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Abstract: Developing highly efficient anchoring materials to suppress sodium polysulfides (NaPSs)
shuttling is vital for the practical applications of sodium sulfur (Na-S) batteries. Herein, we sys-
tematically investigated pristine graphene and metal-N4@graphene (metal = Fe, Co, and Mn) as
host materials for sulfur cathode to adsorb NaPSs via first-principles theory calculations. The com-
puting results reveal that Fe-N4@graphene is a fairly promising anchoring material, in which the
formed chemical bonds of Fe-S and N-Na ensure the stable adsorption of NaPSs. Furthermore, the
doped transition metal iron could not only dramatically enhance the electronic conductivity and
the adsorption strength of soluble NaPSs, but also significantly lower the decomposition energies
of Na2S and Na2S2 on the surface of Fe-N4@graphene, which could effectively promote the full
discharge of Na-S batteries. Our research provides a deep insight into the mechanism of anchoring
and electrocatalytic effect of Fe-N4@graphene in sulfur cathode, which would be beneficial for the
development of high-performance Na-S batteries.

Keywords: anchoring materials; shuttling effect; Na-S battery; metal-N4@Graphene; first-
principles theory

1. Introduction

In recent years, it has become more and more difficult for the current commercial
lithium-ion batteries (LIB), due to their relatively low theoretical energy density limits
(200–300 Wh/kg), to meet the ever-growing demands of society’s electrical energy storage,
including portable electronic devices, electric vehicles, and smart grid storage applica-
tions [1–3]. Therefore, novel rechargeable batteries with a large charge storage capacity and
a high energy density are urgently needed [4–9]. Owing to the extremely high theoretical
specific capacity of the elements sulfur (1672 mAh/g) and sodium (1165 mAh/g), and
to the batteries’ high theoretical energy density of 1274 Wh/kg of cell weight [10–13],
the rapidly developing room temperature (RT) sodium-sulfur (Na-S) batteries are widely
considered as one of the most promising alternative candidates for the next-generation
rechargeable batteries to replace the conventional insertion-type LIB [14–17]. Furthermore,
both sodium and sulfur element materials are earth-crust abundant, sufficiently low-cost,
and environmentally friendly [18,19].

Despite these advantages, RT Na-S batteries have not yet been practically applied,
since this technology still suffers from several critical challenges [17,20–22], similar to
lithium sulfur (Li-S) batteries: (1) sulfur and the discharge by-products sodium polysulfides
(NaPSs) (Na2Sn, where 1 ≤ n ≤ 8) have poor electrical conductivity, which leads to a low
utilization of active materials; (2) the high-order NaPSs (Na2Sn, 4 ≤ n ≤ 8) are prone

Nanomaterials 2021, 11, 1197. https://doi.org/10.3390/nano11051197 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-5170-728X
https://orcid.org/0000-0003-4370-473X
https://orcid.org/0000-0003-0946-7830
https://doi.org/10.3390/nano11051197
https://doi.org/10.3390/nano11051197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11051197
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11051197?type=check_update&version=2


Nanomaterials 2021, 11, 1197 2 of 11

to dissolve in the ether-based liquid electrolyte, then diffuse towards the sodium anode,
thus causing the so-called “shuttling effect” and leading to low coulombic efficiency and
rapid capacity fading; (3) the large volume expansion of sulfur cathode during discharge
can bring about poor stability of the electrode. To address the above-mentioned issues,
designing appropriate multifunctional conductive anchoring materials that can both catch
and catalyze the NaPSs is of vital importance.

