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Abstract: In this study, the nonlinear dynamics of nanoparticle concentration in a colloidal suspension
(nanofluid) were theoretically studied under the action of a light field with constant intensity by
considering concentration convection. The heat and nanoparticle transfer processes that occur
in this case are associated with the phenomenon of thermal diffusion, which is considered to be
positive in our work. Two exact analytical solutions of a nonlinear Burgers-Huxley-type equation
were derived and investigated, one of which was presented in the form of a solitary concentration
wave. These solutions were derived considering the dependence of the coefficients of thermal
conductivity, viscosity, and absorption of radiation on the nanoparticle concentration in the nanofluid.
Furthermore, an expression was obtained for the solitary wave velocity, which depends on the
absorption coefficient and intensity of the light wave. Numerical estimates of the concentration wave
velocity for a specific nanofluid—water/silver—are given. The results of this study can be useful in
the creation of next-generation solar collectors.

Keywords: nanofluid; nonlinear dynamics; colloidal suspension; solitary wave; Burgers–Huxley equation

1. Introduction

In recent years, the optical properties of colloidal suspensions (nanofluids) have been
actively studied [1–6]. Researchers are particularly interested in nonlinear optical effects
that are realized in such media. In particular, studies have focused on four-wave interac-
tions and the self-action of light waves [7–10]. Without detailed knowledge of the optical
properties of nanofluids, it is impossible to create next-generation solar collectors [11–15].
For example, [16] summarized the results of studies on the nanocolloids of ionic liquids
(i.e., ionic liquids with nanoparticles in suspension), which can be directly applied to
convective heat transfer. In [17], machine learning was used to develop Gaussian process
regression models to describe the statistical correlations between the thermal conductivity
and physical parameters of two-phase nanofluid components. For this purpose, approxi-
mately 300 samples of nanofluids, dispersions of metal, and ceramic nanoparticles in water,
ethylenecol, and transformer oil have been investigated. The modeling approach demon-
strates a high degree of accuracy and stability, facilitating efficient and inexpensive thermal
conductivity estimates. Work [18] considered a liquid consisting of a stable colloidal
suspension of magnetic maghemite nanoparticles in water. It has been found that these
nanoparticles constitute an excellent absorber of solar radiation and simultaneously an
amplifier of thermoelectric power output with a very small volume fraction when the liquid
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is heated from above. These results demonstrate that the investigated nanofluid has great
potential as a coolant for the co-production of heat and energy in completely new hybrid
flat solar thermal collectors, for which top heating geometry is required. The main mecha-
nisms for optical nonlinearity in these cases are the phenomena of thermal diffusion and
electrostriction of nanoparticles [19,20]. Despite the many studies on this problem [21–25],
several questions still remain. In particular, the dynamics of the concentration of nanofluid
particles are unknown in the presence of concentration dependences on the coefficients of
the thermal conductivity, viscosity, and absorption of radiation of the medium. Providing
a theoretical description of the processes of heat and mass transfer for the nanofluid and
radiation system is fraught with serious mathematical difficulties that are associated with
the search for analytical solutions of the corresponding nonlinear equations. In this study,
we developed a theoretical model for the dynamics of the concentration of nanoparticles
in a liquid-phase medium when subjected to constant-intensity laser irradiation. Further,
the study considers the dependence of the coefficients of absorption of radiation, thermal
conductivity, and viscosity of the medium on the concentration of nanoparticles. It should
be noted that, in the works cited above, the dynamics of the concentration of nanoparticles
were studied assuming constant values of these coefficients.

2. Theoretical Model

We consider that the particle sizes satisfy the following condition: a0 << λ, where a0
is the linear size; and λ is the wavelength of light. Thus, we do not consider diffraction
and light scattering processes. We also exclude the processes associated with particle
sedimentation.

