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Abstract: Magnetic properties of ferromagnetic nanostructures were studied by atomistic simulations
following Monte Carlo and Landau–Lifshitz–Gilbert approaches. First, we investigated the influence
of particle size and shape on the temperature dependence of magnetization for single cobalt and
gadolinium nanoparticles and also in bi-magnetic Co@Gd core–shell nanoparticles with different
sizes. The Landau–Lifshitz–Gilbert approach was subsequently applied for inspecting the magnetic
hysteresis behavior of 2 and 4 nm Co@Gd core–shell nanoparticles with negative, positive, and zero
values of interfacial magnetic exchange. We were able to demonstrate the influence of finite-size effect
on the dependence of the Curie temperature of Co and Gd nanoparticles. In the Co@Gd core–shell
framework, it was possible to handle the critical temperature of the hybrid system by adjusting
the Co core size. In addition, we found an improvement in the coercive field values for a negative
interfacial exchange energy and for a different core size, suggesting an exchange spring behavior,
while positive and zero values of interfacial exchange constant showed no strong influence on the
hysteresis behavior.

Keywords: atomistic simulation; core–shell bi-magnetic nanoparticles; Monte Carlo simulation;
interfacial exchange

1. Introduction

The thermal dependence of the magnetization, M(T), of low dimensional ferromag-
nets (FM) has been studied and simulated by different methods using the Hinzke–Nowak
Monte Carlo (MC) algorithm [1], the magnetic dynamic Landau–Lifshitz–Gilbert (LLG)
equation [2], and very recently by the Heisenberg mean-field theory [3]. The Curie temper-
ature (TC) of FM in the nanoscale regime is still an open issue. It is basically due to the fact
that the TC value will depend on the finite-size effects, when long-range atomic ordering is
lost due to material sizes and surface morphologies [4].

A magnetic material with a low TC value (near to room temperature) is often required
for applications, for instance, in magnetic hyperthermia [5]. Some good examples of these
materials are doped nanoparticulate systems, such as La1–xSrxMnO3 [6], Mn1–xZnxFe2O4
nanoparticles (NPs) [7], and hard–soft mixed ferrites [5]. In addition to this peculiarity,
these magnetic nanosystems can be coated with gadolinium (a rare earth metal with a TC
of 293 K that is relatively low as compared to ordinary 3D-FM [8]) to be used as a contrast
agent in Magnetic Resonance Imaging (MRI) recording [9,10]. Thus, the understanding of
the magnetic interactions and the M(T) behavior, which govern the core–shell magnetic
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nanosystems, are crucial, at least for future biomedical applications. In fact, the M(T)
behavior in bi-magnetic NPs has been theoretically and experimentally studied in some
systems [11,12] but not in cobalt and gadolinium (Co@Gd) core–shell structures having
different geometries.

On the other hand, several models have theoretically been employed to study the
superparamagnetism in ensembles of magnetically non-interacting and interacting NPs.
For instance, Serantes et al. [13] simulated the behavior of an ensemble of non-interacting
identical particles contained in a 3D box. The implementation of the effect of superparam-
agnetism was done by taking into account the classical formulation of Stoner–Wohlfarth
using the MC method. Another formulation was considered by Arantes et al. [14], who
implemented the classical Heisenberg model also for non-interacting frozen magnetic par-
ticles. They traced the transition from the magnetically blocked to the superparamagnetic
regime using the concept of blocking temperature that showed an intrinsic dependency
with the finite-size effect. Obviously, when the system's complexity is enhanced for nanos-
tructures (including different magnetic exchange types), the simulation times get longer
(i.e., costlier), and therefore, new simulation methods need to be developed and imple-
mented to analyze the temperature dependence of magnetic properties of core–shell-like
nanostructures. Especially for a combination of magnetically hard and soft magnets, one
may expect a magnetic exchange interaction between these two FM phases, resulting in an
exchange spring (ES)-like phenomenon. Thus, the hybrid materials will have enhanced
magnetic properties such as high coercivity and also high saturation magnetization, as
reported by Coehoorn et al. [15].

