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Abstract: Quantum wires continue to be a subject of novel applications in the fields of electronics
and optoelectronics. In this work, we revisit the problem of determining the electron states in
semiconductor quantum wires in a self-consistent way. For that purpose, we numerically solve the
2D system of coupled Schrödinger and Poisson equations within the envelope function and effective
mass approximations. The calculation method uses the finite-element approach. Circle, square,
triangle and pentagon geometries are considered for the wire cross-sectional shape. The features of
self-consistent band profiles and confined electron state spectra are discussed, in the latter case, as
functions of the transverse wire size and temperature. Particular attention is paid to elucidate the
origin of Friedel-like oscillations in the density of carriers at low temperatures.

Keywords: quantum-well wires; self-consistent study; shape effects; electronic structure; finite
elements method

1. Introduction

Quantum wires (QWs) are low-dimensional semiconductor structures with strong
two-dimensional localization of charge carriers, leaving a single spatial direction for their
“free” displacement so that the term quasi-one-dimensional systems became adopted. This
feature leads to the quantization of the energy spectrum for the motion along the cross-
section of the conduction channel. The beginnings of research on this type of nanosystems
date back to the 1980s, with illustrative examples in References [1–17], and has continued
until the present, with a significant number of experimental and theoretical reports in the
literature. Among the most recent works on QWs, we can mention those appearing in
References [18–28].

With time, the concept of QW has included a modification through the term “nanowire”,
due to the possibility of practical realization of wire-shaped structures with finite length [29].
Among the applications of these low-dimensional semiconductor systems, one finds the
case of solar cells, in which a suitable selection of nanowire geometry can have advantages
in terms of cell performance and efficiency [30]. On the other hand, in a recent report,
Jia and collaborators review the state-of-the-art concerning applications of nanowires to
electronics [31]. The authors discuss nanoscale devices and integrated circuits assembled
from nanowire building elements, including nanowire thin-film transistors, oriented to the
fabrication of high-performance large-area flexible electronics.
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The self-consistent (SC) method has been a choice for determining the spectrum of elec-
tron and hole states in low-dimensional semiconductor nanostructures when many-body
contributions on the energy band profile are taken into account. A typical procedure of this
kind is the one described in [32], which uses the finite element method for the SC non-linear
problem of coupled Schrödinger and Poisson equations for layered heterostructures with
arbitrary doping profiles and layer geometries within a multiband~k ·~p framework. In the
particular case of QW-like systems, it is possible to mention initial works by Laux and co-
workers [33,34]. In the first of these two works, the electron states in narrow gate-induced
channels in a one-dimensional Si conduction channel are self-consistently determined solu-
tions. In the second one, the solution of the Schrödinger-Poisson (SP) system of equations
allowed to calculate electron states in a split-gate quasi-one-dimensional GaAs/AlGaAs
heterostructure. Later on, Luscombe et al. solved the SCSP problem to investigate the
electron confinement in laterally confined cylindrical QWs [35]. The Fourier expansion
method was the approach selected by Tadić and collaborators to investigate the SC elec-
tronic structure of rectangular free-standing quantum wires [36]. A report by Trellakis and
Ravaioli discusses the computational issues in the SC simulation of the electronic features of
QWs [37]. The authors discuss the numerical solution for the coupled SP equation system
(including exchange and correlation effects) and outline an iteration procedure—based on
the predictor-corrector method—for convergence of the outer iteration.

The SC method of 2D finite differences for solving the SP equations for etched mesa
GaAs/AlGaAs structures has been reported by Snider et al. in a 1990 paper [38]. This was
one of the first studies showing that, for quantum wire behavior to occur, it is necessary
to precisely control the width variation of the fabricated wire. The coupled Schrödinger
and Poisson equations, within the Hartree approximation, have been solved by Proetto
for a GaAs quantum wire with cylindrical symmetry [39]. The charge distribution, po-
tential profile and electronic structure dependence on the wire radius and surface states’
concentration were discussed. Kerkhoven et al. have demonstrated the importance of
self-consistency for analyzing the electrons confined in quantum wires [40]. By solving the
Schrödinger and Poisson equations, they simulated the behavior of the low-temperature
electrons behavior in QW-like structures formed by crossing layers of GaAs and AlGaAs.
By using an SC screening scheme, Hu and Das Sarma have calculated the elastic mean
free path of impurity-scattered carriers in a quantum wire [41]. They discussed the scale
over which the electronic conduction in quantum wires is expected to exhibit metallic
behavior. By solving the Poisson and Schrödinger equations iteratively for a QW-like
split-gate heterojunction, Martorell et al. have studied the accuracy of the commonly
used 2D approximation when applied to whole 3D systems [42]. Their work focused on
interpreting general trends rather than on some specific system and simplifying assump-
tions for reducing the computational effort. Aristone and Sanchez-Dehesa have used the
SC-SP method to investigate arbitrary profile quantum wires [43]. They discussed the
numerical results for QWs of rectangular cross-sections, emphasizing the conditions under
which such low-dimensional systems exhibit bi-stability. May et al. have performed an
SC two-dimensional calculation of the electronic width of quantum wires formed by local
oxidation on GaAlAs heterostructures [44]. They envisioned the key role that was going to
be played by the SC simulations in designing novel structures and better understanding the
electrostatic action of the electronic gates. Chuen et al. have calculated by an SC approach
the induced charge density, capacitance, and conductance of a quantum wire [45]. They
discussed the dependence of these quantities on the Fermi energy and the frequency of the
external voltages.