Graphene nanosheet is one of the widely used electrode host materials due to its high
specific surface area, attractive electrical/thermal conductivity, and excellent flexibility
property [23–25]. However, the physical combination between nonpolar pristine graphene
and polar polysulfides is too weak to effectively hinder polysulfides shuttling between
anode and cathode during charge/discharge cycling. One effective strategy to improve
the interactions with polysulfides is to dope heteroatom into graphene nanosheet, based
on the lessons learned from Li-S batteries [26–28]. Particularly, N atom is the most widely
used dopant for Li/Na-S batteries as an anchoring material [26,27,29,30]. For instance,
pyrrolic and pyridinic N-doped graphene shows a much stronger combination with lithium
polysulfides (LiPSs) through covalent bonds than pristine graphene, as reported by J. J.
Chen et al. [26] and Y. Qiu et al. [27]. M. Sajjad et al. reported that polar nitrogenated
holey graphene shows a superior anchoring of NaPSs [29]. Additionally, the co-doped
graphene/carbon nanostructures are also reported to be intensively attractive, due to their
novel geometries and properties [31–35]. For example, G. Xia et al. reported that N and
O co-doped porous carbon nanofibers could effectively alleviate the “shuttling effect” via
adsorbing NaPSs by strong chemical interactions [31]. J. Yang et al. reported that the N
and S co-doped porous carbon nanosheets increase the utilization of sulfur and display
excellent rate performance of Na-S batteries [32]. Interestingly, transition metal elements
doping is advantageous over non-metallic doping in Li/Na-S batteries, benefiting from the
electrocatalytic property of transition metal originated from its special electronic orbital
arrangement [28,36–39]. For instance, B. W. Zhang et al. reported that transition metal (such
as Co, Fe, Cu, and Ni) nanoclusters that were decorated in hollow carbon nanospheres could
significantly polarize sulfur host to improve the reactivity of S and inhibit the “shuttling
effect”, and their electrocatalytic effects are also clearly evidenced by experiments and
calculations [37,38]. In particular, several recent experiments and simulations reported
that transition metal and nitrogen co-doped graphene exhibit superior performance with
good electrocatalysis and shuttling suppression abilities [28,33,40–42]. For examples, Q. Jia
et al. revealed the high catalytic property of Fe-N co-doped graphene fragments through
experimental observations [33]. W. Lai et al. experimentally showed that cathodes with
Fe-N co-doped carbon fibers exhibit outstanding rate capacity and cycling performance in
RT Na-S batteries [42]. Zhang and co-workers reported that Fe-N4 and Cr-N4 co-doped
graphene shows a strong adsorption and full discharge of LiPSs, resulting in a greatly
improved performance of Li-S batteries [41]. However, transition metal and nitrogen co-
doped graphene (metal-N4@graphene) used in Na-S batteries as multifunctional anchoring
materials have been less explored up to now.

Inspired by the aforementioned investigations, here, we systemically investigated
the experimentally available transition metal-N4@graphene (metal = Fe, Co, and Mn) [42]
to illustrate its anchoring and electrocatalytic effects in Na-S batteries by first-principles
density functional theory (DFT). Our results demonstrate that Fe-N4@graphene can tightly
combine with NaPSs through chemical bonds, and its electric conductivity is well retained.
Hence, properly doping Fe-N4 into graphene can greatly enhance the anchoring effect for
NaPSs to suppress the adverse “shuttling effect” in Na-S batteries. Additionally, the doping
transition metal ions can effectively lower the decomposition energy barriers of NaPSs,
resulting in a signal development of their full discharge. Our results not only facilitate
a deep understanding of the mechanism of metal-N4@graphene used as a multifunc-
tional anchoring material, but also provide worthy guidance to exploit high-performance
Na-S batteries.
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2. Computational Method

The calculations of this work have been performed within the framework of the DFT
by using Vienna ab initio simulation package (VASP) [43,44] code. The Project-Augmented-
Wave (PAW) [45] and the Perdew-Burke-Ernzerhof (PBE) Generalized Gradient Approxi-
mation (GGA) [46] that are implemented in VASP are carried out for pseudopotentials and
the exchange-correlation functionals. Spin polarized calculations are employed for all the
co-doped systems, due to the magnetic nature of the transition metal atoms (metal = Fe, Co,
and Mn). A plane wave cutoff of 520 eV is used for the kinetic energy of all the graphene
and metal-N4 doped graphene monolayers. A 3 × 3 × 1 Monkhorst-Pack [47] k-mesh
is used for the Brillouin zone integrations of all supercells in all the calculations. About
20 Å vacuum space along the direction perpendicular to the plane of the monolayer is
inserted to eliminate the interactions of the adjacent periodic images. All of the struc-
tural optimizations are performed with an energy convergence criterion of 10−5 eV/cell.
The van der Waals (vdW) interactions are described by using the Lee et al. vdW-DF2
functionals [48,49], which have been widely and successfully used to describe co-doped
graphene systems [28,40]. To estimate the energy barriers of Na ion diffusion on the
surface of pristine graphene and Fe-N4@Graphene monolayers, we constructed 2, 4, 4,
and 3 linear-interpolation intermediate images between the initial and final Na positions
along the pathway of Na2S/Graphene, Na2S2/Graphene, Na2S/Fe-N4@Graphene, and
Na2S2/Fe-N4@Graphene to perform the climbing-image nudged elastic band (ci-NEB)
algorithm [50,51], respectively. In ci-NEB calculations, supercells with a single Na adatom
are performed, and all of the image configurations are relaxed until the maximum force
acting on every atom is less than 0.03 eV/Å. In ci-NEB calculations, we removed one of
the sodium ions of Na2S and Na2S2 on graphene and Fe-N4@graphene from their most
stable adsorption sites, and placed them far away, then optimized their structural configu-
rations and used them as the final states of ci-NEB, respectively. The Fermi energy level of
projected density of states (PDOS) has been converted to zero.

