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Abstract: Biological materials have attracted a lot of attention due to their simultaneous superior
stiffness and toughness, which are conventionally attributed to their staggered structure (also known
as brick and mortar) at the most elementary nanoscale level and self-similar hierarchy at the overall
level. Numerous theoretical, numerical, and experimental studies have been conducted to determine
the mechanism behind the load-bearing capacity of the staggered structure, while few studies focus
on whether the staggered structure is globally optimal in the entire design space at the nanoscale level.
Here, from the view of structural optimization, we develop a novel long short-term memory (LSTM)
based iterative strategy for optimal design to demonstrate the simultaneous best stiffness and toughness
of the staggered structure. Our strategy is capable of both rapid discovery and high accuracy based
on less than 10% of the entire design space. Besides, our strategy could obtain and maintain all of the
best sample configurations during iterations, which can hardly be done by the convolutional neural
network (CNN)-based optimal strategy. Moreover, we discuss the possible future material design based
on the failure point of the staggered structure. The LSTM-based optimal design strategy is general
and universal, and it may be employed in many other mechanical and material design fields with the
premise of conservation of mass and multiple optimal sample configurations.

Keywords: staggered structure; simultaneous superior stiffness and toughness; optimal design; long
short-term memory

1. Introduction

In the material design field, it is hard to pursue high stiffness and high toughness
simultaneously due to their mutual exclusiveness [1,2]. However, biological materials
like nacre, bone, and tendon have provided us very good alternatives for obtaining both
high stiffness and high toughness, which are the multiscale and staggered stiff mineral
platelets with self-similar hierarchy embedded in the soft protein matrix at the most
fundamental nanoscale level [3]. Bio-inspired composite material designs and fabrications
have sprung up, such as bulk artificial nacre with bottom-up strategy [4], nacre-like alumina
with rapid pressureless infiltration of the stiff Zr-based bulk metallic glass (BMG) [5],
nacre-inspired structures with electrically assisted three-dimensional (3D) printing [6],
and bio-inspired laminated transparent glass with a 3D synthetic technology [7]. All
of the experimental attempts have validated the superior mechanical properties of the
staggered structure. Besides, under the default assumption that the staggered structure
is globally optimal in the aspect of simultaneous superior stiffness and toughness, many
rigorous theoretical analyses have been conducted to interpret its unique tension–shear
chain deformation behavior and mechanism [8–13], which can basically be described as
mineral platelets under tension and protein matrix under shear. However, few studies
have mentioned the fundamental baseline question of whether the staggered structure
is globally optimal in the aspect of simultaneous superior stiffness and toughness at the
nanoscale level. Guo et al. [14] proposed a genetic algorithm (GA)-based optimization
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framework to reproduce the staggered structure with simultaneously optimized stiffness
and toughness, while GA is sensitive to the selection of the initial population.

Though the concept of “machine learning” (ML) was first proposed by Arthur Lee
Samuel (a pioneer at IBM) in the 1950s [15], this field has not become widely popular until
recently, which is mainly attributed to three reasons: matured theories, abundant data, and
powerful computational capabilities. With the rapid development, ML can be applied to
not only almost everywhere in our daily life, but also mechanical fields where the physical
logic is clear but currently cannot be expressed in an analytical way [16–19]. Moreover, in
mechanical fields, an exquisitely designed ML model can replace the ambiguous physical
logic as an evaluation function for optimal design. For example, in the case of searching for
the optimal design (high toughness and strength) of a two-dimensional (2D) composite
structure with a pre-crack and composition of hard and soft blocks, Grace et al. [20,21]
utilized the weights from the linear regression ML model to determine a better unit cell
configuration at first and used the distributions of three kinds of unit cells among the
top 100 samples from the previous training data to further train a better ML model and
then to iteratively obtain the distributions in new top 100 samples. This optimal strategy
performed well in the scenario with only one optimal distribution pattern, where soft
blocks always tend to stick around the crack tip to resist the crack propagation. However,
what if the problem cannot be described by linear regression model or the design space
has several distribution patterns to achieve optimality? Diab et al. [22] extended the
above work by implementing the GA to conduct the optimization. However, during the
optimization, the crossover and mutation process changed the material ratio, so a fixed
volume fraction of soft (hard) blocks could not be maintained, which led to their system not
being mass-conserved and results being unconvincing. In another scenario of optimizing
2D graphene kirigami configuration for the maximum failure strain, Paul et al. [23] used
a CNN model from the last iteration to loop over the whole design space to search for
the CNN-predicted top 100 samples and then added them to the input dataset to further
train a more accurate model. Because of symmetry, there should be at least two sample
configurations to achieve optimum at the same time. However, their CNN-based optimal
strategy could obtain only one of the best sample configurations, while the other one was
not even in the top 5, which leaves us with the question of whether we could design an
optimum strategy to obtain all of the best sample configurations at the same time.