Sharma and Suryanarayana presented a cyclic and helical symmetry-adapted formu-
lation and large-scale parallel implementation of real-space Kohn-Sham density functional
theory for one-dimensional nanostructures, with application to the mechanical and elec-
tronic response of carbon nanotubes subject to torsional deformations. They developed a
high-order finite-difference parallel implementation capable of performing accurate cyclic
and helical symmetry-adapted Kohn-Sham calculations in both the static and dynamic
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settings. Their findings were in good agreement with experimental observations and
measurements. Their numerical tools and formalism were previously applied to the study
of band structure and bending properties of large X (X = C, Si, Ge, Sn) nanotubes and
Xene sheets [46,47].

A theoretical study of two-dimensional quantum dots with the shape of a regular
polygon where the number of sides has varied from three (triangle) to infinity (circle) has
been reported by Popescu and coauthors [48]. They used the finite element method to
calculate the energies and probability densities for an electron confined in the quantum
system. Among their findings, they report that no matter the shape, any regular polygonal
quantum dot with more than four sides and a given area has just the same quantitative
optoelectronic properties. Additionally, they found that at the nanoscale, the shape may
not be as important as the size is.

Efforts to develop cheap and efficient schemes for the electron states’ numerical
solution in wire-shaped nanosystems have continued throughout the years. A 3D finite-
difference time-domain simulation was recently used to solve the problem in cylindrical
QWs [49]. Bearing all this in mind, we are interested in bringing a new vision to the
subject by solving the SCSP problem in quantum wires with the help of finite-element
approach. We shall explore the influence of the QW cross-section shape by considering
the circle, square, triangle, and pentagon geometries. We aim at discussing the features of
confined state energies and electron density in the system. We are also widely motivated
to extend the work of Popescu et al. [48] to analyze to what extent the shape of the QW
boundary (which is controlled by the number of sides of the regular polygon corresponding
to its cross-section) can or not be relevant compared to other characteristics of the system
such as the cross-sectional area, the density of donors with which the system is doped,
and the temperature. In this article, using the effective mass approximation, we study
an electron confined in a GaAs QW of infinite length and infinite confinement potential
added to an electrostatic potential at the boundary. These two potentials are associated
with QWs surrounded by a vacuum or by a matrix with an energy gap greater than that
corresponding to the QW one. We report the energy levels in each of the structures with
different cross-sections as a function of the transversal area, the doping donor density,
and the temperature. We analyze the oscillations that appear in electron density at low
temperatures and discuss the contribution made by each of the confined electron states
to such oscillations. The article is organized as follows—Section 2 presents the theoretical
framework of the simulation. In Section 3 we show and discuss the results obtained, whilst
Section 4 is devoted to the conclusions of the work.

2. Theoretical Framework

The system of interest corresponds to a GaAs QW with a so-called exposed lateral sur-
face. Under this condition, the model has a core-shell structure, where the core constitutes
the wire region and the shell would be the surface of the semiconductor. The electronic
properties are studied for this system with four different cross-section geometries. In
Figure 1 are depicted the four structures considered in this work and are defined the
coordinate axis, the surrounding material, and the radius of the cylindrical wire case.
The wire length is large enough such that a wire with infinite length along the z-axis is a
good approximation. Due to the vacuum surrounding matrix, the confinement potential
is zero inside the wire region and infinite elsewhere. Having the system with exposed
borders is a characteristic of fundamental importance in the numerical approach since the
boundary conditions are established for the potential V(Ω), where Ω represents, in each
case, the boundary. This function V establishes the form of the confinement potential.
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Figure 1. Pictorial view of the GaAs quantum well wire studied in this work. In (a) are depicted the
four considered structures. In (b) are defined the coordinate axis, the R0-radius for the cylindrical
case, and the vacuum surrounding matrix. The wire length is large enough such that a wire with
infinite length along the z-axis is a good approximation. Due to the vacuum surrounding matrix,
the confinement potential is zero inside the wire region and infinite elsewhere.

In the GaAs quantum wire with the exposed surface, a depletion region is generated
at the bottom of the conduction band, which allows the appearance of empty states above
the Fermi level; these are surface states that cause a charge transfer from bulk energy states
to surface energy states. Consequently, a phenomenon known as “Fermi level Pinning”
is present [50]. That is, the Fermi level is kept fixed to a characteristic value within the
bandgap of the system, and this value is independent of the density of donors or acceptors.
For GaAs, it is normally used the value on the surface which corresponds to half of the
energy bandgap. So, defining the Fermi level as EF, then the potential at the frontier for
each structure will be V∗(Ω)− EF = 0.7 eV [35].

The Schrödinger-Poisson Equation multiphysics interface, available in the COMSOL-
Multiphysics version 5.4 [51–53], creates a bidirectional coupling between the electrostatics
interface and the Schrödinger Equation interface to model charge carriers in quantum-
confined systems. The electric potential from the electrostatics contributes to the potential
energy term in the Schrödinger equation. A statistically weighted sum of the probability
densities from the energy eigenvalues of the Schrödinger equation contributes to the space
charge density in the electrostatics. All spatial dimensions (1D, 1D axial symmetry, 2D, 2D
axial symmetry, and 3D) are supported.

