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Abstract: The inner ear is sensitive to various infections of viral, bacterial, or fungal origin, which, if
left untreated, may lead to hearing loss or progress through the temporal bone and cause intracranial
infectious complications. Due to its isolated location, the inner ear is difficult to treat, imposing an
acute need for improving current therapeutic approaches. A solution for enhancing antimicrobial
treatment performance is the use of nanoparticles. Different inorganic, lipidic, and polymeric-
based such particles have been designed, tested, and proven successful in the controlled delivery of
medication, improving drug internalization by the targeted cells while reducing the systemic side
effects. This paper makes a general presentation of common inner ear infections and therapeutics
administration routes, further focusing on newly developed nanoparticle-mediated treatments.

Keywords: inner ear; infections treatment; antimicrobial nanoparticles; drug-delivery systems;
potential side effects

1. Introduction

Inner ear disorders affect an important portion of the world population, deafness
being the most common sensory impairment worldwide [1–3]. A significant share of
this burden is caused by sensorineural hearing loss (SNHL), originating from cochlear
defects [3]. Some of these defects have been reportedly caused by various congenital and
acquired inner ear infections [4–8].

Hence, ear disorders’ prevalence represents an acute incentive and opportunity to-
wards improving therapeutic interventions [9,10]. Specifically, the small size, limited
accessibility, and high vulnerability of the inner ear pose certain difficulties, narrowing
down treatment options [11]. Currently used methods, such as systemic delivery, intratym-
panic injection, and direct inner ear drug delivery, often face challenges in terms of efficacy
and invasiveness [1,9].

The anatomical and physiological barriers of the ear coupled with the low long-term
stability of drug molecules are the main factors that hinder drug penetration and perme-
ation, resulting in sub-therapeutic concentrations at the required site [12]. To overcome
the issues of conventional drug-administration, nanotechnology is receiving increasing
attention in the field of auditory science [13]. Particularly, nanoparticle-based systems have
been proven advantageous in controlled and targeted drug-release, protecting pharmaco-
logical formulations up to the desired site, facilitating transmembrane transport, increasing
cell uptake, and reducing required doses and side-effects [14].

In this respect, the present paper aims to describe the most common inner ear infec-
tions, the causes behind these affections, and current medication administration routes.
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Moreover, the newest advancements in nanoparticle-mediated treatments are presented in
detail, with a special focus on their safety and efficacy.

2. Inner Ear Infections

The inner ear is sensitive to infections that may produce permanent SNHL and
vestibular dysfunction [15,16]. One criterion for distinguishing between different inner ear
infections concerns the affected structures. From this point of view, there are two main
possibilities: labyrinthitis and vestibular neuronitis [17].

As its name implies, labyrinthitis is an infection located in the membranous labyrinth.
This structure is usually affected by bacterial translocation into the inner ear [17], causing
vertigo, nausea, vomiting, tinnitus, and even hearing impairment or hearing loss [18].
The inflammation can result through two different mechanisms. Inflammation can be a
secondary manifestation caused by bacterial toxins and/or host cytokines and inflamma-
tory mediators, producing serous labyrinthitis; or it can be caused directly by the bacteria,
leading to suppurative labyrinthitis [18]. Particularly, the latter form of labyrinthitis can
have severe complications; due to the proximity to the central nervous system, it can
progress to intracranial infectious complications, requiring prompt treatment [15,17,19].

Vestibular neuronitis (or neuritis) is often used as a synonym for labyrinthitis, being
usually assimilated as a viral infection rather than bacterial [17,20]. However, this term can
only be used when just the vestibular portion of the eighth cranial nerve is involved [18,20].
This infection results in a sudden unilateral loss of peripheral vestibular function mani-
fested in the acute phase through prolonged rotational vertigo, nausea, vomiting, postural
imbalance, and spontaneous nystagmus [21,22]. As the cause is ultimately due to a virus,
this infection’s management is symptomatic [17].

Inner ear infections can also be classified depending on their causing pathogen. In
this respect, three categories can be distinguished: viral, bacterial, and fungal infections
(Figure 1).
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2.1. Viral Infections

Viral infections are assumed to play a direct or indirect role in the causation of several
inner ear disorders [31]. Viruses can either directly affect inner ear structures; they can
induce inflammation that further produces damages; or they can increase the susceptibility
to bacterial or fungal infections, eventually leading to hearing loss [26].
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Several viral infections that can be congenitally acquired can produce SNHL [32]. A
leading cause of non-inherited SNHL is congenital cytomegalovirus infection [27,33–35].
This DNA virus is a member of the Herpesviridae family and is widely spread in the commu-
nity. Subclinical infection with cytomegalovirus can affect all bodily organs, including the
middle and the inner ear [36]. When an inner ear infection occurs, the marginal cell layer of
the stria vascularis is always infected, followed by infection progression into the Reissner’s
membrane [27]. This further leads to alteration of sensory structures by dysregulation in
ion homeostasis, particularly in the potassium circulation [37].