Fortunately, the recurrent neural network (RNN) [24] provides an alternative. Compared
with CNN, which is favored in computer vision, RNN is specialized in dealing with time
sequences like natural language processing. By analyzing the above-mentioned optimal
design problems in mechanical fields, one can see that what we care more about is the specific
property, which is equivalent to the property under fixed mass (hard-to-soft material ratio).
Then, the entire design space in mechanical fields actually can be transformed into a sequence
with fixed numbers or letters, which can represent different distributions and different specific
properties with the same material ratio. Compared with CNN, it seems that RNN may be a
better tool to solve the optimal design problem under fixed mass.

In this work, in order to investigate the most fundamental baseline question of whether
the staggered structure possesses simultaneous optimal stiffness and toughness at the most
elementary nanoscale level, we propose a novel long short-term memory (LSTM)-based
optimal strategy. LSTM [25] is one kind of RNN with both feedforward and feedback
connections, which enables the applications to time-related data sequences. Figure 1a
shows the flow chart of the proposed LSTM-based optimal strategy. We first randomly
generate 100 samples and calculate their objectives by finite element method (FEM) as the
ground truth, and then use them to train a rough ML model, which is used next as the
evaluation function to predict the objectives of all possibilities in the entire design space.
Note that the chosen sample number for each iteration (i.e., 100) is consistent with previous
work [14,21,23]. Then, we can obtain ML-predicted top 100 samples, the ground truth
objectives of which are recalculated by FEM. After that, the ML-predicted top 100 samples
with the FEM-calculated objectives are added to the input dataset to update the weights of
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the rough ML model so as to obtain an improved ML model. These iterations come to an
end when the ML-predicted best sample configurations converge to the FEM-calculated
best sample configurations. Figure 1b illustrates the method of sample generation. Our
calculation domain is composed of two kinds of materials (hard and soft), and there are two
sample configurations with globally optimal objective (see Equation (3) for the objective).
The FEM-calculated top four sample configurations and their corresponding data matrixes
are presented. Similar to the fixed hard-to-soft material ratio for all the possible sample
configurations in the entire design space, the proportion of “1” and “0” in any data matrix
is the same, and only the order matters. Figure 1c shows the architecture of the ML model.
The RNN with two LSTM layers for feature learning and one LSTM layer for regression is
adopted as the ML model. Details of FEM calculation and ML model are given in Section 2.
Our LSTM-based optimal strategy can provide an elegant way to solve the aforementioned
optimal design with multiple optimal distribution patterns.
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Figure 1. System schematic of the LSTM-based optimal strategy. (a) Flow chart. (b) Sample generation. The sample is
composed of two kinds of materials with different linear elastic mechanical properties: hard material colored by purple
(Eh = 10.0 GPa, εf

h = 0.05) and soft material colored by yellow (Es = 0.1 GPa, εf
s = 1.5). The presented samples are the

FEM-calculated top 4 sample configurations, which belong to the calculation domain discretized into 15 blocks and the
material ratio of hard to soft fixed as 8/15. With blocks occupied by hard material and soft material expressed as 1 and
0 respectively, a data matrix composed of 0 and 1 can be adopted to represent each sample. (c) The construction of long
short-term memory based machine learning model. Data matrixes composed of 0 and 1 that depict the distribution of hard
and soft materials are input features. The hidden layers are followed by two LSTM layers for feature learning and one
LSTM layer for regression. The objective (single value) is the output property. Each LSTM RNN layer possesses two states,
which are cell state and hidden state.