In the numerical procedure, it is required to solve coupled SP differential equations
in a self-consistent way to obtain the potential profile and electron density for each of the
quantum wire systems and the corresponding wave functions and energy eigenvalues [32].
Here, we use the effective mass approximation and choose the finite element method (FEM)
to perform the SCSP calculation. It is worth mentioning here that this is the typical SC
scheme of working within a single-band or multiband~k ·~p environment in semiconductor
physics. However, there are very recent reports on the adaptation of density functional
theory which is, intrinsically, self-consistent to deal with nanowire-type systems or with
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nanotubes; thus opening a way to a powerful, although more computationally demanding,
microscopic calculation tool for this particular kind of systems [46,47].

Following [54], we select the electron gas density given by the Thomas-Fermi approxi-
mation as the starting point for the method. This quantity will enter the Poisson equation
to contribute to the system’s charge density along with donor concentration Nd (assumed
to be fully ionized) within the QW core. We have

n(x, y, T) = NC F1/2

(
EF −V∗(x, y, T)

kBT

)
, (1)

where NC = (2m∗kBT/πh̄2)3/2/4 is the effective density of states, V∗(x, y, T) is the
electronic potential generated by the Fermi level Pinning on the exposed lateral surface,
the level of doping and the lateral dimensions of the system, m∗ is the electron effective
mass, and F1/2(x) is the Fermi-Dirac integral given by

F1/2(ξ) =
1

Γ(3/2)

∫ ∞

0

β1/2

eβ−ξ + 1
dβ . (2)

In this equation, Γ is the Gamma function and in this case ξ = (EF−V∗(x, y, T))/kBT,
where kB is the Boltzmann constant and T is the temperature. The potential energy of the
electron is given by V∗(x, y, T) = −e φ(x, y, T), where φ(x, y, T) is the Hartree potential.
Then, the associated Poisson equation is:

∇2φ(x, y, T) = − 1
ε0 εr

ρ(x, y, T) , (3)

where ρ(x, y, T) = e [Nd − n(x, y, T)] is the charge density, e is the electron charge, and εr
and ε0 are the GaAs relative permittivity and vacuum permittivity, respectively. This
equation must be solved taking into account the boundary conditions imposed by the
Fermi level pinning, which for GaAs takes the form φ(Ω) = −(EF + 0.7eV)/e.

The potential, φ(x, y, T), obtained through Equation (3) must contribute to the poten-
tial energy term in the Schrödinger equation as −e φ(x, y, T). On the other hand, the elec-
trons are assumed to be totally confined within the volume of the QW and, therefore, it
must be satisfied that for the Ψ-electron wave function the condition Ψ(Ω) = 0 must be
satisfied. Under these considerations, the Schrödinger equation for the confined electron in
the QW reads

− h̄2

2m∗
∇2Ψ(~r) + (V − e φ(x, y, T))Ψ(~r) = E Ψ(~r), (4)

where V is the confinement potential of the structure. Considering the infinite length along
the z-axis, the 3D wave function of the system can be written as

Ψ(~r) = eikzz ψ(x, y) . (5)

By using Equation (5) in Equation (4), we obtain the following 2D differential equation

− h̄2

2m∗
∇2ψ(x, y) + (V − e φ(x, y, T))ψ(x, y) = E0 ψ(x, y) , (6)

where E = h̄2 k2
z

2 m∗ + E0.
As the electrons must be confined to the interior of the quantum wire, therefore,

to solve this equation, it is necessary to impose the boundary condition ψ(Ω) = 0. Solving
the last equation, we shall find the first set of self-functions ψi and self-energies E0,i for
the system. With these elements at hand, it is possible to calculate the electron density
associated with the occupation of each of these states:
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η(x, y, T) = ∑
i=1

Ni F−1/2

(
EF − E0,i

kBT

)
|ψi(x, y)|2 , (7)

where Ni = gi
3
√

4NC, EF is the Fermi energy and gi is the degeneracy factor. This equation
represents the density of electron gas in a (x, y)-point at a temperature T. It can also be
understood as the summation of the probability of finding the electron in the point (x, y)
inside the quantum wire in each determined state ψi with energy E0,i. From the electron
density calculated in Equation (7), a new profile for the charge density of the system
is obtained:

ρnew(x, y, T) = e[Nd − η(x, y, T)] . (8)

By solving the Poisson Equation (3) and using the corresponding charge density profile,
a new Hartree potential φnew(x, y, T) is obtained that will -again- contribute to the potential
energy term in the Schrödinger equation. Then, via the solution of Equation (6), with this
consideration, we obtain a new set of eigenfunctions and eigenvalues for the system
ψnew

i , Enew
0,i . This set will be associated with a new electron density profile ηnew relative

to each state of the system’s occupation. In this way, the process is repeated iteratively
until the absolute value of the difference between potential terms corresponding to two
successive self-consistent steps is smaller than a certain tolerance |U −Uold| < 10−6 eV,
where U = V − e φ(x, y, T). At this point, the system has reached self-consistency, finally
obtaining a set of eigenstates, eigenvalues, a definitive form for the potential profile of the
system, and the SC electronic densities.