Rubella (or German measles) is a contagious viral infection that most frequently occurs
in the fetus during pregnancy, being one of the most common causes of hearing loss in
newborns. During the sixth to twelve weeks of pregnancy, the inner ear was reported to be
most susceptible to damage. SNHL in babies infected with the Rubella virus is associated
with hemorrhagic damage of the organ of Corti. Interruption in further development of
different parts of the inner ear and auditory nerve is also reported [15,28,38,39].

A relation between Zika virus infection and hearing loss was also reported in both
infants and adults. Zika virus was found to produce a graded distribution of cellular
damage in the cochlea, with the greatest damage in the apex, in a manner similar to
cytomegalovirus infection [32,40,41].

Recently, it has been noticed that COVID-19 infection could have deleterious effects
on the hair cells of the cochlea, despite being asymptomatic. However, further research is
needed for properly understanding the mechanism of these effects [26,42,43].

2.2. Bacterial Infections

SNHL can also result as a complication and sequela of bacterial infections, such
as meningitis [29,44]. The most common causes of bacterial meningitis in the first 90
days of life are Group B Streptococcus and Escherichia coli, while, in children, SNHL is
more frequently associated with meningitis caused by Streptococcus pneumoniae or Neisseria
meningitidis [29]. The released inflammation by-products (e.g., nitric oxide, superoxide, per-
oxynitrite) contribute to the disruption of the blood labyrinth barrier, inducing a cytotoxic
effect on the cochlea. The inner ear can also be damaged through vascular occlusion, which
may further lead to cochlear hypoxia and ischemia, and neural damage [44].

Another bacterial infection is otitis media. Generally caused by microorganisms
like Pseudomonas aeruginosa, Staphylococcus aureus, Proteus mirabilis, Klebsiella pneumonia
and Escherichia coli, this infection is mainly located in the middle ear [45,46]. Out of the
enumerated pathogens, Pseudomonas aeruginosa is one of the most common bacteria to
produce chronic suppurative otitis media and reach perilymph by entering through the
round window [30,47]. Moreover, recurring otitis media can destroy ear structures such as
small bones, seventh cranial nerve or inner ear, leading to permanent hearing loss [45].

2.3. Fungal Infections

Compared to other infection sources, fungal infections of the inner ear have only rarely
been reported [48]. These pathogens usually affect the auditory canal and middle ear arc,
often being regarded as harmless saprophytic growth [49]. However, in immunocompro-
mised individuals or patients undergoing long-term antibiotic treatment, such infections
may become clinically significant and extend to inner structures [48,49]. Other factors in
otomycotic infection progression are humidity, moisture, bathing, and self-hygiene. In
swimmers and divers, the external ear canal and tympanic membrane can be infected, and,
because of water pressure, pathogens can reach further to the middle and inner ear. The
main pathogens responsible for otomycosis are Aspergillus niger and Candida [25,50].

3. Administration Routes

Inner ear infections are challenging to treat due to their isolated location. Placed in the
temporal bone, the inner ear is protected by many anatomical and physiological barriers,
which hinder therapeutics’ delivery (Figure 2) [14,51–56].
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viations: SGC—spiral ganglion cell; SM—scala media; ST—scala tympani; StrV—stria vascularis;
SV—scala vestibuli. Reprinted from an open-access source [57].

When the inner ear gets infected, aggressive treatment is required to try to prevent
complete and permanent loss of cochleovestibular function and avoid spreading the infec-
tion to intracranial structures. Generally, the treatment includes administering anti-infective
and anti-inflammatory medications, surgical intervention for draining abscesses, and sup-
portive care for the associated symptoms [10,15]. Nonetheless, the treatment’s efficacy and
safety are highly dependent on inner ear drug delivery systems [58].

Nowadays, the first-line approach for treating inner ear disorders is the systemic deliv-
ery of medication [10,12]. It involves the oral, intravenous, or intramuscular administration
of therapeutics that are further distributed throughout the entire organism, despite being
needed only in a small body part [9,12]. This administration route has two main drawbacks:
it leads to systemic side effects and limits the drug concentration reaching the target site [9].
To avoid these issues, local drug delivery started to be utilized as an alternative [10].

The most commonly used local administration method is intratympanic drug injec-
tion [59–61]. When using this technique, the drug enters the middle ear cavity and must
remain there for a sufficient time to pass through the round or oval window and reach the
inner ear [61–63]. This administration route allows higher concentrations of medicines at
the target site without metabolism “first-pass” [11]. However, drugs do not always stay
in contact long enough with the two windows and are discharged to the Eustachian tube
before reaching the inner ear in sufficient amount [62].

Another approach is to deliver the necessary drugs directly into the inner ear cavity.
The method supposes passing a needle through either the round window or oval window
and discharging the drug load into the cochlea or vestibule, respectively [58]. Alternatively,
the drug can be released by a cochlear implant [64–67], osmotic mini-pumps [68–71], or
through reciprocating perfusion systems [72–74]. This technique significantly increases
drug bioavailability in the inner ear, having the highest efficiency among all administra-
tion possibilities [61]. Nonetheless, this is a highly invasive approach, requiring surgical
intervention [51].