The adsorption energies Ead of NaPSs molecule on pristine graphene and metal-
N4@graphene are defined as the following formula:

Ead = Esub + Emole − Etot (1)

where Etot is the total energy of the substrate with adsorbed NaPSs, Esub is the energy of
substrate of pristine graphene or metal-N4@graphene, and Emole is the energy of isolated
NaPSs molecule. According to this definition, a positive value indicates an exothermic
(energetically favorable) reaction, and the strength of absorbing capability of substrate for
NaPSs molecules enhances as the value becomes more positive.

3. Results and Discussion
3.1. Structures and Electronic Properties of Na2Sn Species and Metal-N4@Graphene

During the discharge process of Na-S batteries, the sodium polysulfide species (typi-
cally including Na2S, Na2S2, Na2S4, Na2S6, and Na2S8) are formed, and the final product
is Na2S species, as demonstrated by experiments [16,52]. The optimized geometries of
Na2Sn (n = 1, 2, 4, 6, and 8) species and cyclo-S8 are shown in Figure 1a, and all of these
S-containing molecules are in a three-dimensional shape, which are well consistent with pre-
vious studies [29,52], suggesting the reliability of our employed calculations. The specific
structural parameters of Na2Sn species and cyclo-S8 are listed in Table 1. As the structural
data shows, the Na-S bond lengths (~2.50 Å) of low-order Na2Sn (n = 1, 2) species are
significantly shorter than those (~2.75 Å) of high-order Na2Sn (n = 4, 6, 8) species clusters,
while the S-S bonds slightly decrease with the increase in the number of S atoms, similar to
the scenario of Li2Sn species [28,36]. Generally, a longer bond length indicates a weaker
chemical binding for the same kind of bond. As a result, the high-order Na2Sn species are
more easily dissolved into sodium cations and polysulfide anions than low-order Na2Sn
species in the electrolyte of Na-S batteries.
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Figure 1. (a) The optimized atomic configurations of (a) isolated cyclo-S8 and Na2Sn (n = 8, 6, 4, 2,
and 1) species. (b) The top and side views of optimized metal-N4@graphene substrate.

Table 1. The average bond length (d) of isolated Na2Sn species and cyclo-S8. The unit of bond length
is angstrom (Å).

Na2S Na2S2 Na2S4 Na2S6 Na2S8 Cyclo-S8

dNa-S 2.464 2.581 2.725 2.760 2.734 -
dS-S - 2.277 2.135 2.117 2.093 2.097

Figure 1b presents the optimized structure of transition metal and nitrogen co-doped
graphene (metal-N4@graphene) substrate in a 3 × 5 supercell (containing 59 atoms), in
which all of the atoms are in the same plane. For the metal-N4@graphene, six carbon atoms
in the center of the substrate are removed and then replaced by four nitrogen atoms and
one metal atom. Three kinds of transition metal (Fe, Co, and Mn) atoms are considered in
this work. Our calculations show that the central transition metal atom is surrounded by
four equivalent metal-N bonds, with the lengths ranging from 1.89 Å to 1.96 Å, which is
well consistent with previous literature [28,36].