3. Results and Discussion

For all calculations, the following parameters have been set—effective mass of electron
in GaAs m∗ = 0.067 m0 (where m0 is the mass of the free electron) and dielectric constant
εr = 12.9. All the equations have been solved through the finite element method with the
COMSOL-Multiphysics licensed software (5.4, COMSOL AB, Stockholm, Sweden) [51–53].
The used typical numerical parameters are inner mesh with triangular-shaped elements,
6550 elements, 160 edge elements, 3356 mesh vertices, 40 as the maximum number of
iterations of the self-consistent method, and 10−6 as the absolute tolerance.

Figure 2 shows the plots of the first five QW confined state wave functions in each of
the four configurations studied, from top to bottom—circle, square, triangle and pentagon.
It should be noted that the cross-sectional area for all considered QWs has been kept the
same. The cross-sectional area of all structures are set to be equal to π R2

0 (the area of the
circular QW with R0 radius). The electron density Nd has been fixed as 3× 1019 cm−3 for all
cases. For all considered structures, the ψ1 and ψ2 states are doubly degenerated. The states
ψ3 and ψ4 are degenerate only for circular and pentagon QW. The states’ sequence of
degeneration in the structures shown is as follows—(1, 2, 1, 2, 2) for the square and triangle
and (1, 2, 2, 1, 2) for the circle and pentagon. The color scale in each figure goes from blue,
which corresponds to the wave function’s negative values, to dark red, which represents
positive values of the wave function. The yellow color indicates the points at which the
wave function is zero. The first column on the left corresponds to the ground state ψ0 for
each system. There, it is possible to notice the s-type character that this state acquires for all
studied configurations, as detailed by the next paragraph. Additionally, it is emphasized
that the electrons in the wire with the triangular section are more confined towards the
symmetry axis than in the other structures. The first and second excited states, ψ1 and ψ2,
are presented on the second and third columns from left to the right. Note that these states
have a p-type character. Finally, in the rightmost two columns, the third and fourth excited
states, ψ3 and ψ4, are shown for each configuration. These states show a d-type behavior,
as can be noticed from their projections.
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Figure 2. First five wave functions for a confined electron in GaAs quantum wires. The rows from top to bottom are for
circle, square, triangle, and pentagon, respectively. The left-hand side column corresponds to the ground state; the next four
columns from left to right are for each system’s first four excited states. For all figures, the cross-sectional areas are the same.

The xy-cross-sections of the electron wave functions exhibit particular symmetries
that we refer to by partial analogy with electronic orbitals in atoms. For all types of wire,
the ground level orbital is the s-like orbital, which means a single central extreme (sharp
orbital) of the wave function in the xy-plane, corresponding to the symmetry center of the
wire cross-section. There is only the central lobe (positive amplitude) and no angular nodal
surface (zero amplitude) for the s-like orbitals. The second energy level (second and third
column) is double degenerate in all types of wire. The two orthogonal wave functions
corresponding to this energy have two extremes each (principal orbitals), therefore being
denoted as p-like orbitals. They both have one lobe of positive amplitude and one lobe of
negative amplitude, separated by an angular nodal surface perpendicular to the xy-plane.
The angular nodal surfaces of the two different p-like orbitals are orthogonal.

Figure 3 shows the self-consistent confinement potential for each of the structures.
In the calculation, the circular QW radius has been taken equal to 50 nm, which fixes the
cross-sectional area of all the other systems. Keeping the color code in which red indicates
the most significant values shows that the potential becomes higher at the boundary
regions, which favors electronic confinement in the core regions within the QW. Electrons
feel a similar potential near the symmetry axis of each structure. The change is noticeable
mostly near the border of the QW where the potential presents a less smooth behavior.
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Figure 3. Self−consistent confining potentials for the different GaAs quantum wire geometries inves-
tigated: circle (a), square (b), triangle (c), and pentagon (d). Calculations are with Nd = 3× 1019 cm−3

and T = 10 K.

Figure 4 shows the electron density η(x) (with y = 0) for each structure, normalized
to the doping value Nd = 3× 1019 cm−3. It has been calculated along the arrow indicated
in the inset at the bottom of each figure. Accordingly, a higher concentration is evidenced
in the core region or near the symmetry axis of each QW. This feature was expected, given
that—as seen from Figure 3—the confining potential is low around this zone. The results
plotted in Figure 4 are for T = 10 K. In these systems, with exposed borders, at low
temperatures, Friedel-like spatial oscillations of the carrier density appear [55]. These can
be viewed as irregularities in the density profile, especially around the central zone of
the QW. These oscillations could be explained by the presence of subbands associated to
surface states and by how the electrons populate each of them. They can be caused by the
electronic occupation of the oscillation-related lower states closer to the center of the QW,
while the higher occupied states can also contribute to a lesser extent. One may observe
that very fast decrease of the electron density occurs in regions close to each system’s
boundary, while in regions close to x = 0 a maximum value is reached. However, η(x)/Nd
does not reach 1.0 in any system. This is evidence of the charge transfer from inner states
(the core) to surface states since the complete system must remain neutral. These states are
the ones that contribute to the Fermi level pinning.
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Figure 4. Normalized electron density functions for each investigated GaAs quantum wire structure as a function of the
x-coordinate (see the red arrow in the inset in each figure) for T = 10 K and Nd = 3× 1019 cm−3. For all figures the
cross−sectional area has been set at A = 2500 π nm2.