A comparison of the inner ear administration routes is provided in Figure 3.
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4. Nanoparticles-Mediated Treatment

Other delivery approaches had to be explored to overcome the limitations of tradi-
tional drug administration methods [14,76]. Various inner ear delivery systems (e.g., solid
foams, hydrogels, nanoscale structures) are investigated to improve local effectiveness and
reduce systemic adverse effects [11,77].

One of the most promising solutions is to include nanoparticles (NPs) in the therapeu-
tic strategy [1,13]. Their small sizes (<1 µm) coupled with their inherent physical, chemical,
and biological properties render nanoparticulate systems suitable for crossing barriers and
efficiently treat inner ear infectious disorders [9,12,55]. In recent years, rather than simply
investigating their permeation into the inner ear, research was focused on loading drugs
into/onto NPs and transferring them to the inner ear to observe functional changes [62].

Delivering medication via NPs is considered advantageous, especially in terms
of drug stabilization for controlled release and surface modification for specific target-
ing [12,58,78,79]. After administration into the middle ear, loaded-NPs diffuse through the
round window membrane, facilitating the freed-drug passage into the cochlea [9,77]. NPs
compensate drug properties in terms of low solubility, degradation, and short half-life, this
approach reportedly leading to improved transmembrane transport, increased uptake and
internalization of drugs by targeted cells (e.g., hair cells, spiral ganglion neurons, pathogen
entities), reduced required doses, and subsequent diminished side effects [14,55,62,80,81].

To achieve such results, various NP-based delivery systems are under development
(Figure 4) [1]. Inorganic, lipid, and polymeric materials can be employed to fabricate
nanocarriers for hydrophilic and/or hydrophobic drugs to be released in a targeted and
controlled manner [12,77,80–82].
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4.1. Inorganic Nanoparticles

Metal-based NPs with inherent antimicrobial activity are one of the most extensively re-
searched materials [83,86]. Silver nanoparticles (AgNPs) are of special interest against infec-
tions, exhibiting strong activities in antibacterial, antiviral, and antifungal studies [87–91].
AgNPs can physically interact with various bacterial cells’ surface, damage the cell mem-
branes, and produce structural changes that render these pathogens more permeable [89].
Specifically, AgNPs can reach the inner ear in a dose-dependent manner after intratym-
panic administration and destroy pathogens either alone or in combination with various
antibiotic formulations [89,92]. This is a highly advantageous ability against multi-drug
resistant bacteria, such as P. aeruginosa, overcoming the drawbacks of free antibiotics and
eliminating the microorganisms with high efficacy in the ear therapy [87].

Gold nanoparticles (AuNPs) can also carry hydrophilic and hydrophobic molecules,
being also researched for imaging applications [93,94]. There are no studies in the literature
on AuNPs delivery to the inner ear yet [95], but these nanoparticles have been tested as
candidates for inner ear contrast agents [96]. Despite not obtaining a significant imaging
enhancement, the study reported successful localization of AuNPs in cochlear cells, which
is an encouraging result for future tests. Besides, biomolecules, polymers, and proteins can
be used to improve the therapeutic properties of AuNPs, such as their biocompatibility,
biodistribution, stability, and half-life [93]. For instance, AuNPs functionalized with 5-
fluorouracil showed bactericidal effects against Gram-negative bacteria and antifungal
activity against Aspergillus fumigates and Aspergillus niger [97]. Therefore, it can be expected
that combinations of AuNPs and other substances would soon be developed for inner ear
drug delivery platforms.

Superparamagnetic iron oxide nanoparticles (SPIONs) are another promising strategy
as they can be magnetically guided across the round window and precisely reach the
targeted inner ear structures [13,56,59]. Moreover, their relatively simple synthesis, low
toxicity, intrinsic antimicrobial activity, and functionalization ability are very important
properties for designing effective biocompatible nanoplatforms [98]. SPIONs cannot encap-
sulate any substance, but they can be loaded into polymeric nanoparticles or coated with
the needed drug. For inner ear drug delivery, SPIONs have been tested in combination
with PLGA, chitosan, silica, and dextran [13,51,56]. Such nanocomposites can significantly
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enhance antibiotics’ activity against both Gram-positive and Gram-negative bacteria, being
a helpful tool in treating multi-drug resistant pathogen strains infections [99–101].

Other metal-oxide based NPs that have been proven effective against inner ear-
related infectious diseases are titanium dioxide (photocatalytic effect against fungi and
bacteria) [90], zinc oxide (strong antimicrobial activity against Staphylococcus aureus, Es-
cherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa; anti-Candida albicans prop-
erties) [102,103], aluminum oxide (strong growth-inhibitory effect on E. coli) [104], silver
oxide (reasonable bactericidal activity against E. coli, P. aeruginosa, and S. aureus) [104],
copper oxide (anti-C. albicans properties) [103], calcium oxide (bactericidal activity against
E. coli and S. aureus) [97], zirconium oxide (potential inhibitory action against P. aeruginosa
and S. aureus and good inhibition against E. coli) [105].