2. Methods
2.1. Sample Generation

The hierarchical biomaterials are typically anisotropic with load-bearing property
in one direction, owing to the established fact that staggered hard plates in a soft matrix
are thought to be optimal as those biomaterials evolved in nature, and then the highly
efficient load transfers through a tension–shear chain mechanism [8]. Accordingly, we
consider the calculation domain as a 2D representative unit cell with quarter symmetry
under uniaxial tension, as shown in Figure 2a [14]. Symmetric boundary conditions are
applied to the upper, bottom, and right edges, while the left edge is subject to a uniform
tensile displacement loading [14]. The aspect ratio of this calculation domain is set to be
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0.6 in order to capably accommodate the tension–shear chain configurations. The unit cell
is discretized into a number of blocks occupied by hard or soft material. Then sample
configurations can be determined by the distribution of hard and soft materials. To better
illustrate the problem, we discretize the unit cell into 5 × 3 = 15 blocks here and further
verify the generality and universality of our LSTM-based optimal strategy by enlarging
the block number to 21 (7 × 3). With blocks occupied by hard material and soft material
expressed as 1 and 0, respectively, a data matrix composed of 0 and 1 can be adopted to
represent each material distribution, as shown in Figure 1b.

Nanomaterials 2021, 11, x FOR PEER REVIEW 5 of 12 
 

 

 

Figure 2. FEM calculations. (a) The calculation domain with quarter symmetry and under uniaxial 

tension. Symmetric boundary conditions are applied to the upper, bottom, and right edges, while 

the left edge is subject to a uniform tensile displacement loading. Here, the calculation domain is 

discretized into 5 × 3 = 15 blocks which are occupied by either hard material (purple) or soft mate-

rial (yellow). The volume fraction of hard material is fixed at 8/15. (b–d) The FEM-calculated re-

sults of the distribution of (b) effective stiffness Eeff, (c) toughness T, and (d) objective fobj. The in-

sets in (b–d) represent the sample configurations corresponding to the maximum Eeff, T and fobj, 

respectively. 

2.2. Recurrent Neural Network 

Long short-term memory recurrent neural network was adopted to train our well-

prepared data via Keras framework [26] due to the similarity between our input features 

and the letters in a sentence. The meaning of a sentence can be antipodal if the order of 

the letters changes, and the same relationship holds for our input features and the objec-

tive. As illustrated in the sample generation section, any sample configuration in the de-

sign space can be mapped into a data matrix composed of 0 and 1, which is considered as 

the input feature. To thoroughly show the structural arrangement and properly enlarge 

the gap between sample configurations with high and low objectives, the data matrix is 

further replicated by the symmetry rule to obtain a larger matrix with the size of 15 × 24 

as the ML model input, while the objective calculated by Equation (3) is normalized as 

𝑒𝑓𝑜𝑏𝑗/𝑒max [𝑓𝑜𝑏𝑗] as the ML model output. Figure 1c shows the construction of the RNN, 

which consists of two LSTM layers for feature learning and one LSTM layer for regression 

with one neuron. The two LSTM layers for feature learning are determined by the neuron 

number of 16, dropout ratio of 0.2, and ReLU activation function. Hence, the construction 

of the ML model embed into our optimal strategy is confirmed. For ML model training in 

each iteration, the total dataset (100 data for the first iteration, ~200 data for the second 

iteration, ~300 data for the third iteration…) is randomly split to 70% for training and 30% 

for testing. To fully evaluate the iterated ML model in the aspect of both the error and the 

accuracy, four kinds of indicators are utilized, which are the mean square error (MSE), the 

mean absolute error (MAE), the explained variance score (EVS), and the coefficient of de-

termination (i.e., R2): 

Figure 2. FEM calculations. (a) The calculation domain with quarter symmetry and under uniaxial
tension. Symmetric boundary conditions are applied to the upper, bottom, and right edges, while
the left edge is subject to a uniform tensile displacement loading. Here, the calculation domain is
discretized into 5 × 3 = 15 blocks which are occupied by either hard material (purple) or soft material
(yellow). The volume fraction of hard material is fixed at 8/15. (b–d) The FEM-calculated results of
the distribution of (b) effective stiffness Eeff, (c) toughness T, and (d) objective fobj. The insets in (b–d)
represent the sample configurations corresponding to the maximum Eeff, T and fobj, respectively.