In addition, the transition metal-N4 co-doped graphene heterostructure enhances
its electrical conductivity. Previous studies found that an electrode structure composed
with graphene can facilitate electron and ion transport [23,24]. Moreover, heterostructures
provide an optimal way for tuning the electronic properties [36]. Based on these reports,
the electronic conductivities of co-doped graphene monolayers are investigated; thus, the
projected density of states (PDOS) of pristine and transition metal-N4 (metal = Fe, Co, and
Mn) co-doped graphene are calculated, as illustrated in Figure 2. As shown in Figure 2b–d,
the PDOSs of transition metal-N4@graphene exhibit spin asymmetrically polarized ground
states, due to the difference between the number of electrons in spin-up and spin-down
components. In addition, their magnetic moments are mainly localized on the central
metal atom, as shown in Table S1. Furthermore, the magnetism of doped iron is mainly
contributed from its relatively localized 3d orbital electrons (see Figure S4). Notably, there
are more PDOSs of transition metal-N4@graphene near the Fermi energy than of pristine
graphene (see Figure 2). Therefore, the electrical conductivity of metal-N4@graphene is
effectively improved, which is beneficial for the performance of the cathode electrode.
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Figure 2. The projected density of states (PDOS) of pristine graphene (a) and metal-N4@graphene
(metal = Fe (b), Co (c), and Mn (d)). The solid and dashed lines represent spin-up and spin-down
components of PDOS, respectively. The vertical blue dashed lines represent the Fermi energy level.

3.2. Adsorption of Na2Sn Species on Pristine and Transition Metal-N4 Co-Doped Graphene

To evaluate the potentials of transition metal-N4@graphene (metal = Fe, Co, and Mn)
as the anchoring material for high-performance Na-S batteries, the adsorption energies
of Na2Sn species on pristine and co-doped graphene are calculated, respectively. The
computing results show that the minimum distance between Na2Sn species and pristine
graphene substrate is larger than 2.8 Å, and all adsorption energies of Na2Sn species on
graphene are around 0.7 eV (see Table S2), indicating that there are no chemical bonds
between Na2Sn species and graphene (see Figure 3). The weak van der Waals interactions
are not strong enough to stabilize the adsorption of Na2Sn species; hence, pristine graphene
is not a proper anchoring material, which is consistent with previous reports [24,53]. As a
consequence, the co-doped graphene as absorbing Na2Sn species materials are studied by
DFT calculations.

Nanomaterials 2021, 11, x FOR PEER REVIEW 5 of 11 
 

 

 

Figure 2. The projected density of states (PDOS) of pristine graphene (a) and metal-N4@graphene 

(metal = Fe (b), Co (c), and Mn (d)). The solid and dashed lines represent spin-up and spin-down 

components of PDOS, respectively. The vertical blue dashed lines represent the Fermi energy 

level. 

3.2. Adsorption of Na2Sn Species on Pristine and Transition Metal-N4 Co-Doped Graphene 

To evaluate the potentials of transition metal-N4@graphene (metal = Fe, Co, and Mn) 

as the anchoring material for high-performance Na-S batteries, the adsorption energies of 

Na2Sn species on pristine and co-doped graphene are calculated, respectively. The com-

puting results show that the minimum distance between Na2Sn species and pristine gra-

phene substrate is larger than 2.8 Å , and all adsorption energies of Na2Sn species on gra-

phene are around 0.7 eV (see Table S2), indicating that there are no chemical bonds be-

tween Na2Sn species and graphene (see Figure 3). The weak van der Waals interactions are 

not strong enough to stabilize the adsorption of Na2Sn species; hence, pristine graphene is 

not a proper anchoring material, which is consistent with previous reports [24,53]. As a 

consequence, the co-doped graphene as absorbing Na2Sn species materials are studied by 

DFT calculations. 

 

Figure 3. The optimized structures of cyclo-S8 and Na2Sn (n = 1, 2, 4, 6, and 8) species adsorbed on 

the surface of pristine graphene. The black, blue, and yellow balls represent carbon, sodium, and 

sulfur atoms, respectively. 

