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Abstract: Quantum scars refer to an enhanced localization of the probability density of states in
the spectral region with a high energy level density. Scars are discussed for a number of confined
pure and impurity-doped electronic systems. Here, we studied the role of spin on quantum scarring
for a generic system, namely a semiconductor-heterostructure-based two-dimensional electron gas
subjected to a confining potential, an external magnetic field, and a Rashba-type spin-orbit coupling.
Calculating the high energy spectrum for each spin channel and corresponding states, as well as
employing statistical methods known for the spinless case, we showed that spin-dependent scarring
occurs in a spin-coupled electronic system. Scars can be spin mixed or spin polarized and may be
detected via transport measurements or spin-polarized scanning tunneling spectroscopy.

Keywords: quantum scars; spin-orbit coupling; quantum chaos; periodic orbits

1. Introduction

Wave localization by disorder is a ubiquitous phenomenon widely discussed for quan-
tum [1] and for classical waves [2–4] and can be interpreted by scattering and interferences
without involving many-body interactions. Correlated quantum systems may exhibit
disorder-induced many-body localization involving states with a high energy level den-
sity [5–14], as well as correlation-induced localized states, called quantum scars [15]. Scars
in wave functions, meaning enhanced localization of the probability density for states in
the high energy level density part of the spectrum, were first discussed for non-interacting
systems [16–20] and interpreted by analyzing the classical orbits of an electron or waves
in various confinements such as chaotic billiards [16–26]; for a discussion, we refer to the
book by Heller [27]. Scars occur for confined systems with and without disorder and were
experimentally investigated for various systems, including microwave resonators [28,29].
Conventionally, disorder is introduced by adding localized scalar perturbations to the
potential. Signatures or traces of scars in open nanoscale systems can be picked up in
transport measurements [30–35] in the linear response regime, in which case the measured
signal is proportional to the local density of states. Scars might be useful as a transport
channel for hot electron tunneling since strong wave packet recurrence along the trajectory
is expected [25]. The quantum nature of the localized state is also interesting for quan-
tum information studies. The focus of this work was on the role of spin in spin-charge
coupled systems, which has not received attention yet in connection with scarring, but
may potentially be interesting for spintronics; for example, if scarring would lead to lo-
calized, spin-polarized states, which could influence the spin-polarized conductance. A
potentially spin-polarized scar can be detected via spin-polarized scanning tunneling spec-
troscopy [36,37]. As a case study, we considered a semiconductor-based two-dimensional
electron gas (2DEG) in the confinement potentials detailed below and subject to an external
magnetic field and uncorrelated scalar impurities. Due to the symmetry breaking at the
interface of the two semiconductors where the 2DEG is formed, a Rashba-type spin-orbit
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coupling (SOC) is operational. We calculated the single particle states in the high en-
ergy level density regime and analyzed the spectral properties, as well as spin-dependent
perturbation-induced scarring, which was indeed found to be spin-channel selective.

In Section 2, we introduce the theoretical models and numerical tools for the calcula-
tion of the spin-dependent scars that we analyzed and discuss various settings in Section 3,
followed by a summary in Section 4.

2. Theoretical Model

As a confining potential for the 2DEG, we considered a square surface with different
boundary conditions. The magnetic field B is perpendicular to the 2DEG film. The
Hamiltonian for the single-particle states subjected to the magnetic field and the impurities
potentials Vn read (atomic units (a. u.) h̄ = me = e = 1 are used) [38]:

H =
Π2

2m∗
+ α(σ ×Π)z +

NImp

∑
n=1

MnVn(x, y) +
1
2

gµBBσz, (1)

where m∗ is the effective electron mass, σ are the standard Pauli-matrices, and Π = p− eA
is the kinetic momentum, with B = ∇× A. The Rashba spin-orbit coupling strength is
α. µB is the Bohr magneton, and g is the Landé factor. The parameter α may be varied by
applying a gate voltage to the nano-structure. Electrons in 2DEG are constrained to move
in the xy plane. For the vector potential, we used the asymmetric gauge A = B(−y, 0, 0)T

to correctly implement the periodicity. The impurities may have individual strengths Mn.
The spatial distribution used in the calculations below has the Gaussian form:

Vn(x, y) = exp

{
− (r− rn)

2

2σ2
n

}
, (2)

where the impurities are distributed randomly around the positions rn and have a full
width at half maximum (FWHM) of ωn = σn

