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Abstract: We propose a novel low temperature annealing method for selective crystallization of
gold thin films. Our method is based on a non-melt process using highly overlapped ultrashort
laser pulses at a fluence below the damage threshold. Three different wavelengths of a femtosecond
laser with the fundamental (1030 nm), second (515 nm) and third (343 nm) harmonic are used to
crystallize 18-nm and 39-nm thick room temperature deposited gold thin films on a quartz substrate.
Comparison of laser wavelengths confirms that improvements in electrical conductivity up to 40% are
achievable for 18-nm gold film when treated with the 515-nm laser, and the 343-nm laser was found
to be more effective in crystallizing 39-nm gold films with 29% improvement in the crystallinity. A
two-temperature model provides an insight into ultrashort laser interactions with gold thin films and
predicts that applied fluence was insufficient to cause melting of gold films. The simulation results
suggest that non-equilibrium energy transfer between electrons and lattice leads to a solid-state and
melt-free crystallization process. The proposed low fluence femtosecond laser processing method
offers a possible solution for a melt-free thin film crystallization for wide industrial applications.

Keywords: femtosecond laser; laser wavelength; crystallinity; laser fluence; gold thin films; damage
threshold; sheet resistance; two temperature model

1. Introduction

Gold (Au) is a material of great technological significance due to its interesting as-
sociated properties, for example high electrical conductivity, chemical inertness, good
stability and biocompatibility [1,2]. Crystalline Au thin films and nanoparticles with low
defect densities offer potential applications especially in microfluidic devices [3]; electro-
chemical sensing [4]; biochemical sensing [5]; and as transparent conductors [6]. Such
applications require higher electrical conductivity which is sensitive to any change in size
and distribution of grains in Au thin films. Annealing is a widely accepted method to
enhance the electrical as well as structural properties of thin films through a heat treat-
ment process for desired applications. Conventional annealing methods using a rapid
thermal [7]; furnace [8]; flame [9]; and oven annealing [10] have been reported for Au
thin films on various substrates to improve the grain size and their structural properties.
However, such annealing methods have limitations in terms of long processing durations
and high process temperatures which are incompatible for substrates with low melting
points. Moreover, the non-selectivity of a particular region for localized annealing is an
issue as higher temperatures can damage the other nearby components, often leading to
contamination and degradation of electrical performance [11]. Laser annealing is versatile
and rapid; it offers precise and localized energy distribution to the material and is reported
for Au films using continuous wave [12] and pulsed nanosecond lasers [13,14]. However,
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long, and short pulse interaction causes material melting, followed by a cooling and a
re-solidification process [15]. Therefore, for thin film crystallization, a non-melt and low
temperature process is desirable as it enables the structural and material properties to be
altered without additional complications caused by melting.

Ultra-short laser pulses (≤picosecond) are of great importance since their pulse du-
rations are much shorter than the duration of major electron–lattice relaxation processes
resulting in a non-equilibrium two-temperature phenomenon in the material [16,17]. By
using this concept, we demonstrate how a femtosecond (fs) laser enables crystallization
in Au thin films at a fluence lower than the damage threshold. Such low fluences are
insufficient to cause any melting since the lattice temperature remains below the melting
temperature of Au; this was confirmed from the two-temperature model (TTM) simulation
findings. Ultra-short laser pulse crystallization has been reported by many research groups,
especially for crystallizing semiconductor thin films [18–22]. In this paper, we present low
fluence annealing of Au thin films deposited on a quartz substrate by using fs laser pulses
of three different wavelengths. Our results are promising and exhibit a decrease in sheet
resistance and hence an improved crystallinity of films after laser scanning. To the best of
our knowledge, this is the first report on the melt-free crystallization of Au thin films with
ultra-short laser pulses at fluences below the damage threshold.