Considering the above points, we simulated magnetic properties of single Co and Gd
NPs and also the nanohybrid Co@Gd core–shell structure by atomistic simulations using
VAMPIRE software. We performed several studies applying the MC method in magnetic
nanosystems for the following cases: (i) the M(T) behavior of individual FM Co and Gd
NPs with different geometries (spherical, cubic, and cylindrical) in the range from 1 to 9 nm,
(ii) core–shell spherical systems of Co@Gd, where the thermal dependence of the critical
temperature was studied using different interfacial exchange values with an insignificant
change in the TC values, suggesting that the bi-magnetic core–shell system can be employed
in biomedical applications for imaging contrast with high magnetic response, and finally
(iii) the hysteretic behavior of the Co@Gd core–shell system was studied by changing the
Co core size and the interfacial exchange constant. An improvement in the coercive (HC)
field was observed for a negative interfacial exchange, suggesting the existence of the ES
effect. Thus, from our results it is possible to significantly increase the coercive values and
handle the presence of ES behavior at the core–shell bi-magnetic interfaces.

2. Theoretical Background, Models, and Methodology
Atomistic Simulations Using VAMPIRE

In the framework of the atomistic system generation, VAMPIRE 5.0 software (York,
England) [2] was used to generate particles with certain geometrical shapes (spheres,
cylinders, and cubes). The first step was to create a crystalline network with a size large
enough to contain the simulated shape. The exchange interaction of the unit cell is known
if one considers the first neighbors’ approach, given by Equation (1). Once the unit cell
is replicated until the dimensions agree with the first step, atoms are removed from the
crystalline structure until a desired geometrical shape is reached [2]. The atoms within
this already molded crystalline structure are then assigned to one or more materials. This
also enables the formation of core–shell structures, but it will depend on the core structure,
shell, and interfacial exchange interactions.

Two protocols were established for simulations with the VAMPIRE software:
(i) To reach equilibrium for a subsequent study of the M(T) properties, a Hinzke–

Nowak MC algorithm was employed, using 20,000 equilibrium steps. After 20,000 aver-
aging steps, the system was then heated in steps of 5 K till the complete M(T) curve was
obtained. To investigate the finite-size effects on TC, the equilibrium magnetization for
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different sizes of spherical, cylindrical, and cubic NPs were calculated as a function of
temperature, M(T). The Hamiltonian for the simulated system is [2]:

H = −∑
i 6=j

JijSi.Sj (1)

where Jij is the FM exchange constant, and i,j, refer to FM sites. For the simulations, we
fixed Jij = 6.064 × 10−21 J/link (=joule/binding) and Co atomic spin moment of 1.72 µB

(=bulk value of moment). In the case of Gd, Jij = 1.28 × 10–21 J/link and Gd atomic spin
moment of 7.63 µB (bulk value). The exchange integral (J) is defined, based on mean field
theory, as [2]

J =
3kBTc

εz
(2)

where kB is the Boltzmann constant, z is the number of nearest neighbors, and ε is a
correction factor obtained from the mean-field expression [2].

For the core–shell model (e.g., negative interfacial configuration), the Hamiltonian
Equation (1) turns to

Hexc = HFM1 + HAFM + HFM2 = ∑i 6=j JFM1Si.Sj + ∑i,v Ja f mSi.Sv+

∑v,i Ja f mSv.Si + ∑i 6=j JFM2Si.Sj
(3)

where S corresponds to the spin unit vector. In Equation (3), the first term refers to FM Co,
the last one to the shell of Gd, and the second and third terms are the interfacial exchange
energies that, in the VAMPIRE software, are taken with the same value. In other words,
Equation (3) describes only exchange coupling between the two FM structures, and other
interactions (dipole–dipole, anisotropy, and Zeeman, e.g.) to the total magnetic energy are
considered negligible. The dipolar was discarded because we assumed non-interacting
NPs, while the magnetic anisotropy was due to the fact that the temperature-dependent
magnetic properties of the nanohybrid Co@Gd core–shell system were mainly associated
with the strong relation between TC and J given by Equation (2). The Zeeman contribution
was neglected since it is still not implemented in the VAMPIRE software using the MC
approach. We only took into consideration the interfacial exchange and direct exchange in
the FM core and shell, respectively. In brief, the above model assumes the fact that NPs are
monodisperse, and the effect of magnetic interactions is expected to be negligible.