Let us consider a liquid-phase medium with nanoparticles irradiated by a light beam
of intensity I0 that is uniformly distributed over a region (Figure 1).
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Temperature and concentration gradients arise as a result of the action of the light
field in the medium, and are then used to determine the heat- and mass-transfer processes
(Soret effect). These phenomena are described by a system of balanced equations for the
temperature and particles [26,27].
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We define the system of balanced equations for heat conduction and the mass of
nanoparticles transferred as follows:

Cpρ
∂T
∂t

= (λ(C)
→

gradT) + α(C)I0, (1)

∂C
∂t

= (D
→

gradC) + DT ÷ (C(1− C)
→

gradT)−
→
V·

→
gradC, (2)

where T is the temperature of the medium; C is the volume concentration of the medium;
λ(C) is the thermal conductivity of the medium; α(C) is the absorption coefficient of the
light wave; D is the diffusion coefficient of nanoparticles; DT Tis the thermal diffusion
coefficient; V is the concentration convection velocity; and Cp and ρ are known thermo-
physical constants. It should be noted that, in Equation (2), we take into account the

incompressibility of the nanofluid:
→
V = 0 [27].

We now consider the one-dimensional case, neglecting the Dufour effect owing to
its small contribution. We do not consider flows caused by the forces of pressure on the
particles from the side of the light field. In further calculations, we assume:(

λ(C)
∂T
∂x

)
≈ λ(C)

∂2T
∂x2 ,÷

(
D

∂C
∂x

)
≈ D

∂C
∂x

, (3)

(C(1− C)gradT) ≈ C(1− C)
∂2T
∂x2 . (4)

The validity of these approximations can be verified by direct calculations. We study
the dynamics of nanoparticles against the background of the stationary temperature of
the medium, i.e., ∂T/∂t = 0 (thermal processes are assumed to be 2–3 orders of magnitude
faster than diffusion). We focus on processes with C � 1; this inequality ensures that the
coagulation (coalescence) of nanoparticles can be disregarded.

According to theoretical and experimental studies [28,29], the concentration depen-
dence of the thermal conductivity of a medium at low concentrations can be considered to
be linear, as follows:

λ(C) = λ0(1 + pC), (5)

where λ0 is the value of the thermal conductivity coefficient of the fluid (without nanopar-
ticles), and p is a linear coefficient. We consider the concentration dependence of the light
absorption coefficient to be of the form: α = βC (where β exceeds zero). Given the stationary
temperature regime, the approximations (Equations (4) and (5)), and low concentration,
we obtain the following from the heat equation:

∂2T
∂x2 =

−βC
λ0(1 + pC)

I0 ≈ −
βC
λ0

I0(1− pC)(pC < 1), (6)

Using the approximations in Equations (3), (4) and (6), Equation (2) can be rewritten
as follows:

∂C
∂t

= D
∂2C
∂x2 −

DT βI0

λ0
(1− pC)C2 −V

∂C
∂x

, (7)

For a complete description of the transport processes in the system under consider-
ation, Equation (7) must be supplemented by the Navier-Stokes equation (to determine
the velocity, V). In this case, the formulated problem can be solved numerically [25]. How-
ever, here, we use a different approach to derive the analytical solution. In particular, we
represent the convective velocity in the following form:

V(C) =
η(C)
ρ(C)l

, (8)
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where η(C) is the dynamic viscosity coefficient of the nanofluid; ρ(C) is its density; and l is
the characteristic length of the system, the value of which is determined later.

We consider the dependence of the viscosity coefficient on concentration to be linear,
such that:

η(C) = η0(1 + γC), (9)

where η0 is the value of the viscosity coefficient of the base fluid devoid of nanoparticles. A
similar dependence was obtained theoretically and experimentally, as confirmed in previ-
ous studies [28–30]. As for ρ(C), a linear dependence on concentration is also permissible
here [31,32]:

ρ = ρ0(1 + χC), (10)

where ρ0 is the average density of the medium, and χ is the coefficient of the concentration
expansion. As γ� χ is real, we consider the density dependence on concentration to be
insignificant.