Figure 3. The optimized structures of cyclo-S8 and Na2Sn (n = 1, 2, 4, 6, and 8) species adsorbed on
the surface of pristine graphene. The black, blue, and yellow balls represent carbon, sodium, and
sulfur atoms, respectively.
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To obtain the most stable adsorption configurations, we considered different orienta-
tions of Na2Sn species and cyclo-S8 at different sites of the Fe-N4@graphene surface (see
Figure S1). Take Figure S1a,b as an example. The cyclo-S8 prefers to parallelly adsorb
to the surface of Fe-N4@graphene with a minimum distance between them of 2.111 Å.
Meanwhile, the shape of adsorbed cyclo-S8 has a somewhat structural distortion, that
is, the S-S bond is slightly stretched from 2.097 Å of the isolated cyclo-S8 molecule to
2.175 Å of the counterpart, and the central Fe atom is pulled outward from the surface
of doped graphene by about 0.413 Å, suggesting the formation of an obvious chemical
S-Fe bond. After full structural optimization, the most stable configurations of Na2Sn
species and cyclo-S8 adsorbed on transition metal-N4@graphene are presented in Figure 4,
and Figures S2 and S3, and the corresponding key binding parameters are summarized
in Table 2, and Tables S3 and S4. In addition, comparing before and after adsorption,
metal-N4@graphene (metal = Fe, Co, and Mn) as anchoring materials can maintain their
structures well, and the Na2Sn species and cyclo-S8 adjust themselves to achieve the most
stable adsorption.
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Figure 4. The optimized structures of cyclo-S8 and Na2Sn (n = 1, 2, 4, 6, and 8) adsorbed on the
surface of Fe-N4@graphene. The black, blue, yellow, orange, and brown balls represent carbon,
sodium, sulfur, nitrogen, and iron atoms, respectively.

Table 2. The adsorption energies Ead (eV) and the average bond length d (Å) of Na2Sn species and
cyclo-S8 after absorbing on Fe-N4@graphene.

Fe-N4@G Na2S Na2S2 Na2S4 Na2S6 Na2S8 Cyclo-S8

Eb 1.092 1.358 1.072 1.158 1.352 0.924
dNa-N 2.569 2.790 2.707 2.708 2.920 -
dFe-S - 2.299 2.281 2.299 2.137 2.111
dNa-S 2.514 2.679 2.747 2.759 2.843 -
dS-S - 2.175 2.139 2.064 2.235 2.175

As Figure 4, and Figures S2 and S3, show, for metal-N4@graphene (metal = Fe, Co, and
Mn), one sulfur atom binds with the metal atom, and one or two sodium atoms bind with
nitrogen atoms, forming a chemical binding ring configuration. For instance, the chemical
ring of the Na2S adsorbed system has two Na-N bonds, and the Na2S2 adsorbed system
has two Na-N bonds and one S-metal bond. All adsorption energies of Na2Sn species on
Fe-N4@graphene increase significantly and are much greater than that of pristine graphene.
Thus, it is obvious that the strong chemical rings with large adsorbing energies make the
adsorption configuration more stable, resulting in a high affinity for Na2Sn species. This
feature of co-doped graphene can significantly hinder the shuttling effect, which mainly
comes from high-order Na2Sn species. Notably, the adsorption energies of Na2Sn species
on Fe-N4@graphene are obviously larger than that of Co/Mn-N4@graphene (see Figure 5),
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especially for high-order Na2Sn species, which means that the high-order Na2Sn species
tend to adsorb on Fe-N4@graphene much easier than Co/Mn-N4@graphene. This indicates
that Fe-N4@graphene, as the best one among the considered anchoring materials, can most
effectively adsorb Na2Sn molecules to prevent the shuttling effect.
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respectively. The dashed line represents the critical energy of weak physical adsorption.

Particularly, after Na2S and Na2S2 adsorbing on Fe-N4@graphene, the Na-S bond
length prolongs more significantly than in the isolated state (as shown in Tables 1 and 2).
The average bond lengths of Na-S increase from 2.464 Å and 2.581 Å to 2.514 Å and 2.679 Å
for Na2S and Na2S2, respectively. The extension of the Na-S bond makes it easier for it to be
broken, which is beneficial to the detachment of sodium ion. Therefore, the mechanism of
Fe-N4@graphene on the decomposition of Na2S and Na2S2 needs to be intensively studied.

3.3. Electrocatalytic Performance of Iron for Na2Sn Species on Fe-N4@Graphene

It is worth noting that the decomposition of the deep discharge products (e.g., Na2S
and Na2S2) on anchoring materials is a critical factor for energy capability, utilization
of sulfur, and cycling performance of Na-S batteries. As the abovementioned analysis
shows, Fe-N4@graphene is the most effective anchoring material for Na2Sn species; thus,
its electrocatalytic performance deserves further study, which is essential for coulombic
efficiency, rate capability, and charge/discharge performance of Na-S batteries. To gain an
in-depth understanding of the electrocatalytic property of doped iron, the climbing-image
nudged elastic band (ci-NEB) method is applied to calculate the energy barrier for Na2S and
Na2S2 decomposing on the surface of pristine graphene and Fe-N4@graphene, respectively,
to evaluate the sodium extraction reaction kinetics.