Figure 5 presents the ground state energy variation for the four studied GaAs QWs as
a function of R0. In this figure, the donor density has been taken as Nd = 2× 1018 cm−3,
the temperature is T = 10 K, and the Fermi level is EF = 0. As long as R0 increases for
all structures, a clear decreasing behavior of the ground state is evidenced [56,57]. This
decrement is more abrupt for the circular system, and it is less so for the triangular one.
To explain this fall in energy, we must notice that, due to the increase in R0, the cross-
section area of all the QWs augments leads to a reduction of the electronic confinement,
a redshift in the eigenvalues takes place. For R0 = 10 nm, the ground state energy is
very similar in all structures, taking a value around 0.67 eV. Something alike occurs for
R0 = 50 nm where the energy decreases to approximately −0.075 eV. For intermediate
values, a separation between the states corresponding to each structure is clearly noted,
this separation being greater for R0 = 30 nm. This fact appears in the inset, where the
difference between the ground state of the triangular and circular GaAs QWs is shown. It
reaches a maximum value of approximately 130 meV. The ground state’s behavior for the
circular, square, and pentagonal systems is very similar, and the largest differences appear
for the triangular system.
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Figure 5. Ground state energy for each GaAs quantum wire structure as a function of the R0 parame-
ter. The inset shows the energy difference between the triangular and circular wires. Calculations are
for Nd = 2× 1018 cm−3, T = 10 K, and EF = 0.
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Figure 6 shows the first excited state energy for the four GaAs QWs as a function of
the R0 under the same conditions as for Figure 5. We can see that a clear decreasing trend
is evidenced as R0 increases. The first excited state of the four systems presents an energy
of 0.69 eV at R0 = 10 nm which decreases to −0.06 eV when R0 = 50 nm. Quantitatively,
this first excited is very similar for the circular, square, and pentagonal QWs. The main
difference appears with the triangular system, which has higher energy. This behavior
is evidenced in the inset where the circular and triangular systems’ energy difference is
presented. As in Figure 5, a maximum difference is noted for R0 = 30 nm.
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Figure 6. First excited state energy for each GaAs quantum wire structure as a function of R0.
The inset shows the energy difference between the triangular and circular wires. Calculations are for
Nd = 2× 1018 cm−3, T = 10 K, and EF = 0.

In Figure 7, the first two energy states are shown for each of the systems—circular (a),
square (b), triangular (c), and pentagonal (d)—plotted as functions of the R0 parameter.
For R0 < 25 nm the systems show an approximately parabolic decrease in energy. Then,
for 25 nm< R0 < 35 nm this decrease displays an approximately linear behavior and for
R0 > 35 nm the decrease becomes approximately exponential. There is a degeneracy of
order two for all systems concerning the first excited state (this generation is indicated by
label 2 in each figure).
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Figure 7. First two energy levels for a confined electron in a GaAs quantum wire as a function of the
R0 parameter. The label 2 indicates that the first excited state is doubly degenerated. Calculations are
for Nd = 2× 1018 cm−3, T = 10 K, and EF = 0.

Figure 8 shows the energy difference between the first excited state and the ground
state for each of the four GaAs QW structures as a function of the R0 parameter. In this
case, the donor density and temperature have been kept fixed at Nd = 2× 1018 cm−3 and
T = 10 K, respectively. An increase in the separation between these two states is evidenced
as R0 augments within the range between 10 nm and 17 nm, going from an average value
of 28 meV to around 38 meV, for all structures. In this range, it is also noted that the
separation between levels in the cases of square and pentagonal geometry presents a very
similar behavior. The curves show a linear and parallel tendency. The greatest separation of
E1− E0 appears from the comparison between the circular and triangular QWs, followed by



Nanomaterials 2021, 11, 1219 12 of 23

that involving the pentagonal and triangular wires. Within the range 17 nm < R0 < 30 nm,
the separation between the levels does not show significant growth, maintaining an average
value of about 38 meV. In this region, the curves show a kind of oscillatory behavior,
presenting a close approach between the circular, square and triangular QWs for a value
of R0 ∼ 23.5 nm. Then, for values R0 > 30 nm, these energy values keep getting closer
until reaching a difference of 8.8 meV approximately at R0 = 50 nm for circular and
pentagonal QWs and of 10 meV and 12.3 meV for wires with square and triangular sections,
respectively. Note the similar behavior shown by the curves corresponding to the circular
and pentagonal QW for values of R0 greater than 35 nm. This is explained as a consequence
of the fact that electrons, for a large QW cross-section, do not feel the edge effects in the
system. This fact can be analyzed in conjunction with the results presented in Figure 4,
which show that the electron density is practically concentrated at the center of the structure,
and the pentagonal profile is closer to the circular one. The opposite occurs with the square
and triangular systems, for which the profile electron density is changed in greater extent
due to the shape of system boundaries. In the region, R0 < 17 nm, a greater separation
between the curves occurs again for the circular and triangular QWs. But now, the curves
have been inverted, being higher than that of the triangular QW.
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Figure 8. Energy difference between the first excited state and the ground state for each GaAs
quantum wire as a function of the R0 parameter. Calculations are with Nd = 2× 1018 cm−3, T = 10 K,
and EF = 0.