Silica nanoparticles are also attractive for carrying medicine due to their commercial
availability, narrow particle size distribution, and biodegradability under physiological
conditions [106,107]. Particularly, mesoporous silica nanoparticles (MSNs) can be employed
to manufacture controlled-release antimicrobial platforms by encapsulating antibiotics
within their pores [108,109]. Moreover, MSNs are relatively easy to functionalize, their
surface modification improving the colloidal stability and targeting ability towards desired
cells/tissues [13,110,111]. Nanoporous silica nanoparticles can also be used in treating inner
ear diseases. They can target spiral ganglion neurons, being loaded with a brain-derived
neurotrophic factor that is released in the long term [112].

Silicon carbide nanoparticles (SiC NPs) are inert antibacterial, hemocompatible, bio-
compatible, and non-toxic ceramic NPs that have been recently researched for biomedical
applications [113,114]. SiC NPs were proven to enhance the antimicrobial activity of other
materials when used as additives, showing improved in vitro results against E. coli and S.
aureus [115]. Other ceramic nanoparticles of interest against inner ear-related pathogens
are lithium niobate (LiNbO3) [1], silicon nitride (Si3N4) [116], titanium carbide (TiC) [117],
and barium titanate (BaTiO3) [118].

4.2. Lipid Nanoparticles

Different lipid NPs have also been tested as delivery systems to the inner ear [77].
Formulations employing lipid core nanocapsules (LCNs), solid lipid NPs (SLNs), and
phospholipid-based NPs are considered attractive due to their biodegradability and ability
to deliver hydrophilic and/or lipophilic drugs [77,82].

Lipid core nanocapsules consist of a lipidic core made of triglycerides and mineral
oils, with a surrounding shell of lecithin, polyethylene glycol, or poloxamers as stabilizing
agents [13,55,119]. The LCNs’ structure can be modified to include various hydrophobic
drugs and control their release kinetics [13,55]. Studies have shown promising results
concerning LCNs permeation through the round window membrane and distribution
throughout human inner ear cell populations [119], proving these particles’ potential in
treating inner ear infections.

Solid lipid nanoparticles are also researched for delivering drugs to the inner ear [120].
SLNs are sub-micron colloidal carriers with unique properties, such as high drug loading
and interaction of phases at the interfaces, which render them attractive for improving
pharmaceuticals performance [121,122]. SLNs are reported to be a better alternative to
liquid systems, as they form biocompatible and biodegradable lipids that are solid at
body temperature, leading to improved control over drug delivery [77]. SLNs encapsulate
the drug, improve its stability, and increase in vivo bioavailability, the delivery system
exhibiting protective effects on the cochlea [123]. As a novel alternative to antibiotics, SLNs
loaded with antibacterial oligonucleotide therapeutics have been investigated against E.
coli, with promising results [124].

Phospholipid-based NPs are advantageous structures as they can encapsulate hy-
drophobic molecules in their phospholipid layer and hydrophilic molecules in their aque-
ous core. Due to their similarity with plasma membranes, amphiphilic liposomes can
transport their load across the round window membrane and deliver it inside the targeted
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cells [13,56,125]. Moreover, liposomes allow surface modification with various chemical
and biological entities, such as polyethylene glycol, antibodies, peptides, carbohydrates,
chitosan, hyaluronic acid, and folic acid, leading to multifunctional nanoparticles [13,55]
(Figure 5).
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4.3. Polymeric Nanoparticles

The variety and versatility of polymers have also attracted interest towards developing
nanoplatforms for infection treatment. Several polymeric nanostructures have been shown
effective as antimicrobials against ear-related pathogens, such as E. coli, P. aeruginosa, S.
aureus, K. pneumonia, and C. albicans [129]. Nonetheless, polymers are most frequently
studied as drug carriers.

One of the most extensively researched polymers is poly (lactic-co-glycolic acid)
(PLGA), a Food and Drug Administration (FDA) and European Medicines Agency (EMA)-
approved biodegradable copolymer that can encapsulate diverse molecules (e.g., proteins,
steroids, antibiotics, nucleic acids) [55]. Due to their ability to adapt to specific requirements
concerning drug properties and target tissue, PLGA NPs have a great potential in local
inner ear delivery [55,56]. For instance, it has been demonstrated that rhodamine-loaded
PLGA NPs can permeate through the round window membrane when applied locally,
leading to a higher cochlear uptake than by systemic administration [56]. Moreover, func-
tionalization with hydrophilic surface molecules has been proved to enhance permeability
and successfully deliver rhodamine, SPIONs, and steroids in the inner ear, both in animal
and human models [82].

Chitosan is another non-toxic, safe, and biodegradable polymer that can help increase
the efficiency of inner ear disease treatment [79,125,130,131]. In addition to its antibacterial
and antifungal activity [132,133], chitosan has a great potential in delivering therapeutics
in a controlled and sustained manner from the middle ear to the inner ear without altering
inner ear structures [134]. Besides, engineered fluorescence traceable chitosan NPs were
recently shown to pass through the oval window into the vestibule. The successful exper-
iment performed in guinea pigs opens the door for designing such delivery systems for
treating peripheral vestibular diseases [82].

Other polymers and copolymers of interest for drug delivery include, but are not
limited to, hyaluronic acid, poloxamer 407, poly (L-lactic acid) (PLLA), poly ε-caprolactone
(PCL), polyethylene glycol (PEG), PLLA-PEG, and PLLA-PEG-PLLA [2,125].