Considering the huge difference of deformation behavior between the hard inorganic
phase and soft organic phase in nature, in this problem, we carefully set the mechanical
properties as Young’s modulus Eh = 10.0 GPa and failure strain εf

h = 0.05 for hard material
and Young’s modulus Es = 0.1 GPa and failure strain εf

s = 1.5 for soft material (See
Figure 1b for the constitutive law). The Poisson’s ratio is the same for hard and soft
material: νh = νs = 1/3. Finite element method (FEM) is adopted to solve this problem,
with the failure criterion chosen as the maximum principal strain criterion. The failure
criterion is applicable to each block in the calculation domain regardless of whether it is
occupied by hard material or soft material. Therefore, the failure criterion for the overall

calculation domain can be expressed as max
[(

ε
p
h

)
i

]
= εf

h (i = 1, . . . , nh) or max
[(

ε
p
s

)
j

]
=

εf
s (j = 1, . . . , ns), where εp is the maximum principal strain of an element and nh and ns

are the numbers of hard and soft elements, respectively. Then the effective stiffness Eeff
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along the loading direction and structure toughness T of the calculation domain can be
expressed as

Ee f f =
1
n ∑n

i=1 σ
f
1i

1
n ∑n

i=1 ε
f
1i

, (1)

T =
n

∑
i=1

4

∑
j=1

1
2

σ
f
jiε

f
ji , (2)

where n = nh + ns denotes the total number of the elements in the design domain, σf
ji and

εf
ji are the j-th stress and strain components (with 1 = xx, 2 = xy, 3 = yx, and 4 = yy)

of the element i in the plane-strain state when the calculation domain reaches failure.
The stress and strain fields are solved by using four-node bilinear elements in FEM. To
simultaneously optimize stiffness and toughness, the objective function is defined as

fobj = Ee f f · T , (3)

In this way, a larger objective means a better configuration in the aspect of both
stiffness and structure toughness. The optimization is conducted under the hypothesis of
mass conservation (fixed 8 and 12 blocks occupied by the hard material in the calculation
domain discretized into 15 and 21 blocks, respectively). Then the whole design spaces
for 15, 21 blocks are C8

15
(
∼ 104), C12

21
(
∼ 106), respectively. In the unit cell discretized into

15 blocks, we calculated all possible sample configurations in the whole design space to
check the distributions of stiffness, toughness, and objective (Figure 2b–d). The insets in
Figure 2b–d represent the sample configurations corresponding to the maximum Eeff, T,
and fobj, respectively. One can see that hard and soft materials tend to lie in parallel and in
series along the loading direction to pursue high stiffness or high toughness. Only when
stiffness and toughness are optimized at the same time can the staggered configuration be
obtained. Overall, we have prepared data matrixes composed of 0 and 1 as input features
and a single objective value as the output property for the ML model.

2.2. Recurrent Neural Network

Long short-term memory recurrent neural network was adopted to train our well-
prepared data via Keras framework [26] due to the similarity between our input features
and the letters in a sentence. The meaning of a sentence can be antipodal if the order of the
letters changes, and the same relationship holds for our input features and the objective.
As illustrated in the sample generation section, any sample configuration in the design
space can be mapped into a data matrix composed of 0 and 1, which is considered as
the input feature. To thoroughly show the structural arrangement and properly enlarge
the gap between sample configurations with high and low objectives, the data matrix is
further replicated by the symmetry rule to obtain a larger matrix with the size of 15 × 24
as the ML model input, while the objective calculated by Equation (3) is normalized as
e fobj /emax[ fobj ] as the ML model output. Figure 1c shows the construction of the RNN,
which consists of two LSTM layers for feature learning and one LSTM layer for regression
with one neuron. The two LSTM layers for feature learning are determined by the neuron
number of 16, dropout ratio of 0.2, and ReLU activation function. Hence, the construction
of the ML model embed into our optimal strategy is confirmed. For ML model training
in each iteration, the total dataset (100 data for the first iteration, ~200 data for the second
iteration, ~300 data for the third iteration . . . ) is randomly split to 70% for training and
30% for testing. To fully evaluate the iterated ML model in the aspect of both the error and
the accuracy, four kinds of indicators are utilized, which are the mean square error (MSE),
the mean absolute error (MAE), the explained variance score (EVS), and the coefficient of
determination (i.e., R2):