In previous figures, the electronic energies in each system have been plotted as func-
tions of R0, keeping the doping fixed at Nd = 2 × 1018 cm−3 and the temperature at
T = 10 K. Next, the variation of the energies will be studied while allowing variations
of the Nd parameter and keeping fixed the dimensions of the QWs and the temperature.
At this point, it must be remembered that the system under study is a QW with exposed
boundaries. Thus, an immediate consequence is the Fermi level pinning due to the transfer
of charge towards surface states. These states’ appearance is transcendental since it fixes
the surface potential and the Fermi level independently of the donor density in the system.

Figure 9 shows the ground state energy for each of the GaAs QW systems as a function
of the donor density, Nd. The remaining system parameters have been fixed at R0 = 30 nm
and T = 10 K. Note that for Nd < 5 × 1018 cm−3, there is practically no difference in
electron energy when comparing results for the four distinct cross-section geometries. This
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fact can be more clearly noticed by seeing the upper inset, in which the energy difference
between the ground state of the triangular and circular QWs is presented. One may
observe that the difference between state energies is of the order of 4 meV when Nd → 0.
On the other hand, when Nd = 5× 1018 cm−3, this difference reaches a maximum value of
18.7 meV to subsequently show an approximately constant decrease around 7.5 meV. Note
the type of linear decrease that occurs for Nd > 12× 1018 cm−3 for all structures. In general,
the ground state shows a decrease from 0.69 meV for Nd = 0 to approximately −0.5 meV,
independently of the QW shape. The lower inset is a magnification of the curves, where
the very close behavior for circular, square and pentagonal QW structures is again obvious,
with the state of the triangular system presenting a more noticeable separation.
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Figure 9. Ground state energy for each GaAs quantum wire structure as a function of the Nd parame-
ter. The inset shows the energy difference between the triangular and circular wires. Calculations are
for R0 = 30 nm and T = 10 K.

Figure 10 presents the first two electronic states for each of the GaAs QW systems
as a function of the donor density, Nd. The temperature has been kept fixed at T = 10 K
and the geometric R0 parameter at 30 nm. For all the structures, a decreasing behavior
is observed with the increase in Nd, this decrease being approximately linear for values
Nd > 1019 cm−3. It should be noted that there is a degeneracy of the second degree in the
case of the first excited state for all systems. Just to quantify the fall in energy levels, for the
circular system it goes from 0.7 eV for Nd = 1016 cm−3 to −0.5 eV for Nd = 3× 1019 cm−3

in the case of the first excited state.
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Figure 10. First two states of each GaAs quantum wire system as a function of the Nd parameter. The
label 2 in each figure indicates that the first excited state is doubly degenerated. Calculations are for
R0 = 30 nm and T = 10 K.

We are presenting in Figure 11 the difference between the first excited state energy
and the ground state energy for all considered GaAs QW systems, depicted as a function
of the electron density, Nd. The same parameters as in Figure 10 have been kept fixed.
A monotonically decreasing behavior is immediately evident for all curves. In the same
way it should be noted that the maximum separation between these two levels takes
place in the particular case of the QW with triangular cross-section, reaching a maximum
value of approximately 32.2 meV at Nd = 5× 1018 cm−3, and decreasing to 18 meV at
Nd = 3× 1019 cm−3. In order of separation between these two levels, the next structure
is the square-shaped QW which goes from 27.2 meV to 15.7 meV in the same range of Nd.
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Here, a particular behavior is present for circular and pentagonal QWs. Actually, they
present exactly the same separation between these two lowest levels for Nd = 5× 1018 cm−3,
taking a value of 24.7 meV. However, as Nd is increased, an appreciable difference is reached
between these two kinds of QWs, the circular one taking a slightly higher value. This
behavior is maintained with the increase in Nd.
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Figure 11. Energy difference between the first excited state and the ground state for each GaAs
quantum wire system as a function of the Nd parameter. Calculations are for R0 = 30 nm and
T = 10 K.

The variation of the lowest six energy levels for the four GaAs QW systems as a
function of temperature is shown in Figure 12. For this case, R0 has been fixed at 50 nm and
Nd = 2× 1018 cm−3. The number that appears next to some states indicates their degree
of degeneracy. Note the similar behavior of the energy degeneracy for the circular and
pentagonal QWs (also for the triangular and square QW). This was expected, bearing in
mind the results obtained in Figures 9 and 11. It should be noted that the highest value
of the ground state energy happens for the triangular QW system, taking a minimum
value of −72.9 meV at T = 10 K and a maximum of −65.3 meV at T = 290 K. Note that all
states show an increasing trend with rising temperatures. This fact is a consequence of the
stronger confinement at high temperatures.
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Figure 12. The first six energy levels of each GaAs quantum wire system as a function of temper-
ature. The labels 1 and 2 indicate the degree of degeneracy. Calculations are for R0 = 50 nm and
Nd = 2× 1018 cm−3.