A special class of polymeric NPs is represented by polymersomes. Moreover, called
multifunctional NPs, polymersomes are amphiphilic copolymers that self-assemble into
membranes of hydrophobic units around an aqueous core and a hydrophilic corona. The ob-
tained structure resembles liposomes and has the advantage of controlling membrane thick-
ness by the molecular weight of the copolymer’s hydrophobic block to achieve stronger,
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thicker, and more stable membranes [13]. Similar to liposome-based delivery systems, poly-
mersomes can carry hydrophilic drugs in their core and hydrophobic ones in the membrane,
the biomimetic structure enabling good immune tolerance [55]. Generally, polymersomes
used in inner ear delivery consist of di-block copolymers (e.g., poly(ethylene glycol)-b-
poly(ε-caprolactone)(PEG-b-PCL) or poly(2- hydroxyethyl aspartamide) (PHEA) [55]) that,
at room temperature, form quite stable systems with the encapsulated drug [125]. In this
respect, various multifunctional polymersomes were studied for inner ear drug delivery
targeting specific tissue or conjugated with ferromagnetic materials [13].

4.4. Nanoparticles Incorporated in Nanocomposite Materials

Increasing scientific interest has also been observed in developing antimicrobial
nanocomposite materials incorporating some of the above-described nanoparticles. In
this regard, Banerjee et al. [135] have created an iodine-doped chitosan nanoparticle com-
posite that proved synergic activity of the three antimicrobial components against E. coli,
while minimizing AgNPs concentration and subsequent toxicity towards mammalian cells.
Ziąbka et al. [88] proposed the incorporation of AgNPs into acrylonitrile butadiene styrene
(ABS) polymer prosthesis to avoid infections (e.g., otitis media and chronic otitis media) in
individuals requiring ossicular replacement prostheses.

Danti et al. [1] have focused their research on incorporating lithium niobate NPs into
poly (vinylidene fluoride-trifluoro ethylene) fibers via electrospinning. The composite
fibrous structure showed an enhanced piezoelectric response, supported human neural-
like cell growth in vitro, and showed antibacterial activity against P. aeruginosa, being
considered a promising candidate material for next-generation cochlear implants.

Another composite nanomaterial that may be of interest for drug delivery to the inner
ear is represented by uniform magnetic spheres with magnetic core and mesoporous silica
shell, developed by Zhao et al. [136]. The outer ceramic layer presents a high enough
surface area and pore volume for encapsulating drugs, while the inner Fe3O4/Fe core
endows this nanocomposite with magnetic properties, which are beneficial for carrying the
drug to the targeted site. Namazi et al. [137] have also considered ceramic nanoparticles
for creating a nanocomposite controlled-release system. The researchers fabricated an
antibiotic-loaded hydroxymethylcellulose-MSNs composite hydrogel film intended for
wound healing; however, its antibacterial activity against S. aureus can be useful in ear
infections treatment as well.

4.5. Nanomaterials Safety

The studies in the field have also been focused on the safety of these nanomaterials,
not only on treatment efficacy. In vitro and in vivo models were employed for assessing
the effectiveness and potential side effects of several nanoparticles, focusing on parameters
like cellular uptake, distribution in inner ear tissues, survival rates of treated cells, hearing
threshold, and morphological changes after NPs administration.

In vitro tests are generally performed on cells from the House Ear Institute-Organ
of Corti 1 (HEI-OC1) or Mouse Organ of Corti (OC-k3) cell lines, as they express many
inner ear biomarkers [1,96]. Other models involve cells isolated from different inner ear
structures of guinea pigs, rats, or mice cultured in situ [82,138–140]. Regardless of cell
provenience, further experimental steps are similar. The most used method for measuring
cellular metabolism as an indicator of cell viability, proliferation, and cytotoxicity is the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It assumes the
seeding onto a 96-well plate of cells exposed to different concentrations of NPs, followed
by 24 h incubation. Then, the culture medium is discarded, cells are rinsed twice with
phosphate-buffered saline, and MTT solution is added. After four more hours of incubation,
cells are solubilized with dimethyl sulfoxide, and the plate is left on a shaker in the dark
for 2 h. In the end, the absorbance is measured at 570 nm and compared with control
samples [96,141]. Similarly, cell viability can be determined by the CCK-8 (cell counting
kit-8) assay, the main difference consisting of monitoring the absorbance at a different
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wavelength (i.e., 450 nm) [142]. Another colorimetric method for investigating cytotoxic-
ity is the 3-(4,5-dimethylthiazol2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium (MTS) assay in which cells are seeded to the 96-well plate, left 24 h to adhere,
then treated with the NPs suspended in a complete medium at various concentrations.
Cells are analyzed at 24, 48, and 72 h after treatment; at the end of each time point, the cells’
medium is changed with complete medium plus MTS-phenazine methosulfate mixture
and left for three more hours to incubate. In the end, the absorbance is read at 492 nm and
normalized to the average value of untreated samples [1].

In what concerns in vivo studies, they usually imply NPs administration to anes-
thetized animals by intratympanic/trans-tympanic injection, followed by different tests
depending on what is desired to be measured. Experiments may be performed on alive
laboratory animals if the auditory function has to be tested, or, at a certain time after
treatment administration, the animals are decapitated under deep anesthesia, and the
tissues of interest are carefully explanted for further analyses.