Therefore, the expression for the velocity (Equation (8)) can be represented using
Equations (9) and (10):

V(C) =
η0(1 + γC)
ρ0l(1 + χC)

≈ η0

ρ0l
(1 + γC), (11)

As a result, the diffusion equation (Equation (7)) can be rewritten as follows:

∂C
∂t

= D
∂2C
∂x2 −

η0

lρ0
(1 + γC)

∂C
∂x
− DT βI0

λ0
C2(1− pC), (12)

We now introduce the dimensionless variables and parameterize Equation (12). As a
result, we obtain:

∂C
∂τ

=
∂2C
∂y2 − δ

∂C
∂y
− δγC

∂C
∂y
− C2(1− pC), (13a)

The following notation is accepted here:

τ =
ST DβI0

λ0
t, y =

1√
b

x, b =
λ0

ST βI0
,
√

b = l, δ =
η0

ρ0D
, (13b)

Thus, we demonstrate that light-induced thermal diffusion in nanofluids, in the low-
particle-concentration approximation, against the background of a steady temperature, and
taking into account concentration convection, can be described by nonlinear Equation (13a),
which differs from the Burgers–Huxley equation [33] owing to the derivative in the last
linear term.

First, we consider the two spatially homogeneous stationary states derived from
C2(1− pC) = 0, which correspond to the roots of the equation, namely, C1 = C2 = 0,
C3 = 1/p(p > 1). The kinetics of a dissipative system strongly depend on the stabilities of
the stationary states. In our case, the states C = C1,2 are twofold degenerate and unstable
(they contain derivatives from the source F′(C) > 0), whereas state C = C13 is stable. Thus,
the medium studied herein is not bistable, unlike that studied by Ognev et al. [34].

We note that similar parabolic equations with cubic nonlinearities have been consid-
ered in previously published studies, in which they were applied to a model dissipative
medium with arbitrary parameters [34], and to a nanofluid + radiation system [35,36]. We
look for particular solutions in the form of the Cole-Hopf transform [36]:

C(y, τ) =
W ′y
W
·µ, W = W(y, τ), (14)

where µ is a parameter, and ′ denotes the derivative.
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By substituting Equation (14) into (13a) and equating the coefficients for the various
powers of W to zero, we obtain an overdetermined system of equations for function
W(y, µ):

W ′′
yτ = W ′′′

yyy − δW ′′
yy, (15)

W ′τ = 3W ′′
yy + δγµW ′′

yy + (µ− δ)W ′y, (16)

pµ2 + δµ + 2 = 0, (17)

From the last equation of this system, we obtain the values of parameter µ:

µ1,2 =
1

2p
, (18)

The estimates of parameters γ and δ, which are provided below, show that roots µ1,2
are real. Furthermore, by integrating Equation (15) with respect to variable y, we obtain:

W ′τ = W ′′
yy − δW ′y + C1(τ), (19)

Using Equation (16), we obtain:

(2 + δγ)W ′′
yy + µW ′y + C1(τ) = 0, (20)

The solution for this equation can be represented as:

W(y, τ) =
C1(τ)

µ
y + C2(τ) + C3(τ)exp(−ωy), (21)

where ω = µ/(2 + δγµ).
Ci(τ) can be determined using Equations (20) and (21), and it can be used to express

the solution for function W(y, τ) as follows:

W(y, τ) = C̃1

((
1− δ

µ

)
+

1
µ

y
)

τ + C̃2 + C̃3exp(ω(ω + δ)τ −ωy), (22)

where C̃i are constants.
According to Equations (14) and (22), the desired concentration can be represented as:

C(y, τ) = µ
C̃1 −ωC̃3exp(ω(ω + δ)τ −ωy)

Ć1((µ− δ)τ + y) + C̃2 + C̃3exp(ω(ω + δ)τ −ωy)
, (23)

3. Solution Analysis

In this section, we examine the dependence of the determined exact solution (23)
on parameters µ, ω, and δ. Parameter δ is estimated to be ≈ 105 by assuming that
η0 = 10−3 kg/(m·s), ρ0= 103 kg/m3, and D = 10−11 m2/s in Equation (13a). Furthermore,
from the findings of previous studies [24–26], it follows that p ≈ 1 ÷ 1.5. Then, we must
consider that 4p� δ2γ2 in Equation (18). Therefore, for sufficiently accurate roots µ1,2, we
obtain µ1 = −2/δ, ω1 = −2, µ2 = −δ/p, ω2 = −1/p.