Figure 13 shows the difference between the first excited state energy and the ground
state energy as a function of temperature for the four QW types analyzed. The other
parameters have been kept fixed in a similar way as in Figure 12. The highest separation
is given for the triangular system, and goes from 12.3 meV at T = 10 K to 13.1 meV at
T = 290 K. It is followed by the square QW which, for the same temperature range, goes
from 9.9 meV to 10.5 meV. Finally, as in the previous figures, again the most similar behavior
is exhibited by the curves of circular and pentagonal system. This was seen in Figure 12
with the similar behavior that the first two levels followed in both structures. However,
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this similarity is not present in the case of higher states. The minimum separation between
the levels is given for pentagonal-shaped QW, which, in the same range of temperatures
studied, goes from 8.6 meV to 9.2 meV. Note the increasing character of all the curves
with temperature.
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Figure 13. Energy difference between the first excited state energy and the ground state energy for
each GaAs quantum wire system as a function of temperature. Calculations are for R0 = 50 nm and
Nd = 2× 1018 cm−3.

The results for the electron density profile given by Equation (7) are presented in
Figure 14 for the circular QW at a temperature of T = 10 K and R0 = 50 nm. Figure 14a
shows the total density (black curve). The dashed vertical lines indicate the local maxima
that appear as oscillations in points (1), (2) and (3). The contributions coming from the
different electron states in these points appear in Table 1. The first number in parentheses
corresponds to the azimuthal quantum number (m) and the second to the radial quantum
number (l). Note that in the case of the circular quantum wire, and due to its axial symmetry,
the ψi(x, y) wave function in Equation (6) can be written as ψi(x, y) = fl(ρ) exp(imφ),
where m = 0,±1,±2, ... is the azimuthal quantum number, l = 1, 2, 3, ... is the radial
quantum number, and ρ =

√
x2 + y2. The percentage that appears next to each state

in Table 1 corresponds to the contribution of each of them to the oscillation of the total
density profile at points (1), (2), and (3) in Figure 14, where the probability density has
been plotted for the states with a contribution greater than 15.0% for all peaks. As seen
from Figure 14a and Table 1, for the oscillation centered at x = 4.75 nm, denoted by
(1) in the figure, the highest contribution is due to the ground state of the system, ψ0,1,
with 23.0%, followed by the ψ0,2 and ψ1,2 states with 19.6% and 19.2%, respectively. The last
significant contribution is due to the ψ1,3 state with 16.0%. Meanwhile, the other states
present a contribution of less than 10.0% for this first oscillation in the electron density
profile. Accordingly, this particular oscillation is due mainly to the contribution of the
lower states of the system; note that states with m > 3 do not contribute to the appearance
of this oscillation. On the other hand, for the oscillation centered at x = 12.25 nm, denoted
as (2) in the figure, the state that contributes the most is ψ1,1 with 23.5%, followed by ψ2,1
with 16.3% and ψ2,2 with 12.1%. The other states present contributions of the order of 10.0%
and less. Note that the lower states ψ0,1 and ψ0,2, that for the first oscillation contributed
42.6% to the electron density, for this second oscillation only provide 10.9%. However,
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the ψ1,1 and ψ2,1 states went from 9.7% in the first oscillation to 39.8% in the second one.
For the third oscillation at x = 20.5 nm, denoted by (3) in the figure, being more tenuous,
a rather equitable contribution is evidenced between the states with the largest m quantum
number. This contribution is on average 13.26%, while the proportion from the lowest
states is less than 7.0%. An important conclusion here is that the oscillation generated
in the density profile near the central zone of the circular QW is due to the contribution
of the lower states of the system, while the second oscillation is caused by intermediate
occupied states and the final one—around 20 nm—occurs due to the highest occupied
states. It should be mentioned that the empty spaces in Table 1 correspond to states that
do not contribute to the electron density at that specific point. For example, the ψ0,3 state
contributes to the oscillations presented in points (1) and (2), but it does not contribute to
the oscillation generated in point (3). The curves plotted in Figure 14b correspond to the
electron density for the cylindrical QW, separating the individual contribution of states
with different m-quantum number. This quantum number is kept fixed, and the sum in the
Equation (7) is made over the l-quantum number. It should be noted that, for m > 6, there
are no longer occupied states, and therefore they do not contribute to the electron density.
Figure 14c, together with the total electron density (black curve), shows the sum over
occupied states up to the state m = i (the Σmi symbol represents the value of summation).
Sums up to the states that have m = 6—the highest occupied—are shown. Figure 14b,c are
evidence that the contribution to the first oscillation’s appearance at x = 4.75 nm is mainly
caused by electrons occupying the states with m ≤ 3. On the other hand, for the outermost
oscillations that are located at x = 12.25 nm and x = 20.5 nm, the oscillations are caused
by states with 4 < m < 6, that correspond to the highest occupied states in the system.
All this means that electrons with lower state energies are located close to the center of
the structure’s symmetry, between 0 < x < 10 nm; while electrons in higher energy states
mainly locate at intermediate regions, 10 < x < 35 nm.
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Figure 14. Electron density for circular GaAs quantum wire. In (a) the |ψi(x, y = 0)|2 states that contribute with the highest
percentage to the density profile in points denoted by (1), (2), and (3) to the density profile. In (b), the contribution to
the electron density for each quantum number m. In (c), the sum over the states with equal m. Note that in the case of
the circular quantum wire, and due to its axial symmetry, the ψi(x, y) wave function in Equation (6) can be written as
ψi(x, y) = fl(ρ) exp(imφ), where m = 0,±1,±2, ... is the azimuthal quantum number, l = 1, 2, 3, ... is the radial quantum
number, and ρ =