MSE(y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2 , (4)
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MAE(y, ŷ) =
1
n

n

∑
i=1
|yi − ŷi| , (5)

EVS(y, ŷ) = 1− Var{y− ŷ}
Var{y} , (6)

R2(y, ŷ) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1

(
yi − 1

n ∑n
i=1 yi

)2 , (7)

where y and ŷ denote the FEM-calculated and ML-predicted outputs, respectively, and n
is the number of samples in the considered data set in the current iteration. MSE and MAE
are widely used to depict the model error with the minimum value being 0, while EVS and
R2 depict the model accuracy with the best possible score being 1.0.

3. Results

The LSTM-based optimal strategy was first applied to the calculation domain dis-
cretized into 15 blocks. Figure 3 shows the results and the performance of the iterated ML
model in each iteration. The FEM-calculated top four sample configurations are presented
in Figure 1b as the benchmark. The top two sample configurations share the same best ob-
jective due to the symmetry. From the ML-predicted top four sample configurations in each
iteration as plotted in Figure 3a, one can see that within five iterations, only ~500 samples
calculated by FEM, which account for merely 7% of the entire design space, can accurately
predict the best sample configuration. In the sixth iteration, the ML model can obtain both
of the two best sample configurations (staggered structure). In the eighth iteration, the
ML-predicted top four sample configurations are perfectly consistent with the benchmark
(FEM-calculated results). More importantly, our ML model is capable of recognizing all of
the sample configurations with the best objective.
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Figure 3. Iterated results and evaluations for the calculation domain discretized into 15 blocks by the proposed LSTM-based
optimal strategy. (a) Top 4 ML-predicted sample configurations in each iteration. The sample configurations inside the
red dashed-lined domain are the FEM-calculated top 4 sample configurations. (b) The relationship between evaluation
indictors MSE, MAE, EVS, and R2 and iteration numbers. Black curves with open rectangles are for the training dataset;
black dashed lines mark average values between iterations 7 and 10. Red curves with open circles are for the testing dataset;
red dashed lines mark linear fit of red curves between iterations 1 and 10.
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Four kinds of indictors (MSE, MAE, EVS, R2) were monitored to evaluate the trained
ML model within 10 iterations and are plotted in Figure 3b. Black curves indicate indicators
for the training dataset, while red curves are for the testing dataset. In order to show the
trends of the indicators with the increase in iteration numbers, the asymptote for indictors
of the training dataset and the linear fit for indictors of the testing dataset are plotted by
the black dashed lines and the red dashed lines, respectively. In the aspect of error-related
indicators MSE and MAE, a lower value means a better trained ML model, with zero error
corresponding to the value of 0. The asymptotic values for MSE and MAE of the training
dataset are 5.71 × 10−5 and 5.68 × 10−3, respectively. The slopes of linear fit for MSE and
MAE of the testing dataset are −1.31 × 10−4 and −1.94 × 10−4, respectively. With the
increase in iteration numbers, compared to a continuously decreasing MSE for the testing
dataset (from 1.55 × 10−3 in the 1st iteration to 3.17 × 10−4 in the 10th iteration), MSE
for the training dataset decreases first and then fluctuates around the value as small as
5.17 × 10−5 after the seventh iteration. The same evolution trend is observed in MAE of
the training and testing dataset. It can be concluded that at first, the ML model is highly
biased with the input of a very small percentage of the entire design space (100 of 6435).
Then, with more and more outliers being captured, corrected by FEM, and added to the
input dataset, the ML model is informed to gradually mitigate the bias. The monotonically
decreasing trends of MSE and MAE for the testing dataset with the increase in iteration
numbers indicate a positive intervention.