Table 1 summarizes several identified in vitro and in vivo studies investigating the
potential adverse effects of nanoparticles on inner ear cells.

Table 1. Summary of studies on nanomaterials potential side effects on inner ear cells.

Tested
Nanomaterial

Nanomaterial
Properties

Type of
Study Type of Cells Experimental

Design Observations Refs.

LCNs
Size: 50 nm

Polydispersity
index: <0.2

In vitro

Cochlear cells
isolated from

newborn
Sprague-Dawley

rats

The cells were
treated with LNCs
at concentrations

varying between 0
and 1.5 mg/mL for

24 h.

Survival rates of treated cells,
depending on concentration:

−1.5 mg/mL—37.96%
−0.15 mg/mL—86.41%
−0.015 mg/mL—80.06%

Surviving cells from all treated
groups had fewer LNCs in their

cytoplasm.

[82,138]

LCNs

Nanoparticle size:
50 nm

Pledget size: 8
mm3

LNC
concentration:

20.5 g/L

In vivo

Interdental cells,
stria marginal

cells, outer hair
cells, inner hair

cells,
semi-circular

canal endothelial
cells, cochlear
nerve of rats

A small piece of
gelatin sponge

pledget saturated
with LNCs was

placed on
the round window
membrane, and it
was there for D28
for ABR study and

2 h for neural
elements studies.

None of the animals manifested
middle ear infections during the

study.
No inflammation was detected

in the inner ear
LNC treatment did not induce

apoptosis.
The inner ear neural elements

were preserved.

[138]

Resveratrol-
loaded PLGA
nanoparticles

Size:
135.5 ± 37.3 nm In vitro HEI-OC1 and

SVK-1 cell line

The cells were
treated with blank

nanoparticle,
resveratrol, and

resveratrol-loaded
nanoparticles at

concentrations up
to 1 mg/mL for 24

h.

No cell line’s viability was
affected by blank nanoparticles

in concentrations below 0.6
mg/mL

At a concentration of 1 mg/mL,
blank nanoparticles produced

the death of 56% cells from
HEI-OC1 cell line
Resveratrol and

resveratrol-loaded nanoparticles
lead to negligible cell death

rates.

[82,143]

Polyethylenimine
(PEI)-plasmid

DNA
nanoparticles

Size: ~20–100 nm
Shape: almost

spherical
In vitro

Cochlear
epithelium

isolated from
C57BL/6J male
and female mice

The cochlear
explants were

treated with linear
nanoparticle

polyplexes loaded
with plasmid DNA
at various weight

ratios; the cell
viability was

assessed in a 0–48 h
interval after
transfection.

The use of a higher linear
polyethylenimine-plasmid DNA
ratio conducted to a significant
time-dependent reduction in

hair cell viability
Oto-nanotoxicity of the tested
material started to manifest

immediately after the addition
of the poly-plex, especially outer
hair cells were noted to be more
vulnerable in the acute phase.

[82,139]
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Table 1. Cont.

Tested
Nanomaterial

Nanomaterial
Properties

Type of
Study Type of Cells Experimental

Design Observations Refs.

SPIONs Size: 100 and 500
nm In vitro

EC5V cells
derived from the
inner ear ampulla

of semicircular
canals.

The cells were
treated with

SPIONs at final
concentrations,

depending on size:
100 nm—3 × 1010, 3

× 109, 3 × 108

NP/mL
500 nm—7 × 107, 7
× 106 NP/mL.

A lower number of surviving
cells were reported in the 100

nm treated group than in the 500
nm and control

groupsApoptotic cells were
more frequently observed in the

100 nm group than in the 500
nm and control groups.

[82,140]

SPIONs Size: 200 nm In vivo
Inner ear cells of

albino male
guinea pigs

In each animal, on
one ear, a 0.4 mm

scala tympani
cochleostomy, 1.5

mm under the
round window

ridge was
performed through

a posterior
approach and

bullostomy and 1
µL of saline serum
was injected. In the
other ear, a bolus of

1 µL of
nanoparticles was
performed using
the same method.

At day 7, hearing threshold shift
showed no difference between

saline-treated ears and
nanoparticles treated ears.

[140]

AuNPs Size: 50 nm
Shape: spherical In vitro HEI-OC1 cell line

The cells were
treated with

nanoparticles at
0–100 µM for up to

6 days

There were not reported any
significant changes in cell

viability.
[82,96]

AuNPs Size: 50 nm
Shape: spherical In vivo Mouse cochlear

cells

Gold nanoparticles
were applied

in vivo to mouse
cochleae

The injected nanoparticles fully
diffused throughout the inner

ear and were successfully
localized within the cells.

The presence of nanoparticles
had no observable effect on the

morphology of the hair cells.
Gold nanoparticles do not

enhance X-ray attenuation in a
significant manner. Hence they

are not considered suitable
computed tomography imaging
contrast agents for the inner ear.