√
2 log 2. For simplicity, all impurities have

the same strength and FWHM (and thus, we dropped the index n for the strength and
FWHM). Two different boundary conditions were considered: Dirichlet-type and one-side
periodic. The numerical results discussed in the following sections are for the case: m∗ = 1,
square- or rectangular-shaped confinements with the extension 100 a. u. by 100 a. u. or
50 a. u. by 100 a. u. The Rashba SOC parameter α ranges from 25 to 200 meV. The magnetic
field strength is 0.5 to 2 T, and NImp = 10 impurities were assumed with a strength ranging
from 0 to 0.2 a. u. and a width varying between 0.05 a. u. and 0.3 a. u. The values used
throughout this paper are exemplary. For example, the eigenvalues of the states shown
in this paper can be scaled down by increasing the system size and all other parameters
accordingly. The calculations were performed using a finite difference scheme with a
third-order discretization with a grid of 501 points in each dimension and solving the
eigenvalue problem with the SLEPC-library [39].

3. Scars
3.1. Scar Detection

To identify and quantify the scars and the spectral distributions, statistical parameters
were introduced [23,40]: the absolute fourth power of the wavefunction, also known as the
inverse participation ratio (IPR) [41], is given by:

IΨ =

∫
|Ψ(r)|4dV∫
|Ψ(r)|2dV

. (3)

For an even distribution, the IPR is Ieven = 1/V (V is the system’s volume), and
localized states have a higher value depending on the degree of localization. Strongly
scarred states have a significantly increased IPR, but our calculations revealed that states
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with the highest IPR were just randomly localized. Thus, it was beneficial to select the
scarred states by plotting them. Hence, the IPR was not shown in this paper.

Another method is to analyze the energy spectrum based on the distances of con-
secutive energy levels. The spectrum of the nearest neighbor level spacings (NNLS) has
been extensively studied for rectangular systems [21,22] or microwave resonators [28,29].
Reference [42] discussed the NNLS distribution P(s) as a function of the level spacing s
normalized by the mean spacing s̄:

PBR(s) = e−qs
[

q2erfc
(√

π

2
q̄s
)
+
(

2q̄q +
π

2
q̄3s
)

exp
(
−π

4
q̄2s2

)]
,

q̄ = 1− q.
(4)

Pq(s) transforms from a Poissonian (qBR = 0) to a Wigner-type distribution (qBR = 1),
depending on the mixing parameter qBR. The distributions coexist for the regular and
chaotic underlying classical dynamics of the system. Alternatively, the Brody distribution as
an interpolating function between the integrable and non-integrable regimes of a quantum
system can be used to characterize our systems [43]. For qB = 0, it equals a Poissonian
distribution, and for qB = 1, a Wigner distribution,

PBrod. = (q + 1)aqsqe−aqsq+1
, (5)

where aq = Γ
(

q+2
q+1

)q+1
and Γ is the Gamma function. In the following, the mixing

parameters are denoted as qBR (Berry–Robnik mixing) and qB (Brody mixing). Numerically,
the NNLS were calculated from the ordered energy eigenvalues. The spectrum was divided
into two subspectra depending on the z-component of the spin of the respective eigenstate.
Then, these (spin-polarized) spacings were normalized to their mean value s̄.

A further statistical measure addressing the spectral rigidity ∆system
3 (L) of the energy

spectrum with:

∆system
3 (L) = ∆Poisson

3 (QL) + ∆GOE
3

(
(1−Q)L

)
, (6)

is basically an interpolation between a Poisson distribution and a Gaussian orthogonal
ensemble with Q being the interpolating factor with the same range as qBR. Numerically, for
each data point at Li, Equation (6) was solved. Then, the mean value was calculated from
all qi

′s. A further approach used in Reference [23] is to analyze the spectral fluctuations as
a time series. The spectral rigidity ∆3(L) is then proportional to L2α [44]. Therefore, the
measured rigidity is fitted to the function:

fα(L) = βL2α + ∆0
3. (7)

Having obtained the spectrum numerically, we determined the (spin-dependent) mixing
parameter entering Equations (4) and (5) for each spin-channel separately, which is a
reasonable approach considering that the splitting of the otherwise degenerate states is
much smaller than other energy level spacings [45]. All the statistical measures presented
are suited to classify the quantum systems; however, we found the Berry–Robnik mixing
(Equation (4)) to be the most suitable one.