2. Materials and Methods

The Au thin films of thicknesses 18-nm and 39-nm were sputter coated (Emitech
K550X, Lambda Photometrics Ltd, Hertfordshire, United Kingdom) on a 500 µm thick
quartz substrate and film thicknesses were confirmed with a high-resolution atomic force
microscope (Agilent 5000, Agilent Technologies UK Ltd, Berkshire, United Kingdom).
The coating current was kept at 25 mA and coating time was varied from 4 min to 8 min
to obtain 18-nm and 39-nm film thicknesses, respectively. The standard deviation in
sheet resistance of coated samples is within the acceptable limit; ±0.40 Ω/Sq for the
18-nm and ±0.14 Ω/Sq for the 39-nm film, respectively. A fs laser (s-Pulse HP, Amplitude
systems, Pessac, France, with IR (1030 nm), green (515 nm) and UV (343 nm) wavelengths is
employed for the crystallization of Au thin films. The fs laser with a pulse duration of 500 fs
is operated at 100 kHz repetition rate. The laser is focused with a telecentric f-theta lens
with 100 mm focal length. The sample position is controlled with a 3D computer-controlled
stage (Aerotech 3200, Aerotech, Inc, Pittsburgh, PA, USA). A galvanometer XY scanning
system (SCANLAB, hurry SCAN II, SCANLAB GmbH, Puchheim, Germany) controls the
pulse to pulse overlap on the sample and the schematic of experimental setup is shown
in Figure 1. A four-point probe station (Ossila T2001A2, Ossila Limited, Sheffield, United
Kingdom) is used to measure the sheet resistance before and after each laser scan on the
sample. To confirm the crystallization, X-Ray diffraction (XRD) was performed using a
Jordan Valley Bede D1 high resolution XRD system with a copper (λ = 1.5405 Å) radiation
source operated at 45 kV and 40 mA. The transmittance spectra are obtained with a UV-VIS
spectrophotometer (SHIMADZU UV-2600, SHIMADZU CORPORATION, Kyoto, Japan) to
investigate the effect on optical properties of laser crystallized films. A theoretical study
was conducted to interpret the laser-Au thin film interactions by considering the Au-quartz
interface into the model. A multiphysics finite element method (FEM) simulation based on
TTM is carried out by using COMSOL Multiphysics® software (COMSOL Inc., version 5.5,
Burlington, MA, USA).
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Figure 1. The schematic diagram of the laser setup used for the crystallization experiment. 
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Figure 1. The schematic diagram of the laser setup used for the crystallization experiment.

3. Results and Discussion

A single pulse damage threshold fluence (φth) was determined experimentally using
Liu’s method [23];

D2 = 2ω2
o ln
(

φo

φth

)
(1)

where D is the measured diameter of the crater, ωo is the Gaussian beam waist radius,
φo is peak fluence which is calculated by φo = 2EP/πω2

o . EP is the applied laser energy
and φth is the damage threshold, the value of fluence at which Au film surface starts to
damage. The experimentally calculated parameters for 18-nm and 39-nm Au films on
quartz substrates are provided in the Table 1.

Table 1. Experimentally calculated parameters for 18-nm and 39-nm Au films on quartz substrates for a 500-fs laser
operating at 100 kHz repetition rate.

Laser
Wavelength

Absorption
Length lopt [24]

Beam
Diameter 2ωo

SPA Pulse Overlap Damage Threshold φth

18 nm 39 nm

nm nm µm % Jcm−2 Jcm−2

IR (1030) 12.50 43.9 24.39 96 0.124 ± 8.11 × 10−4 0.323 ± 8.11 × 10−4

Green (515) 20.27 35.7 19.86 95 0.025 ± 7.07 × 10−4 0.056 ± 8.37 × 10−4

UV (343) 14.59 29.0 16.12 93.8 0.026 ± 5.30 × 10−4 0.042 ± 3.80 × 10−4

3.1. Damage Threshold Fluence (φth) Measurements

Figure 2 represent plots showing the linear relationship between the natural log of the
applied fluence and the squared diameter of laser crater for both 18-nm and 39-nm Au films
obtained for IR, green and UV laser, respectively. The single pulse damage threshold flu-
ence is calculated by extrapolating the curves in Figure 2. In the femtosecond time domain,
energy absorption by electrons and succeeding hot electrons diffusion governs the energy
deposition. This diffusion of electrons can be described by characteristic penetration depth
(Lc) which is a measure of the diffusion length of hot electrons into the material within the
hot electron gas before the electron–phonon relaxation occurs [25]. Lc can exceed the optical
penetration length (lopt) significantly which defines how deep the laser beam can pene-
trate into the material. lopt is calculated by using the optical constants from [24] for Au as
14.59 nm, 20.27 nm and 12.50 nm for UV, green and IR laser, respectively. The crucial param-
eter controlling the depth of hot electrons is electron-phonon coupling parameter; thereby
governing energy loss into the material and the zone of thermal damage [26]. For 18-nm
Au films, φth is calculated as 0.124 ± 8.11 × 10−4 Jcm−2, 0.025 ± 7.07 × 10−4 Jcm−2 and
0.026 ± 5.3 × 10−4 Jcm−2 for IR, green and UV laser wavelengths, respectively. The mea-
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sured φth for 39-nm thick film is as 0.323 ± 8.11 × 10−4 Jcm−2, 0.056 ± 8.37 × 10−4 Jcm−2