[96]

Methoxy poly
(ethylene

glycol)-polylactic
acid

nanoparticles
loaded with

dexamethasone

Size: 130 nm
Shape: spherical In vivo Inner ear cells of

male guinea pigs

The treatment was
administered

intraperitoneally at
a dose of 10 mg/kg

and at a
concentration of 10
mg/mL, 1 h before
cisplatin injection.
Three days after
treatment, the
animals were

euthanized, and
their tissues were
prepared for the

examination.

The auditory brainstem
response threshold was not

significantly changed, indicating
nanoparticles’ nontoxicity.

A single injection of
nanoparticles was reported to
provide significant functional
and histological protection of
the cochlea from the cisplatin,
which was similar to the effect
of repeated injection of the free

drug for 3 days.

[144]
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Table 1. Cont.

Tested
Nanomaterial

Nanomaterial
Properties

Type of
Study Type of Cells Experimental

Design Observations Refs.

Unmodified
PLGA-

nanoparticles,
surface modified
with poloxamer
407, chitosan, or

methoxy
poly(ethylene

glycol)

Size: 100–200 nm
Relatively

uniform size
distribution

In vitro HEI-OC1 cell line

The cells were
treated with

nanoparticles at
concentrations

varying between 0
and 80 mg/mL for

24 h

IC50 values:
(1) unmodified NPs—71.30 ±

4.16 mg/mL
(2) P407-modified NPs—60.53 ±

0.55 mg/mL
(3) Chitosan-modified

NPs—65.39 ± 0.47 mg/mL
(4) mPEG-modified NPs—81.70

± 1.04 mg/mL
Uptake efficiencies:

(1) unmodified NPs—79.7%
(2) P407-modified NPs—91.4%

(3) Chitosan-modified
NPs—58.3%

(4) mPEG-modified NPs—48.1%

[82,142]

Unmodified
PLGA-

nanoparticles,
surface modified
with poloxamer
407, chitosan, or

methoxypoly
(ethylene glycol)

Size: 100–200 nm
Relatively

uniform size
distribution

In vivo
Inner ear cells of

albino guinea
pigs

The four types of
nanoparticles were

injected at a
concentration of 25

mg/mL into the
unilateral tympanic
cavity of the guinea

pigs. They were
examined 24 h after

administration

No inflammation was detected
in the inner ear

Several tissues, such as stria
vascularis, spiral ligament,
organ of Corti, and spiral

ganglion cells, barely underwent
morphological alterations after
nanoparticles administration

The hydrophilic coating of
PLGA nanoparticles played an

important role in inner ear
transport, particularly the P407

modification
The surface-modified

nanoparticles were considerably
localized in the spiral ligament,
stria vascularis, organ of Corti,
and spiral ganglion cells, while
the unmodified particles were

distributed marginally

[142]

Chitosan
nanoparticles

Average size:
152.7 nm

Polydispersity
index: 0.135

Shape: spherical

In vitro HEI-OC1 cell line

The cells were
treated with

nanoparticles at
concentrations

varying between 0
and 2.5 mg/mL for

24 h

There was not reported any
significant change in cell

viability
Nanoparticles were internalized

in cells with an 89.1% uptake
efficiency

[82,130]

Chitosan
nanoparticles

Average size:
152.7 nm

Polydispersity
index: 0.135

Shape: spherical

In vivo Inner ear cells of
guinea pigs

The nanoparticles
were injected at a

concentration of 2.5
mg/mL into the

unilateral tympanic
cavity of the guinea
pigs. The animals
were decapitated 1

h after the
treatment and

examined after 24 h

The number of surviving hair
cells hardly decreased,

indicating the safety of the
tested nanoparticles.

The chitosan nanoparticles were
successfully delivered into the

vestibule, accumulating
significantly more in the

vestibular system than in the
cochlear tissues

The nanoparticle uptake in
saccular supporting cells was

much higher compared to
cochlear hair cells of middle and

apical turns

[130]
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Table 1. Cont.

Tested
Nanomaterial

Nanomaterial
Properties

Type of
Study Type of Cells Experimental

Design Observations Refs.

Lipid
nanoparticles-
encapsulated
brain-derived
neurotrophic
factor (BDNF)

mRNA

Lipid
composition:

SS-cleavable and
pH-activated

lipid-like mate-
rial:dioleolyphosphatidyl

ethanolamine
(DOPE):cholesterol=

3:3:4

In vivo
Inner ear cells of
Hartley guinea

pigs

The animals were
intramuscularly

injected with
gentamicin,

promptly followed
by intravenous

injection of
ethacrynic acid. On

day 1, for early
therapy, or day 14,

for late therapy, 5 µl
of lipid

nanoparticles
loaded with 0.1
mg/mL BDNF

-enhanced green
fluorescent protein

mRNA was
administered

On day 1 after gentamicin
exposure, the auditory
thresholds of the group

administered with nanoparticles
significantly improved

compared to the sham control
group.

The auditory thresholds did not
differ significantly between the
sham control group and animals
administered with nanoparticles

14 days after gentamicin
exposure.

The outer hair cells in the
cochlea of the group treated 1
day after gentamicin exposure
were significantly decreased
compared with those in the

control group, while inner hair
cells counts had no significant

differences in all turns among all
groups.

