle (C2C) reliability, which is
crucial for memory array circuit and neuron mimicking applications.
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RRAM devices.
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Table 1. The operation distribution performances of various SiNx RRAM devices.

Reference Switching Layer Materials Thickness (nm) CVs of Vset and
Vreset (D2D)

CVs of Vset and
Vreset (C2C)

15 PECVD-SiNx 25 18.3%/23.2% 14%/21.4%
15 PVD-SiNx 25 10.7%/12.1% 11.3%/11.4%
16 PECVD-SiNx 7.5 29%/17.77% –
16 LPCVD-SiNx 7.5 16%/7.59% –

This work As+-implanted
PECVD-SiNx

35 10.7%/9.8% 2.2%/3.8%

To understand the conduction behavior of the As+-implanted RRAM devices, the
SRIM simulation was performed to calculate the As atom distribution and created defect
distribution. The SRIM simulation only allows a maximum of 106 cm−2 dose in the
simulation owing to the required large computing resource. As shown in Figure 4a, the
peak of As atom concentration was centered at 16.7 nm from the SiNx surface and decreased
to negligible from 16.7 to 35 nm. The 35 nm SiNx layer was chosen from the SRIM simulation
to avoid the As+ penetration into the bottom electrode at an implantation energy of 10 keV.
This energy value is the lowest energy available for a typical ion implantation equipment.
It is important to notice that the implanted As ions will break massive numbers of the Si–N
bonds and create defects at the same time. This is why the created defect profile shown in
Figure 4b is similar to the As atom profile in Figure 4a. Consequently, the As+-implanted
RRAM created more defects within the SiNx layer than the nonimplanted device.
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Figure 4. The simulation results of the (a) As atoms and (b) 3D defect distribution of the As+-implanted SiNx layer with a
thickness of 35 nm.

To investigate the electron transport mechanism, the I–V curves of the As+-implanted
and normal SiNx RRAM devices were analyzed. Here, various defect-related conduction
mechanisms were fitted. However, some of the fitting results were against physical princi-
ples, such as unreasonable dielectric constant and hopping distance, which were observed
in the Poole–Frenkel (P–F) emission [20,21] and hopping conduction [22,23,28] mechanisms,
respectively. As depicted in Figure 5a, the HRS and LRS currents of the As+-implanted
SiNx RRAM devices were fitted well with space-charge-limited conduction (SCLC) [23–26],
which can be divided into three regions corresponding to the slopes of 1, 2, and >2. When
the slope equals 1 (J ∝ V), the curves follow Ohm’s law, which is expressed as [29]:

J =
qn0µV

d
, (1)
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where n0, µ, and d are the free carrier density, electron mobility, and dielectric thickness,
respectively. In the low-field region (region I), the current is dominated by free carri-
ers. After the applied voltage was higher than the transition voltage (Vtr) and lower
than the trap-filled limit voltage (VTFL), the curve was fitted to slope = 2 (J ∝ V2) and
expressed as [15,29]:

J =
9µεθV2

8d3 , (2)

where ε and θ are the static dielectric constant and the ratio of the free carrier density
to all carrier density. In region II, the free carrier density will increase along with the
increasing applied voltage and contributes to the trap-filled limit current. Once all the
traps are filled (V > VTFL), the current will increase rapidly, which is the trap-free current
corresponding to a slope higher than 2 (region III). The HRS and LRS of the nonimplanted
device exhibited SCLC and ohmic behavior, respectively, as depicted in Figure 5b. Note
that if the Ni electrode plays a role in conduction, the self-rectifying phenomenon would
be observed. However, there is no obvious self-rectifying behavior in the measured data.
Thus, the formation and rupture of the conducting path are dominated by the defects in
the SiNx layer.
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Figure 5. The analyzed I–V curves of the (a) As+-implanted and (b) nonimplanted SiNx RRAM devices.

The measured I–V curves of the As+-implanted and nonimplanted devices, before
the forming process, were analyzed in Figure S4a,b, respectively. It can be observed
that the As+-implanted RRAM device exhibited the same SCLC conduction mechanism
before and after the forming process. On the other hand, the conduction mechanisms of
the nonimplanted SiNx RRAM device before forming is the hopping conduction, which
changes to SCLC after the forming process. This is due to a massive number of the defects
created by the high forming power.

According to the measured data and the simulation results, the potential microscopic
conduction schematic diagram can be constructed as displayed in Figure 6. In the as-
fabricated step, the As+-implanted SiNx RRAM device shows extra defects created by ion
implantation, which corresponds to the measured higher initial state current as depicted
in Figure 1a. In addition, the distribution of implant-induced defects in Figure 6a was
constructed according to the simulation results shown in Figure 4b. Before the forming step,
the nonimplanted device exhibits lower current than the As+-implanted device, as shown
by a smaller number of as-fabricated defects in Figure 6b. After applying a high forming
voltage and a high Icc, a massive number of defects were induced randomly for current
conduction by the high electric field in the nonimplanted SiNx RRAM device (Figure 6d).
In contrast, a relatively low voltage and current were needed to induce sufficient defects
to form the current conductive path in the As+-implanted SiNx device. From the SRIM
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simulation results shown in Figure 4b, the As+-implantation-induced defects follow a
Gaussian distribution in the SiNx layer. The defects in the tail of the Gaussian profile is too
low to form a conduction pass. After the set process, extra defects will be formed in the
tail region of the Gaussian profile. The current tends to flow via the lowest resistance and
through those electric-field-created defects near the bottom of the SiNx layer, the green-
dash square region, as depicted in Figure 6c. After the set process, the resistance states
were switched from HRS to LRS. Since both the As+-implanted and normal SiNx RRAM
devices exhibited typical bipolar switching characteristics [19], the negative voltage bias
was required. In Figure 1b, the measured current of the As+-implanted device decreases
rapidly when the reset voltage is close to −1.5 V, representing that the conducting path was
ruptured as depicted by the red-dash square region in Figure 6e. Figure 6f shows the HRS
case of the nonimplanted SiNx RRAM device. The conducting filament should be dissolved
after reset. However, the measured high HRS current in Figure 1b indicates that the
conducting filaments were not completely dissolved, resulting in the high leakage current.
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Figure 6. The schematic diagram of defect distribution and potential resistance switching characteris-
tics in As+-implanted and nonimplanted SiNx RRAM devices. (a), (c) and (e) are the As-fabricated
state, LRS and HRS of the As+-implanted SiNx RRAM. (b), (d) and (f) are the As-fabricated state,
LRS and HRS of the nonimplanted SiNx RRAM. Thinner conducting path lines in (f) because it is
only leakage current.

4. Conclusions

In this work, we compared the SiNx RRAM device with As+ implantation with the
nonimplanted device. By applying As+ implantation, the uniformity and reliability of
the SiNx RRAM device can be improved significantly. The 85 ◦C retention and pulsed
endurance tests also exhibited excellent stability. Such high-performance, tight-operation-
voltage-distribution, and CMOS-compatible RRAM devices have high potential for memory
array circuit and future neuromorphic computing applications.
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