and 0.042 ± 3.8 × 10−4 Jcm−2 for IR, green and UV laser wavelength, respectively. The
variation in φth with film thickness and applied laser wavelengths is shown in Figure 3. It is
noted that threshold fluence, to create damage, increases with increasing film thickness. It
is consistent for all used wavelengths such as IR, green and UV laser pulses. It is observed
that for films thinner than a characteristic optical penetration length, the damage threshold
fluence is a linear function of film thickness. It increases linearly with film thickness under
(dfilm < Lc) and saturates when film becomes thick as compared to electron diffusion length
reported in [25,26].
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A comparison of estimated φth with wavelengths for 18-nm and 39-nm Au films
deposited on quartz substrate is given in the inset of Figure 3. Highest threshold for
damage is obtained for IR and then for green- and UV laser-treated Au films. For 18-nm
film, φth for green wavelength is 0.025 Jcm−2, which is close to UV laser wavelength
(0.026 Jcm−2), respectively. Higher lopt for green results in deeper transmission of photons
into the film and thereby increase in the threshold fluence. Moreover, these interesting
wavelength dependent variations in φth are attributed to response of Au electronic system
(5d106s1) to photon energies associated with wavelength. In Au, optical absorption typically
occurs due to free carriers via interband and inverse bremsstrahlung absorption [27]. The
minimum energy (eV) needed to excite 5d band electrons into 6s band is defined as the
interband transition threshold (ITT). For Au, ITT varies across the Fermi surface from 1.84
to 2.4 eV [28–30]. Photons with energies greater than ITT for example, green (2.4 eV) and
UV (3.61 eV) significantly initiate the interband absorption via 5d electrons. This higher
absorption of laser energy at UV and green laser wavelengths caused the damage at lower
threshold fluence compared to IR. For IR (1.19 eV), the absorption is only by the 6s band
electrons via intraband absorption, and the d-band electrons are unperturbed. Therefore,
a greater number of photons are required to produce any change, i.e., the damage on the
surface of film.

3.2. Conductivity Measurements

Laser crystallization is greatly affected by the processing parameters, i.e., laser wave-
length, pulse duration, scan speed and the repetition rate. Au thin films are scanned
with high overlapped laser pulses at low scan speeds and at very low fluences to avoid
melting and any surface damage. To enable crystallization, Au thin films were scanned
at 100 kHz repetition rates and with 5-µm hatching. The repetition rate and scan speed
(180 mms−1) were kept constant for all three wavelengths which gave a ~96% overlap
with 24.39 shots per area (SPA) for IR, ~95% pulse overlap with 19.86 SPA for green and
93.8% overlap for UV with 16.12 SPA, respectively. The process repeatability is confirmed
for a number of samples and representative examples are shown in Figure 4. Normal-
ized electrical sheet resistance values are observed to decrease after scanning with highly
overlapped pulses in an optimized fluence regime. The sheet resistance dropped from
5.22 ± 2.45 × 10−3 to 3.45 ± 2.12 × 10−3 Ω/Sq for 18-nm film and from 2.38± 2.31× 10−3

to 2.02 ± 1.9 × 10−3 Ω/Sq for 39-nm film after scanning with IR laser pulses. Similarly,
sheet resistance decreased from 4.55± 3.02× 10−3 to 2.7± 1.83× 10−3 Ω/Sq for 18-nm Au
film and from 2.66 ± 3.4 × 10−3 to 1.94 ± 1.28 × 10−3 Ω/Sq for 39-nm film for green laser.
After UV laser scanning, it reduced from 5.26 ± 3.2 × 10−3 to 3.4 ± 2.89 × 10−3 Ω/Sq
for 18-nm and from 2.58 ± 2.84 × 10−3 to 1.73 ± 2 × 10−3 Ω/Sq. for 39-nm thick Au
film, respectively.
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before and after IR, green and UV laser scanning of 18-nm and 39-nm Au films, respectively.

For 18-nm thick Au films, the average electrical conductivity is improved up to
40% for green, 35% for UV, and 33% for IR laser-treated films whereas, for 39-nm film,
an average improvement of the order of 29%, 27% and 15% for UV, green and IR laser
wavelength is obtained, respectively. We infer that there exists a relationship between the
laser wavelength and the degree of crystallization which also depends upon film thickness.
Our experimental findings reveal that 18-nm films were improved significantly more than
39-nm thick Au films. The green laser is more effective for 18-nm film, as film thickness lies
within the absorption length which causes a homogenous heating of overall film, whereas
UV laser triggered more crystallization in 39-nm Au films due to significant inter-band and
intra-band absorption.