[145]

Lithium niobate
NPs

Size range:
200–600 nm

Average size:
392.25 nm

Polydispersity
index: 0.517

In vitro OC-k3 cell line

(1) Cytotoxicity of
nanoparticles was
investigated using
the MTS assay. The

OC-k3 cells were
seeded in 96-well

plates at the
concentration of

7000 cells/well in
100 µL of medium
and left to adhere

for 24 h at ambient
temperature after

which were treated
with the compound

resuspended in a
complete medium
at three different

concentrations: 0.85,
15, and 74 ng/mL.

Vitality was
analyzed 24, 48, and
72 h after treatment.

(2) Similarly, a
morphological test
was performed by

seeding and
culturing the cells
on a round glass

slide.

The tested nanoparticles
induced a significant increase in

cell viability after 72 h of
incubation at the concentrations

of 0.0085 and 0.015 µg/mL.
The morphological test proved a
good state of cellular health. No

cell morphology alterations
were noticed at any of the tested

doses and time points.

[1]

Zhang et al. [138] demonstrated that an increase in LCNs concentration leads to a
decrease in the in vitro viability of the inner ear cochlea cells. Nonetheless, LCNs with
sizes below 100 nm are biodegradable, and their in vivo administration does not produce
any infection, inflammation, hearing impairment, cell death, or morphological changes in
the inner ear. Zhou et al. [139] reported a time-dependent decrease in cell viability of mice
cultured cochlear epithelium treated with linear PEI-plasmid DNA-NPs, and several con-
cerns are to be solved before in vivo testing (e.g., PEI limited biodegradability, high cationic
charge density, production of intracellular reactive oxygen species). An ototoxicity-size
dependency was observed in vitro by Nguyen et al. [140]. However, in vivo administra-
tion of SPIONs of 200 nm has shown no difference in hearing threshold compared to
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saline-treated ears, rendering these NPs as promising vectors for controlled delivery to
cochlear targeted cells. Musazzi et al. [143] have registered increasing cell death rates with
increasing doses of resveratrol-loaded PLGA NPs. Particularly, cell viability decreased
in HEI-OC1 cells exposed to high concentrations of the tested NPs, while SVK-1 cells
proved to be more resistant to NPs exposure; nonetheless, future experiments are needed
for deeply investigating cellular uptake mechanisms and intracellular release of the loaded
drug. PLGA NPs were also evaluated by Wen et al. [142]. The researchers tested different
surface-modified polymer NPs, concluding that biocompatible PLGA-based nanocarriers,
if functionalized with hydrophilic molecules, have a greater capacity to penetrate outer
hair cells, thus allowing a more efficient hearing loss therapy. No significant toxicity, no
observable changes in cell viability, cell morphology, or auditory brainstem response were
reported for AuNPs [96], chitosan NPs [130], methoxy poly (ethylene glycol)-polylactic
acid nanoparticles loaded with dexamethasone [144], lipid nanoparticles-encapsulated
brain-derived neurotrophic factor mRNA [145], and lithium niobate NPs [1].

In conclusion, a general observation that can be drawn from these studies is that
ototoxicity is highly dependent on nanoparticle size and concentration, while NPs func-
tionalization dictates distribution into targeted tissues and uptake efficiency. Hence, these
factors must be thoroughly considered when designing nanoparticles-based treatments for
the inner ear.

5. Conclusions and Future Perspectives

To summarize, the inner ear is sensitive to various bacterial, viral, and fungal in-
fections, which may produce permanent sensorineural hearing loss. If left untreated,
such infections can progress to neighboring tissues and cause intracranial infectious com-
plications. Therefore, prompt treatment is required. The necessary medication can be
administered in several ways, such as systemic delivery, intratympanic injection, and direct
inner ear delivery. However, each method has limitations in overcoming the inner ear
barriers.

A promising solution for an efficient and targeted treatment of inner ear infections
comes from the field of nanotechnology. Different types of nanoparticles were designed and
tested either directly against pathogens or as carriers of various drugs. Several inorganic,
lipid and polymeric-based nanoplatforms were shown to improve drugs’ local applica-
tion, enhancing antimicrobial performance while diminishing the systemic side effects.
Studies were also performed on the safety of nanoparticles’ use for inner ear delivery,
demonstrating that most of these materials are harmless for healthy tissues.

However, there is a lack of information concerning nanomaterials ear toxicity in
human beings, possible adverse effects in organ systems which are not generally considered
primary ototoxic targets, and long-term impact on ear health. Hence, future studies must
also consider elucidating these aspects of nanoparticle-mediated treatments.

A promising future perspective for treating inner ear infections would be the devel-
opment of biocompatible multifunctional nanoparticles capable of targeting specific cells,
deliver drugs in a controlled manner, and biodegrade into harmless entities that can be
easily eliminated from the organism. Alternatively, multifunctionality should be sought by
designing synergic composite nanomaterials.

To conclude, current research results indicate the great potential of nanoparticles
in treating various inner ear diseases. It can be expected that certain nanomaterials or
nano-enabled products would soon be available as therapeutic options. Nonetheless, more
in vivo studies must be carried out before moving to clinical applications.
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