In the aspect of accuracy-related indictors EVS and R2, a higher value means a better
trained ML model, with 100% accuracy corresponding to the value of 1. After the seventh
iteration, EVS for the training dataset gradually leveled out at a value as high as 0.96,
and EVS for the testing dataset continuously improved from −0.17 in the 1st iteration to
0.71 in the 10th iteration. The trend of R2 for both the training dataset and the testing
dataset is the same as that of EVS. The EVS and R2 for the testing dataset exceed 0.6 after
the eighth iteration. The monotonically increasing trends of EVS and R2 for the testing
dataset with the increase in iteration numbers also verify the trained ML model becoming
more and more accurate iteratively. By LSTM-based optimal strategy, the two best sample
configurations (staggered structure) are obtained after only five iterations and maintained
afterward. The top four best sample configurations are obtained after only eight iterations.
Moreover, eight iterations with ~800 FEM-calculated samples as the input can train an
eligible ML model not only for capturing all top four sample configurations efficiently but
also for making a basic judgment to the objective of samples with any configurations.

We further verify the generality and universality of the LSTM-based optimal strategy
by considering the calculation domain discretized into 7 × 3 = 21 blocks. For 21 blocks,
the entire design space includes ~106 distinctive sample configurations. Figure 4 shows
the corresponding iterated results and evaluations. The top two FEM-calculated sample
configurations appear and are maintained as the ML-predicted top two after the 10th
iteration, which is based on less than 1% of the entire design space. The MSE and MAE for
the training dataset continuously decrease until the 10th iteration and stabilize at around
1.53 × 10−4 and 0.92 × 10−2 afterward. The EVS and R2 for the training dataset stabilize at
around 0.97 and 0.96 after the 10th iteration. All four kinds of evaluations for the training
dataset indicate that the iterated ML model for the training dataset has converged to a
highly accurate version gradually. For the testing dataset, the MSE, MAE, EVS, and R2 of
the ML model in the 15th iteration are 8.91 × 10−4, 2.20 × 10−2, 0.82, and 0.82, respectively.
Moreover, the monotonically decreasing trends for MSE and MAE and the monotonically
increasing trends for EVS and R2 would continue after the 15th iteration, which indicates
that our ML model is not overfitted and still has space to improve.
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4. Discussion
4.1. Comparisons with CNN-Based Optimal Strategy

Our optimal strategy is significantly dependent on the performance and robustness of
LSTM. We further replaced the ML model in the flow chart (Figure 1) with CNN to explore
the effect of the selection of different ML models. Similar to previous works [21,23], we
deployed a conventional CNN as illustrated in Figure 5, which consists of two convolutional
layers for feature learning and two fully connected layers for regression. Each convolutional
layer outputs 32 filters by using a 3 by 3 kernel. The padding of “same” and the activation
function of ReLU are adopted. Each convolutional layer is followed by a pooling layer
with pool size of 2 by 2. The two followed fully connected layers are determined by the
neuron number of 32, dropout ratio of 0.2, and ReLU activation function.
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By the CNN-based optimal strategy, we revisited the problem of searching for sample
configurations with the best objective for the calculation domain discretized into 15 blocks.
Figure 6a shows the corresponding ML-predicted top four sample configurations in dif-
ferent iterations. The sample configurations inside the red dashed-lined domain are the
FEM-calculated top two configurations. In the fifth iteration, the FEM-calculated top
two sample configurations appear in the first and third places. In the seventh iteration, the
ML-predicted top two configurations are consistent with the FEM-calculated top two config-
urations. However, in the ninth iteration, one of the FEM-calculated top two configurations
disappears from the ML-predicted top four. In the 10th iteration, the FEM-calculated top
two sample configurations appear in the first and third places. The shifting of the FEM-
calculated top two sample configurations indicates that the CNN model is not becoming
more and more accurate or stable with the increase in iteration numbers. Besides, the
FEM-calculated top two sample configurations, which share the same objective, cannot be
identified as apposable by the CNN model. The red dashed-lined domain in Figure 6a is
not as stair-like as that in Figure 3a.
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Figure 6. Iterated results and evaluations for the calculation domain discretized into 15 blocks by the CNN-based optimal
strategy. (a) Top 4 ML-predicted sample configurations in each iteration. The sample configurations inside the red dashed-
lined domain are the FEM-calculated top 2 configurations. (b) The relationship between evaluation functions MSE and
R2 and iteration numbers. Black curves with open rectangles are for training dataset. Red curves with open circles are for
testing dataset.