3.2. Level Statistics

For squares and rectangle confinement potentials, the nature of the classical trajectories
for a spinless particle is established. Our focus was, therefore, on spin-dependent scarring
and the suitable conditions for its occurrence. For B = 500 mT, one-thousand eigenstates
were calculated for each system, meaning about 500 energies for each spin channel were
used to infer the statistical parameters from Equations (4), (6) and (7). For this analysis,
we found that this number of energy levels already gave high confidence estimates. This
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problem was discussed in Reference [21]. The results are shown in Figure 1. In general,
if the impurities are too weak, they do not disturb the system strong enough to cause
noticeable changes in the NNLS distribution, as shown in the leftmost plot of Figure 1.

The threshold for the impurity potential strength depends on the FWHM. In the center
plot of Figure 1, the change of the mixing parameter qBR entering Equation (4) is shown as
a function of the impurity potential strength and extension. The point where the NNLS
distribution is no longer a pure Poissonian (q = 1) changes from M ' 0.75 for ω = 7.4 a. u.
over M ' 1.5 (ω = 3.7 a. u.) to M ' 3.25 for an FWHM of 3.0 a. u.

For extended impurity potentials (large FWHM), the potentials act as a smooth back-
ground for the electrons. This holds true as long as the impurities are sufficiently weak.
With an increasing amplitude, the eigenstates are strongly perturbed, and the degeneracies
are lifted, even for states with energies well below the perturbation potential. In contrast,
the impact of abruptly raising impurity potentials is clearly observable for a smaller im-
purity potential strength (see Figure 1). The role of SOC on the impurities scattering is
marginal. We found scarring is possible even for a rather large SOC parameter α.

Figure 1. The mixing parameter qBR as it enters Equation (4). We consider a 2DEG confined to a
square with infinite boundaries with a size of 100× 100 a.u., which contains ten randomly distributed
Gaussian impurities with varying strengths and FWHM, as indicated. A magnetic field with a
strength of B = 500 mT is applied transverse to the 2DEG. Panel (a) shows the dependence on the
strength α of the Rashba SOC for a fixed FWHM = 7.4 a. u. of the Gaussian impurities. Panels (b,c)
show the dependence of qBR on the impurities’ strength and FWHM for α = 25 in (b) and meVÅ and
α = 100 meVÅ in (c).

3.3. Scars

For a rectangular system with Dirichlet boundary conditions, the periodic orbits with
or without a magnetic field have been well analyzed, for instance in [46]. It is well known
that scarring occurs in these systems. We considered a system with a length of 100 a. u.,
containing 10 impurities with an impurity potential strength of (M = 5 eV (or 0.18 a. u.),
ω = 8 a. u.) and a magnetic field in the z-direction with a strength of 0.1 T, and α = 25 meV.
Comparing with Figure 1, scarring was expected, but the wavefunction would not be such
that most of the probability density is strongly localized around the classical path. For
better statistics, three-thousand and six states (1503 in each spin channel) were calculated.
The NNLS distribution was dominated by a peak near s = 0, since the splitting of spin-up
and spin-down states was weak due to the weakness of SOC strength, as well as the weak
magnetic field. A fit of Equation (4) yielded the value q = 0.077 for the spin-polarized
spectra. The energy ranged from ∼ 0 to 1 a. u. Stronger SOC or altering the boundary
conditions can remove the peak at s = 0, which is the case in Figure 2.
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Figure 2. Nearest neighbor level spacing histogram for a square with a size of 100× 100 a. u. with
periodic boundary conditions in the x-direction, α = 20 meVÅ, B = 1 T, with ten impurities with a
strength of 0.18 a. u. and FWHM = 8 a. u. In total, three-thousand and six energies are distributed into
200 bins of width 7.2× 10−6 a. u. The mixing parameter qBR (Equation (4)) is equal to 0.134, and the
Brody parameter (Equation (5)) qB equals 0.637. The color code shows the mean of all sz values of all
states belonging to the bin. The (mean) spin-polarization is higher when the states have small or very
large energy spacing.