Herein, we considered the decomposition process from an intact Na2S/Na2S2 molecule
into a NaS/NaS2 cluster and a single Na ion (Na2S/NaS2→NaS/NaS2 + Na+ + e−). The
main evolution is accompanied by one sodium ion separating and moving away from
the sulfur atom in Na2S/Na2S2 molecule, including the breaking of one Na-S bond. The
energy profiles for the decomposition processes of sodium ion on pristine graphene and
Fe-N4@graphene are shown in Figure 6, where the corresponding energy barrier heights
are inserted nearby. Our results show that pristine graphene possesses a great decompo-
sition barrier (1.94 eV and 1.39 eV for Na2S and Na2S2, respectively), much larger than
that of Fe-N4@graphene (1.05 eV and 1.21 eV for Na2S and Na2S2, respectively). It is
known that reducing the decomposition barrier of Na2S/Na2S2 can greatly increase the
utilization of active materials, decrease the formation of dead polysulfides, and achieve
a high charging rate and a longer cycling life. In brief, Fe-N4@graphene demonstrates a
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much lower decomposition barrier of Na2S/Na2S2, which exhibits its promising potential
for catalyzing polysulfides in the charging process of Na-S batteries.
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Figure 6. Decomposition pathways and corresponding energy barriers for Na2S and Na2S2 on
pristine graphene (a,b) and Fe-N4@graphene (c,d) surface, respectively. The insertions are the
intermediate images of one Na ion departing from the NaS/NaS2 cluster.

In one word, the anchoring material Fe-N4@graphene can not only effectively adsorb
the sodium polysulfides to block the shuttling effect, but also significantly improve the
electronic conductivity and catalyze the electrochemical interactions, consequently achiev-
ing multiple targets and addressing several vital challenges. Thus, our research reveals the
multi-functional anchoring effects of Fe-N4@graphene in Na-S batteries, while providing
valuable guidance for designing high-performance sulfur cathode materials.

4. Summary

Based on first-principles theory calculations, we systematically investigated the transi-
tion metal-N4@graphene (metal = Fe, Co, and Mn) as multi-functional anchoring materials
to hinder the “shuttling effect” of NaPSs in Na-S batteries. Our calculation results reveal
that doping with metal-N4@graphene could not only dramatically improve the electronic
conductivity, but also enhance the adsorption of Na2Sn species and cyclo-S8 compared to
pristine graphene, which is mainly contributed by the strong chemical bonds of metal-S and
N-Na. Among the doping transition metals considered here, Fe-N4 co-doped graphene is
the best anchoring material. Consequently, the electrocatalytic property of Fe-N4@graphene
was studied through ci-NEB method, and we found that the doped transition metal iron
could dramatically decrease the decomposition energy barrier of Na2S (dropped 0.89 eV)
and Na2S2 (dropped 0.18 eV), which has a significantly improvement on the utilization of
sulfur and full discharge of batteries. Our findings enrich the fundamental understand-
ing of the micro-level mechanism of metal-N4@graphene as multifunctional anchoring
materials added to sulfur electrode, and shed light on the design of high-performance
Na-S batteries.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11051197/s1, Figure S1. Different optimized adsorption configurations of cyclo-S8 [(a)
and (b)] and Na2S8 [(c), (d), and (e)] species adsorbed on the surface of Fe-N4@graphene. Figure S2.
The optimized structures of cyclo-S8 and Na2Sn (n = 1, 2, 4, 6, and 8) species adsorbed on the surface
of Co-N4@graphene. Figure S3. The optimized structures of cyclo-S8 and Na2Sn (n = 1, 2, 4, 6, and
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https://www.mdpi.com/article/10.3390/nano11051197/s1
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8) species adsorbed on the surface of Mn-N4@graphene. Figure S4. The projected density of states
(PDOS) of the doped transition-metal iron. Table S1. The average bond length d (Å) and magnetic
moment M (µB) of transition metal-N4@graphene substrates. Table S2. The adsorption energies Ead
(eV), average bond length d (Å), and the minimum distance dmin (Å) between Na2Sn species and
pristine graphene. Table S3. The adsorption energies Ead (eV) and average bond length d (Å) of Na2Sn
species and cyclo-S8 after adsorbing on Co-N4@graphene. Table S4. The adsorption energies Ead (eV)
and average bond length d (Å) of Na2Sn species and cyclo-S8 after adsorbing on Mn-N4@graphene.
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