Furthermore, by substituting the corresponding expressions for parameters and δ
(their estimates) into Equation (23), we obtain two solutions:

C1(y, τ, µ1) =
2

δγ

1 + 2c3exp(−2(δτ − y))
(δτ − y) + c2 − c3exp

, (24)

C2(y, τ, µ2) = δγ, (25)

Here, c2 and c3 are the newly redefined constants.
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Let us consider Equation (24), the graph of which is shown in Figure 2; we see that
it is a function of the variable traveling wave, z = (δτ − y). On the graph, the solution is
presented in the form of soliton-like pulses moving to the right (with increasing time).
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A distinctive feature of Equation (25) is the presence in the denominator of the
(δ(γ/p− 1)τ − y) term. Clearly, the nature of curve C(y) in Equation (25) strongly de-
pends on the γ/p ratio. When plotting the function, we set γ/p = 3 (see Figure 3). Note
that the wave-pulse profiles are not similar in this case.
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The velocity of the wave front of Equation (24) can be determined using Equation (13b).
As a result, we obtain:

ν =
η0

ρ0
√

b
. (26)

The speed depends on the thermodynamic, hydrodynamic, and optical characteristics
of the nanofluid + radiation system. It follows from Equations (26) and (13b) that, in the
case of anomalous thermal diffusion (ST < 0—nanoparticles move in a higher-temperature
region), the velocity acquires an imaginary term, which has no physical meaning. We
believe that this case requires a separate consideration, which we plan to carry out in
the future.

Wenumerically estimate the wavefront propagation velocity according to Equation (26)
and consider water/silver as a nanofluid. Because the absorption coefficient β is present
in Equation (26) through parameter b (see Equation (13b)), its evaluation requires the
following equation [37]:

β =
12π

λ
CIm(

m2 − 1
m2 + 2

),

where m = mparticles/m f luid, m = n + ik.
Here, by assuming mp = 0.15 + 3.5i, m f = 1.33 + 0.2i, λ = 6.5·10−7 m, and

C = 1·10−4, we obtain β ≈ 2·103. Furthermore, by substituting η0 = 0.003 kg/m·s,
ρ0 = 1·103, I0 = 1·105 W/m2, and λ0 = 0.5 W/m·K into Equations (26) and (13b), we obtain
a velocity estimate: v ≈ 2·10−3 m/s. The estimated velocity value depends on the initial
concentration distribution, which can be obtained from Equation (24) for τ = 0. It should
be noted that our approach cannot solve the problem analytically under arbitrary initial
conditions.

4. Conclusions

1. Two exact analytical solutions of a nonlinear one-dimensional Burgers–Huxley-type
equation were obtained. These solutions describe the dynamics of the concentration
of nanoparticles in a liquid-phase medium by taking into account concentration con-
vection. In this case, the coefficients of thermal conductivity, viscosity, and absorption
of radiation by particles were found to be concentration dependent.

2. One of the solutions found was represented as a solitary wave. Both solutions were
expressed in the form of traveling single-phase waves.

3. In the framework of the formulated approximations, the nanofluid + radiation system
under study exhibited one stable (doubly degenerate) state and one unstable state. It
should be noted that convection does not affect the nature of the stability.

4. Within the framework of these approximations, it is possible to obtain the spatiotem-
poral dependence of the particle absorption coefficient, which exhibits the same wave
characteristics as those of Equations (24) and (25).

Invariably, we did not consider some issues. In particular, based on the fact that the
equation under consideration is autonomous, studying the equation on the phase plane is
of significant interest and will be the subject of our further research.
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