(ii) The Landau–Lifshitz–Gilbert (LLG)–Heun method, implemented in the software
VAMPIRE [2], was used to simulate the hysteresis curves [M(H)], using Equation (4) as
suggested in Ref. [2]:

∂Si
∂t

= − γ

(1 + λ2)

[
Si × Hi

e f f + λSi ×
(

Si × Hi
e f f

)]
(4)

where Si is the unit vector that represents the direction of the magnetic spin moment i, λ
is the microscopic damping parameter, γ is the gyromagnetic ratio, and Hi

e f f is the net
effective magnetic field on each spin [2] (see Figure 1 for a sketch of the spin precession
model). In Equation (4), the Hi

e f f is a sum of two contribution as given by Equation (5):

Hi
e f f = −

1
µS

∂H
∂Si

+ Hi
th (5)

where the first term is the Hamiltonian used for the LLG method as represented by
Equation (6), and the second term is the thermal field, given by Equation (7), as follows:

H = Hexc + Huni
ani + Happ (6)



Nanomaterials 2021, 11, 1381 4 of 12

Hi
th = Γ(t)

√
2λkBT
γµS∆t

(7)

where Huni
ani is the uniaxial magnetic anisotropy and external applied magnetic field contri-

bution, Γ(t) is a Gaussian distribution that represents the thermal fluctuations of each spin
i, and µS is the magnitude of the atomic magnetic moment.
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For core–shell models, the same input and mat files used for M(T) curves were used
as templates, but the magnetic field was varied from −3T to +3T with an applied field
strength increment of 0.01 T. The λ value was taken equal to 1.0 for an elemental FM as
implemented by [2] for all simulations, and the same Hamiltonian given in Equation (4)
was used. Additionally, it is important to note that all magnetization data were presented
as normalized magnetization (M/Ms), where MS is the saturation magnetization. For
all simulations performed in this work, a simple laptop HP Intel Core i3, serial number
5CB4211908, was used.

3. Results and Discussion

We start this section pointing out that for magnetic configurations (e.g., core–shell
structures), a single MC program for non-interacting NPs needs to be modified. Otherwise,
it will increase the MC step to a much higher value, as those employed by Nehme et al. [16],
where up to 100,000 MCs were used to stabilize the physical parameters of a non-interacting
system. This, of course, will increase the computation time significantly to some days or
even weeks depending on the Random Access Memory (RAM) computer memory and
multi-core processor. On the other hand, the VAMPIRE software allows one to perform
atomistic simulations in a single graphics processing unit (GPU) for a variety of magnetic
configurations using MC and LLG approaches in much shorter computational times. The
software runs easily in serial mode with optimized computational time. Based on that, we
applied the VAMPIRE software to study FM bi-magnetic core–shell structures, and the
results are shown in the next sections.

3.1. Tc Finite-Size Effects for Single Gd and Co FM NPs with Different Geometries

Before studying the core–shell structures, the M(T) behavior was systematically stud-
ied independently for single Co and Gd nanostructures with three geometries (sphere,
cylinder, and cubic). For the spheres, the diameters were in the range from 1 to 9 nm. For
the cube geometry, the cubic length for each face was the same in the rectangular (x,y,z)
dimensions and increased from 1 to 9 nm, while for the case of cylinder geometry, the side
length increased from 1 to 9 nm, and the base diameter of the cylinder was fixed to 2 nm for
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all simulations. The results are respectively shown in Figures 2 and 3. A clear distinction
in the M/MS (hereafter called as M(T)) profiles is observed with decreasing size. For 1 to
6 nm, the M(T) curves have a tendency to increase continuously above TC, as would be
expected for small FM NP systems (not behaving as an ordinary FM that would show a
Brillouin-like curve).
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Figure 2. Normalized M(T)/Ms curves for an ensemble of non-interacting Co NPs with sphere (a), cylinder (b), and cube (c)
geometries. (d) Size dependence of the TC for the three studied geometries. (in (d) the full lines are guides for eyes).

For the determination of TC, three approximations were employed [1]: (i) Curie–Bloch
(Equation (8)), (ii) Kuzmin relation (Equation (9)), and iii) derivative criteria and subsequent
polynomial fitting. A first fitting was performed using the Equations (8) and (9):

m(T) = (1− T/Tc)
β (8)

m(τ) =
[
1− sτ

3
2 − (1− s)τp

]β
(9)

where β is suggested to be a universal exponent equal to 0.34 for ideal FM and τ = T
TC

, s = 1,
and p = 3/2 for a pure Bloch FM [1]. However, the Equations (8) and (9) cannot be used to
fit the simulated M(T) data when particle sizes are below 9 nm. Values of β ranging from
0.45 to 0.34 were obtained for sizes in the range of 1 to 9 nm, respectively, and consequently
no accurate determination of TC could be obtained. Hence, the third approximation was
employed, and the obtained TC values vs d(nm) are plotted in Figures 2d and 3d for Co and
Gd NPs, respectively. TC values decreased for individual Co and Gd NPs for sizes smaller
than 5 nm. As is well-known from the literature [17], the TC has a finite-size dependence
for which critical parameters can be determined using Equation (10):

∈ (d) =
T∞

c − Tc(d)
T∞

c
=

(
d0

d

)z
(10)
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where z is the phenomenological shift exponent, d (nm) is the length of the NPs geometries
(diameters for spheres, and cubic and side cylinder lengths), and d0 is the microscopic
length close in value to the single unit cell in the lattice structure of the FM material.
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dependence of the TC for the three studied geometries. (in (d) the full lines are guides for eyes).