Examples of possible scars are shown in Figure 3. The top row shows the probability
density of the 2834th (a), 2887th (b), and 2949th (c) state with energies of 0.91, 0.93, and
0.95 a. u. One can identify classical paths for these probability densities. In Figure 3a, a
straight line at y = 55 a. u. is visible. Figure 3b shows a path in the y-direction with one
reflection at x = 50 a. u. Inspecting Figure 3c, the classical path does not seem to be fully
connected. In fact, there are two independent closed paths. The paths are rotated by an
angle of 90◦ with respect to each other. To unravel the scars, we analyzed the Fourier
transforms of each state, as depicted in the bottom row; see Figure 3d–f. The classical
momenta expected to be dominant for scarred states are shown. Classically, all momenta
should lie within a circle of radius pmax =

√
2m∗E, (with m∗ = 1). The coordinates are

scaled according to the energy of the Fourier-transformed state.
The first state revealed a very prominent contribution of momenta with px = pmax

and py = 0. This set of momenta belongs to the vertical path of Figure 3a. Another
perpendicular path can be inferred from the Fourier transform (Figure 3f) at x = 60 a. u.,
but with low contrast with respect to the noise in the coordinate representation. This
situation is generally valid for the scarred states in the considered case. The second state
showed the expected momenta on the pmax circle at a reflection angle θ = 60◦. The last
state had its most contributing momenta at reflection angles of 45◦. From the Fourier-
transformed probability density, the decoupled paths could not be distinguished.

Inspecting the spin-resolved probability density (Figure 4), we found full spin polar-
ization along the classical paths. Due to the weak SOC strength α, spontaneous spin flip
processes along the classical trajectory were unlikely. However, the scar in Figure 4b is
spin-up dominated, but the corners of the rectangular paths are in the spin-down state.
Both the spin-up and spin-down density are of the same magnitude.
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Figure 3. Three scarred eigenstates of a square with a size of 100× 100 a.u., α = 25 meVÅ, B = 100 mT,
ten impurities of strength M = 0.18 a. u. and FWHM = 2.6 a. u., with Dirichlet boundary conditions.
Lighter colors represent higher density, while the background color (blue for a–c and black for d–f)
means zero density. In each panel (a–c), at least one prominent path is visible. The 2834th (a), 2887th
(b), and 2949th (c) states are shown with energies of 0.91, 0.93, and 0.95 a. u. In Panel (c), two paths
parallel to the diagonals are visible. The wave functions in the momentum space for the states are
shown in Panels (d–f).

Figure 4. Spatially resolved sz component of the states 2887 and 2949 of a square with a size
of 100× 100 a.u., α = 25 meVÅ, B = 100 mT. Ten impurities of strength M = 0.18 a. u. and
FWHM = 2.6 a. u. are randomly positioned inside the square. The classical trajectories are indi-
cated by dashed lines. The trajectory in Panel (a) is open, while in (b), two closed paths are shown.
Both states are mostly in the spin-up state, which corresponds to 〈sz〉 ' 1. Note the different scale of
the color bars. The oscillations of the lower state are ≈0.05 a. u. stronger.

Considering periodic boundary conditions with only one periodic side, the system
resembled a 2DEG on the surface of a cylinder with length L = 100 a. u. and radius
R = 16 a. u. This changed the shortest periodic orbits and their distributions along the
symmetry axes. The shortest periodic orbits were straight lines in either direction, in the
y-direction with two reflections and in the x-direction with zero reflections. Thus, most
straight line scars were expected to move around the cylinder. Ten impurities with the
same parameters as before were placed on the surface; α = 0.2 meVÅ; and a transversal
magnetic field of B = 1 T was applied. The maximum energy was 0.8 a. u. for the 2502nd
eigenstate. Calculating the statistical mixing parameters of Equation (4) yielded a value of
q = 0.134 for each spin-polarized spectrum (containing 1263 eigenvalues). This parameter
is a very sensitive indicator. The spectral rigidity (Equation (6)) showed clearly that the
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considered system was neither Poissonian nor fully chaotic as may have been inferred
from a fit to the Berry–Robnik distribution. The NNLS histogram of the periodic system is
shown in Figure 2. There, we chose 200 bins with a width of 7.2× 10−6 a. u. Note that using
150 or 250 bins did not change the distribution qualitatively, and with that, the mixing
parameter seemed to be mostly independent of the choice of bins. Additionally, the colors
show the mean value s̄k

z = ∑Nk
j=1 sj

z of all states contributing to the k’th bin, e.g., when two

level spacings are in bin k, then four states contribute to the mean spin. Hence, s̄k
z is a

measure for the mean spin-polarization. From Figure 2, it can be concluded that the states
that have very small or very large energy-spacing were more strongly spin polarized.

Figure 5 shows the probability density of the 1821st eigenstate with the rightmost panel
indicating the corresponding momentum distribution. From the symmetry, one expects
at most two prominent contributions ±px, which is characteristic for a particle moving
from the left (right) to the right (left) on a straight line (py = 0). This assumption was
confirmed by the momentum distribution. Figure 5b shows the spin-polarized probability
density sz(r) = |Ψ↑1821(r)|2 − |Ψ

↓
1821(r)|2. Interestingly, the scarred pattern remained intact.