From the aforementioned analysis to the LSTM-based optimal strategy, one can see
that MSE and MAE share the same trend, as do the EVS and R2. Therefore, here MSE
and R2 were utilized to show the evolutions of error and accuracy of the CNN model.
Figure 6b plots the relationship between EVS, R2, and iteration numbers. The MSE for
both the training dataset and the testing dataset drops before the third iteration but flat-
tens out afterward, which indicates that the CNN model is basically converged after the
third iteration, and the further increase in the iteration numbers could not make obvious
improvements. In the 10th iteration, the MSE values for the training and testing datasets
are 1.53 × 10−4 and 4.85 × 10−4, respectively, which are larger than those from the LSTM
model in the 10th iteration. The R2 values for both the training dataset and testing dataset
rise before the third iteration and flatten out afterward, sharing the same trend with the
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MSE. In the 10th iteration, the R2 values for the training dataset and the testing dataset
are 0.86 and 0.51, respectively, indicating the inadequacy compared with the LSTM model.
Considering the intrinsic logic of CNN and LSTM, it can be concluded that in material
design and structural optimal fields, if the material ratio is fixed and the specific property
is cared about, LSTM may be a better approach.

4.2. Failure Mechanism of the Optimal Staggered Structure

From the aforementioned analysis, our LSTM-based optimal strategy confirms the
global optimality of the staggered structure in the aspect of simultaneous superior stiffness
and toughness. For the concrete deformation behavior of the staggered structure, Figure 7
plots the distribution of tension strain, shear strain, and maximum principal strain at the
moment of failure. Under the failure criterion of maximum principal strain, one can see that
the soft block located in the vicinity of the corner of the hard platelets fails first. However,
when this soft block reaches failure, other blocks can still bear load, which means that not
all materials are utilized to 100%. If the material properties of the soft blocks can be further
adjusted to accommodate the potential failure point, the sample may be able to bear more
loading. With the rapid development of additive manufacturing and machine learning,
we speculate that if we could provide more flexible options for the evolution, the optimal
sample configuration could be adjusted to bear larger failure strain in the corner while
relatively lower failure strain in other parts, and then the artificial staggered structure may
be stronger than natural materials.
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5. Conclusions

We have developed a novel LSTM-based strategy to search for the optimal design of
bio-inspired composite materials with simultaneously superior stiffness and toughness
at the nanoscale level. The LSTM-based optimal strategy is applicable to a system with
multiple best sample configurations, verified by the calculation domain discretized into
15 and 21 blocks. In all cases, the staggered structure is proved to be globally optimal in
the aspect of simultaneous superior stiffness and toughness. Our LSTM-based optimal
strategy has three main advantages: (1) It can generate an ML model with accuracy greater
than 0.6 for the testing dataset based on less than 10% of the entire design space, and the
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increasing trend of the accuracy indicators continues with the increase in iteration numbers.
(2) It can obtain globally optimal sample configurations within only 5 and 10 iterations
for calculation domains discretized into 15 and 21 blocks, respectively. (3) It can capture
multiple sample configurations with the best objective. In the future, our LSTM-based
optimal strategy could be combined with additive manufacturing to further improve
the performance of the staggered structure by customizing the material properties. Our
LSTM-based optimal strategy also has the potential to be applied to many similar material
design problems with multiple optimal distribution patterns under the prerequisite of the
conservation of mass.
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