For smaller particle sizes, the magnetic behavior, near TC, loses its critical magnetic
behavior, and TC can hardly be determined accurately [2]. Commonly, TC is taken from the
minimum of dM/dT. However, at nanoscale, this significantly underestimates the actual
temperature in which the magnetic order is lost. We resolved this issue by fitting the dM/dT
curve with a polynomial fitting that covers the total curve, including all points and not
only the minimum value. The estimated values are individually reported in Table S1 for
Co and Gd NPs (they are not much different from their bulk counterparts). Another visible
effect, for very small NPs, is the slightly different behavior of the magnetization when the
temperature is increasing (not a pure Brillouin-like curve as expected for an ordinary FM,
i.e., the increasing tendency of magnetization above TC is different from bulk FM). This
effect on the magnetization has been pointed out to occur from the correlations of local
moments that are presented above TC [2,17]. It only plays a role in NPs when the size of
the system is close to the length of the magnetic correlation, ξ [2,17]. Moreover, the critical
exponent for Co NPs (Table S1) is close to the value previously reported for Co films, that is,
z = 1.34 [18]. In Table S1, there are also shown z values for the different geometries. In a first
approximation, the z values (Table S1) are similar to that found also by Fisher [19], i.e., z = 1.
Observing the TC values (Table S1), one can notice that only the cylinder NPs geometry
has shown a change in the TC value [4], but the values are, in general, not substantially
modified when compared among them. In principle, the demagnetization field can hardly
change the TC values of FM described by mean-field theory. Thus, since there were no
significant changes in the TC values upon changing the geometries, especially for spherical
geometries in both Co and Gd NPs, we tested the Co@Gd core–shell simulations with
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spherical-like morphology, because (i) experimentally this is a geometry well accepted
to describe real system, (ii) it is a geometry that helps the simulation regarding the spin
configuration, and (iii) it is used in the major theoretical, experimental, and application
approaches.

3.2. Core Shell Model Co@Gd (Effect on Tc Behavior with Size and Interfacial Exchange)

In the present section, different exchange couplings were used to describe the nanohy-
brid Co@Gd core–shell properties. For J > 0 (parallel spin configuration of the two FM
phases), an artificial ferromagnetic-like heterostructure was achieved, whereas for J < 0
(antiparallel spin configuration), the system behaved as an artificial ferrimagnet-like (FI).
We then worked with a spherical-like configuration where the Co core size was varied
with a total core–shell size of 2, 4, and 6 nm, using values of interfacial exchange of Jint =
−1.38 ×10−21 J/link This is a value that was taken from the literature for an ensemble of
core–shell bi-magnetic NPs [11]. As shown from Figure 4a, the M(T) curves have different
behaviors, depending on the Co core sizes. Consequently, it has a strong influence in the
critical temperature (T∗C) value of the nanohybrid core–shell system.
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We noticed that for core sizes smaller than 2 nm with total variable size (Figure 4b–d),
the T∗C values of the Co@Gd core–shell decreased significantly. Especially, it reached a
value close to that found for pure spherical Gd NPs (~290 K), as can be seen comparing
with data shown in Figure 3a. Thus, this T∗C reduction with decreasing of Co size results in
a nanohybrid core–shell material with a T∗C close to RT (Gd-based materials are shown to
present a giant magnetocaloric effect [20,21]).

It is important to highlight the occurrence of a compensation-like temperature in
several M(T) curves, but not in all of them (see Figure 4a). In principle, this phenomenon
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only happens due to the temperature dependence of the magnetization of the antifer-
romagnetically coupled FM Co and Gd sublattices [22,23]. In other words, considering
that both sublattices (Gd and Co) have different temperature-dependent behaviors, as the
temperature increases, the Gd sublattice will go first to the paramagnetic (PM) state above
293 K, while the Co sublattice will enter into a PM state at higher temperatures. Thus, in a
specific temperature of the sample, there will be total magnetization cancellation in case of
an ordinary compensation temperature effect.