Moreover, the parts of the trajectory for the spin-up (red) and spin-down (blue) split. The
results suggested that scarring occurs for each spin channel individually, causing the spin-
polarized probability density to be scarred in the presence of the SOC and magnetic fields.

Figure 5. Probability density (a) of the 1821st state (sz = −1), spin-polarized density (b), and the
Fourier-transformed spin density (c) for a square system of lengths 100 a. u. with periodic boundary
conditions in the x-direction, α = 20 meVÅ, B = 1 T with ten impurities with a strength of 0.18 a. u.
and FWHM = 8 a. u. The energy is E = 0.59 a. u. The momentum distribution indicates that the
particle moves along the −x-direction. The path at y = 85 a. u. consists of the spin-up (red) and
spin-down (blue) channels, which are split.

3.4. Local Density of States

Experimentally, the local density of states (LDOS) can be measured by microscopy or
by pump-probe experiments. It can be calculated using the eigenstates Ψi and a function
f (ε) denoting a distribution dependent on the energy. Here, the spectrum consisted of
discrete values εn, the eigenvalue of the n’th state. Hence, one needs to sum all states with
their weight respectively, and this leads to the following equations:

ρ(r) = ∑
n
|Ψn(r)|2 f (εn), (8)

ρ(r)sz = ∑
n

(
|Ψ↑n(r)|2 − |Ψ↓n(r)|2

)
f (εn). (9)

The latter shows the spin-resolved LDOS (SR-LDOS), which can be measured using
a magnetic tip. The distribution f (ε) can be the Fermi–Dirac-distribution, which will
sum all states up to the fermi-energy, or one calculates local effects using Gaussian (or
similar) distributions. With the latter form of distributions, the visibility of the scar can
be determined if one probes a superposition of states. In reality, transport measurements
cannot be performed at exact energies; hence, a single scarred state is hard to “select” in
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experiments. However, if these states “survive” over a larger energy range, the effects of the
scarring could still play a role, even if the neighborhood of the scarred state is not scarred.

For these calculations, a Gaussian distribution function was chosen, reading:

f (ε) =
1√
2πν

exp
{
− (ε− εk)

2

2ν2

}
, (10)

where ν defines the number of states contributing to the LDOS and εk the center energy. In
Figure 6, the SR-LDOS for the 1821st (top) and 2424th state (bottom) are shown. As has
been shown before, both states were scarred, while neighboring states were not. When
16 states were considered (ν = 3× 10−4) for the calculations, the paths were still visible
in both cases. However, when the classical path of the scar became more complex, the
structure vanished faster when averaging states. While the simpler straight path in Figure 6
is still noticeable when ν = 12× 10−4, almost no structure could be determined for the
other state. The oscillations of the non-scarred states quickly superimposed the complex
scar-structure. Still, this showed that scarring was stable against “impure” measurements.
Further, the spin-polarization increased by a factor of 100 with respect to the single-state
scar (see Figure 5b). This behavior is very interesting for future applications, for example
in spintronic devices.

Figure 6. The local density of states for a square x-periodic system, lengths 100 a .u. with α = 20 meVÅ,
B = 1 T with ten impurities of strength M = 0.18 a. u., and FWHM = 8 a. u. The density of the
1821st (a,b) and 2424th (c,d) are shown. Panels (a,c) were calculated using ν = 3 × 10−4, (b,d)
using ν = 12× 10−4 a. u., which corresponds to 16 and 72 averaged states, respectively. The spin-
polarization is decreased by one order of magnitude when the number of summed states is increased.

4. Summary

We studied the scarring of quantum states in a two-dimensional electron gas confined
to a predefined geometry and subjected to an external magnetic field and Rashba-type spin-
orbit coupling. Using the statistical methods of References [23,40,42,43,45] and applying
them to spin-dependent states and spin-resolved spectra, we identified scarring in spin-
dependent non-interacting electron systems. The analysis evidenced the existence of
spin-mixed and spin-polarized scars, which could be of use in spin transport in nanoscale
(spintronic) devices. Further, the local density of states was still scarred when calculated
in the neighborhood of scarred states. Spin-resolved calculations even showed a huge
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increase in the average spin-polarization. However, the influence of other types of spin-
orbit coupling such as Dresselhaus-SOC is still to be investigated.
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