√
x2 + y2. Calculations are for R0 = 50 nm , Nd = 2× 1018 cm−3, and T = 10 K.
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Table 1. Contribution in percentage of each of the states to the oscillations at points (1), (2) and (3) in
the density profile presented in Figure 14.

(m, l) P1 (%) P2 (%) P3 (%)

(0, 1) 23.0 10.2 1.5
(0, 2) 19.6 0.7 6.5
(0, 3) 8.6 5.5
(1, 1) 8.8 23.5 7.4
(1, 2) 19.2 4.3 12.1
(1, 3) 16.0 1.8 0.2
(2, 1) 0.9 16.3 12.0
(2, 2) 3.4 12.1 7.0
(3, 1) 0.2 8.4 14.9
(3, 2) 0.3 10.6 2.0
(4, 1) 3.5 15.0
(4, 2) 1.5
(5, 1) 1.3 12.3
(6, 1) 0.3 6.9

Finally, Figure 15 shows the electron density as a function of the x-position for the
structures with square, triangle, and pentagon cross-section geometries. It is equivalent to
Figure 14a for the circular system. Each figure shows the plot of the probability density
of the states that contribute simultaneously to the two oscillations in all the systems of
Figure 15. That is, ψ0, ψ2, ψ5, ψ10, and ψ14, as indicated in Table 2, where the percentage
contribution of each one to the electron density at the position determined by the dashed
line (points (1) and (2)) is also shown. States above ψ15 present a contribution much less
than 1.0% and therefore were not included in Table 2. In these structures, we see again how
the lower states provide a higher contribution to the electron density near the symmetry
axis of the QW systems. Since these figures have been calculated at low temperature
(T = 10 K), then the electrons will be—to a greater extent—occupying the lowest states of
each QW. The opposite case occurs at points far from the symmetry axis of the structure,
where we see a minimum contribution from the lowest states of the system and a higher
contribution—in percentage—from the highest occupied states. The x = 0 coordinate
corresponds to the symmetry axis of each structure. Note the asymmetry in the electron
density profile concerning this point for the triangular and pentagonal systems.
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Figure 15. Electron density and |ψi(x, y = 0)|2 that contribute with the highest percentage to the density profile in points
(1) and (2). Results are for square (a), triangle (b), and pentagon (c) QW. Calculations are for R0 = 50 nm , Nd = 2× 1018 cm−3,
and T = 10 K.
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Table 2. The first 16 states and their percentage contribution to the electron density profile at points
(1) and (2) of Figure 15.

Square Triangle Pentagon

ψn P1 (%) P2 (%) P1 (%) P2 (%) P1 (%) P2 (%)

ψ0 27.3 3.4 30.4 1.7 25.5 1.1
ψ1 0.4 0.1
ψ2 7.6 13.8 14.4 14.4 7.2 7.2
ψ3 14.2 19.5 7.4 3.3
ψ4 0.7 19.7 10.5 18.0
ψ5 24.6 6.6 0.6 0.6 16.9 17.2
ψ6 8.3 24.4
ψ7 2.8 10.8 2.3 2.1 7.0
ψ8 13.5 16.3
ψ9 3.4 2.1 10.2 13.8 24.6
ψ10 2.4 14.1 2.4 1.4 3.9 4.1
ψ11 0.4
ψ12 9.2 1.6 5.6 6.0
ψ13 1.9 0.8 6.7 4.8
ψ14 10.2 2.9 0.7 1.1 5.1 15.9
ψ15 1.8 8.3

4. Conclusions

Electronic properties such as wave functions, state energies, potentials and electron
densities have been calculated in a self-consistent way, using the finite element method,
for GaAs quantum wire systems of different cross-section geometry, taking into account
variations in geometric parameters, such as cross-sectional area and non-geometric pa-
rameters, such as the donor density and the temperature. It has been shown that the
increase in cross-section and/or donor density in all structures generates a lesser degree of
confinement by the self-consistent potential and, therefore, a decrease in electronic energies.
The opposite case occurs when the temperature is increased, for which there is an increase
in the self-consistent potential profile, thus impacting on the increase of energy eigenvalues
for all systems. The system that presents the highest values of the confined energy levels is
the quantum wire with a triangular cross-section, and the one with the lowest energies is
the circular wire. At low temperatures, all structures present irregularities in the electron
density profile. These Friedel-like oscillations are due to the degree of occupation of inter-
nal and surface states (that arise from having the surface of the quantum wire exposed)
by conduction electrons. This new understanding of the quantum wires can be extended
without significant changes to the study of finite-length nanowires with the most diverse
geometries. Hence, we believe that the results and scheme presented here can be of interest
to researchers in the area.
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