However, according to our findings, the compensation-like temperature occurs in all
nanohybrid Co@Gd core shell systems independent on the sign of exchange interaction,
as also displayed in Figures S1 and S2. Thus, we can point out that this effect should
be dependent on the fraction (and magnetic state) of each FM structure that forms the
nanohybrid Co@Gd core–shell system (the value of the Gd moment is much higher than
that of Co). However, for the nanohybrid Co@Gd core–shell with Jint < 0, one can assume
the ordinary compensation temperature effect, and therefore the simulated bi-magnetic
core–shell systems behave as a total ferrimagnet with two antiferromagnetically coupled
FMs [24]. This interesting effect has been studied in many magnetic systems based on
magnetic garnets [22,23] and alloys of ferrimagnetic CoGd [25], but not yet in core–shell
Co@Gd NPs. In addition, it can be mentioned that the compensation-like effect physically
occurs in a state of high magnetic entropy, consequently favoring the magnetocaloric
phenomenon in all nanohybrids here studied, and hence would allow the use of the
bi-magnetic core–shell system in biomedical applications. This finding is significantly
important since this Co@Gd core–shell system may be applied in magnetic hyperthermia,
where systems with TC close to room temperature (RT) are required.

3.3. Hysteresis Curves Simulation
3.3.1. Determination of the Computational Time Step

To simulate the M(H) curves for bimetallic FM core–shell Co@Gd, we made use of
Equation (4), using a λ value equal to 1.0 for all the simulations. We first evaluated the
suitable computational time step ∆t, which represents the numerical parameter employed
to resolve the LLG equation with higher precision, as suggested by Aurélio et al. [26]. As
can be noticed from Figure S3a, the M(H) curves have the expected physical behavior for
orders of ∆t = 10−15 s. In our case, we took a ∆t value equal to 2 × 10−15 s at 0 K for a
spherical 4 nm Co NP. For other orders of ∆t, the system does not even reach the saturation
regime and no physically reasonable values are obtained, which can be significantly affected
when evaluating the HC field values. Thus, we took a fixed value of 2 × 10−15 s for all
M(H) simulated experiments as taken in [26].

It is important to highlight that this parameter will decide how long the atomistic
simulations will take, recalling that the smaller the values, the more expensive will be
the computational time and, of course, it will be limited by the particle size (number of
atoms). Figure S1b also depicts the ∆t dependence for HC and the M/Ms ratio, where higher
values equal to 2 x 10−15 s favor the stabilization of both parameters and hence their correct
determination.

3.3.2. Hysteresis Curves for Pure 4 nm Co NP

Having defined and fixed the ∆t values, we first proceed with the estimation of the
HC values for single Co NP at 0 K and several temperatures, as plotted in Figure 5a,b. We
would also like to give a reminder that the LLG differential equation is only applicable
at 0 K. Therefore, the Langevin dynamics concept must be employed [2] using the Γ(t)
concept, as represented by Equation (7). Then, to perform the atomistic simulations at
other temperatures, the VAMPIRE software used the concept of the thermal field. Figure 5c
shows that the HC field starts to decrease significantly with temperature for simulations up
to 700 K, in agreement Kneller’s law [27]. Moreover, the M/Ms linearly with temperature
(Figure 5d), and consequently a linear fit with R2 equal to 0.999, support this finding.
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Figure 5. Temperature dependence of the normalized M(H)/Ms curves for the 4 nm Co NPs (a,b). Thermal dependence of
HC and M/Ms parameters. In (d), the ratio M/Ms depends on the temperature and external magnetic field. In (c) and in (d)
the full lines are result from the fits.

3.3.3. Hysteresis for Bi-Magnetic Core–Shell NP Varying the Interfacial Exchange Constant

Sizes of 2 and 4 nm for the bi-magnetic FM Co@Gd core–shell NPs were taken for
simulations. The M(H) loops for each size were obtained for negative, positive, and zero
interfacial exchange (Jint) constants (see Figure 6, Figure S4 and S5). In the case of Jint < 0, the
bi-magnetic core–shell NP system exhibited an improvement in the HC values for both sizes,
as can be observed by broad M(H) loops displayed in Figure 6c,d. Interestingly, it occurred
when the Co core size ranged from 1.2 to 1.5 nm. This means that under the present
magnetic configuration (antiparallel spin interfacial exchange) the core–shell system will
have an ES-like behavior. This kind of magnetic exchange occurs in systems composed
of hard and soft magnetic materials with comparable or small exchange length [28,29].
Therefore, we can assume that the finite-size effect (in this case NP of 2 and 4 nm) will have
a strong influence on the appearance of the ES phenomenon. In our system, the magnetic
hard core of Co was expected to retain the uniaxial anisotropy of the Gd soft shell, causing
an increment of the HC values. In case of parallel magnetic configuration (Jint > 0), the
core–shell M(H) loops were not too broad, as seen for Jint < 0, but an enhancement in the
HC values was also observed (Figure S4c,d) in the range from 1.2 to 1.5 nm (for 2 and 4 nm
of core–shell size). On the other hand, the HC value reached 38% of the maximum value
(Hc = 2.3 T) estimated for the antiparallel interfacial configuration (it became constant with
the Co core size). For a zero interfacial exchange configuration, there was no magnetic
interaction between the core and the shell. In this case, the magnetic exchange response
happened individually for core and shell, and we could clearly observe two superposed
magnetic hysteresis loops in the simulated M(H), as displayed in Figure S5a,b. This could
also be observed from the Co core diameter dependence of the HC and M/Ms values
that exhibited two independent responses due to Gd and Co, as plotted in Figure S5c,d.
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Additionally, the M/Ms values were constant for individual non-coupled FM for 2 and
4 nm. This was expected because no temperature effect was taken into account.
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4. Conclusions

In this work, we first performed atomistic spin model simulations (using free VAM-
PIRE software) of the temperature-dependent magnetization of Co and Gd single NPs
with spherical, cubic, and cylindrical shapes. Regarding the magnetic properties of the
FM Co, Gd, and Co@Gd core–shell systems, we have to emphasize that the finite-size
effect was observed for all the geometries with exponential critical parameters related to
ordinary ferromagnets. We also demonstrated that the T∗C value of a core–shell bi-magnetic
nanoframework can be tuned by changing the Co core size with spherical geometry. No
significant influence in the T∗C determination was detected when we changed the Jint be-
tween the Co and Gd interface, i.e., by adjusting the Jint value for the Co@Gd core–shell
system with total diameters of 2 and 4 nm. Then, we can conclude that the compensation
temperature is not exclusive for the Jint sign, since it is seen in all M(T) curves for all
tested sizes. Indeed, it seems to depend on the fraction of FM structures and also the
thermal effects on the individual magnetizations in Co@Gd core–shell structures. Further
simulations with the presence of an external field will be carried out to better interpret this
issue. On the other hand, it was shown that there is a strong dependence on the sign of
Jint for the shape of the hysteresis curves and for the extracted magnetic parameters. We
demonstrated that the sign of the magnetic interfacial exchange constant is an important
parameter in bi-magnetic core–shell systems that may lead the nanohybrid materials to an
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exchange spring behavior or not (Jint > 0 yields an enhancement of the coercive field, for
Jint < 0 the enhancement is more pronounced, and in addition the core–shell behaves as
a magnetic spring). Therefore, on the one hand, it is shown that the interfacial exchange
energy is the key to improving the magnetic response for a desired application where
a critical temperature can be tuned, adjusting the sizes of core and shell contributions.
On the other hand, all the theoretical results presented in this work have to be checked
experimentally to fully demonstrate their impact in future biomedical applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11061381/s1, Figure S1: Normalized M(T)/Ms curves for the core–shell bi-magnetic
Co@Gd NP with total diameter of 2, 4, and 6 nm (a) for a positive interfacial exchange. Dependence
of the T∗C on the Co core size for a total particle size: 2 nm (b), 4 nm (c), and 6 nm (d). Figure S2.
Normalized M(T)/Ms curves for the core–shell bi-magnetic Co@Gd NP with total diameter of 2, 4,
and 6 nm (a) for a zero interfacial exchange. Dependence of the T∗C on the Co core size for a total
particle size: 2 nm (b), 4 nm (c), and 6 nm (d). Figure S3: Normalized M(H)/Ms curves under different
∆t values at 0 K (a) and ∆t dependence of the Hc and M/Ms parameters (b). Figure S4. Normalized
M(H)/Ms curves for different Co core size for a total core–shell size of 2 nm (a) and 4 nm (b) for
positive interfacial exchange constant. Dependence of the Co core size of the Hc and M/Ms values for
2 nm (c) and 4 nm (d). Figure S5. Normalized M(H)/Ms curves for different Co core size for a total
core–shell size of 2 nm (a) and 4 nm (b) for zero interfacial exchange constant. Dependence of the Co
core size of the Hc and M/Ms values for 2 nm (c) and 4 nm (d).
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