3.3. AFM Measurements

AFM measurements are performed to investigate the surface morphologies of as
deposited and laser-scanned Au films. Figure 5 represents topographical images of 18-nm
(5a–5c) and 39-nm (5d–5f) Au films on quartz substrate before and after green and UV laser
scanning. The AFM images agree well with electrical results as significant enhancement
in particle size can be seen in Figure 5. The AFM images of 1 × 1 µm2 area are selected
randomly on 9 mm × 9 mm samples. The as deposited Au films are composed of tiny
particles with an average lateral particle size of 19 nm for 18-nm and 21 nm for 39-nm
film, respectively. After scanning with green laser pulses (Figure 5b,e), these tiny particles
agglomerate into bigger particles and the average lateral particle size increases to 35 nm
for 18-nm thick film and to 47 nm for 39-nm thick Au film on quartz substrate. The higher
optical penetration depth of green laser compared to UV and IR wavelengths results in a
vertical growth direction along with the lateral one due to higher absorption of laser energy
deeper into the film thickness. Similarly, when scanned with UV laser pulses, the particle
size increases to 25 nm for 18-nm film and 26 nm for 39-nm thick Au film, respectively.
In case of UV laser wavelength, the energy absorbs in surface and the particle growth in
lateral direction occurs which is more pronounced in Figure 5f. The particles are closer to
each other and enhance the surface smoothness. The surface roughness of as deposited
18-nm Au films on quartz substrate is 0.48 nm. After crystallization, surface roughness
reduces to 0.46 nm for green laser and 0.42 nm for UV laser, respectively. The surface
roughness of untreated 39 nm Au film is 0.54 nm which increased to 0.81 nm for green
laser treated films and reduced to 0.78 nm for the UV laser-scanned sample. The higher
value of surface roughness (0.78 nm) in case of UV laser treated 39-nm Au film is due to



Nanomaterials 2021, 11, 1186 7 of 14

appearance of few particles of greater height. Note that the surface roughness of the bare
quartz substrate was 0.35 nm.

Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 14 
 

 

higher value of surface roughness (0.78 nm) in case of UV laser treated 39-nm Au film is 
due to appearance of few particles of greater height. Note that the surface roughness of 
the bare quartz substrate was 0.35 nm. 

 
Figure 5. Topographic AFM images of (a) as deposited 18-nm thick Au film and (b,c) after laser scanning while (d) is as-
deposited 39-nm thick film and (e,f) are after scanning with green and UV laser pulses, respectively. 

3.4. XRD Analysis 
In XRD spectra, the full width at half maximum (FWHM) of peaks are related to grain 

size of the film. Smaller FWHM means larger grains and hence, better crystalline nature 
of the film [31]. Since our Au films were initially polycrystalline, a sharp peak and reduced 
FWHM indicates an improved crystal quality after laser scanning. The scattered peaks are 
identified as 111, 200, 220 and 311 (Figure 6). In case of 18-nm Au film, peak (111) shows 
a decrease in FWHM by 19% centered at 38.28° Bragg’s angle for IR, 25% decrease for 
green, 23% decrease for UV laser, respectively. Similarly, the FWHM is reduced by 5% for 
IR, 22% for green and 23.5% for UV laser treated 39-nm thick Au films. A slight red shift 
in the 111 peak occurred after laser crystallization due to relaxation of internal compres-
sive stresses (strains) formed during thin film deposition [31]. The Scherrer equation is 
used to estimate the size (L) of nano-crystallites as [32]; 𝐿( 𝑛𝑚) = 0.94 (𝑆𝑐ℎ𝑒𝑟𝑟𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 𝜆 (𝐶𝑢𝐾𝑎 1.94 𝐴𝑛𝑔𝑠𝑡𝑟𝑜𝑚)𝛽𝑐𝑜𝑠𝜃 (𝑟𝑎𝑑𝑖𝑎𝑛)  (2) 

where 𝛽 is FWHM at diffracted angle (2 𝜃). The estimated crystallite sizes are in agree-
ment with the AFM measurements of particle sizes and overall particle/crystallite sizes 
which were improved after laser scanning (Table 2). XRD results indicate that crystalliza-
tion occurred in the laser-scanned Au thin films. 

Table 2. Estimated crystallite size from XRD analysis and corresponding improvements in crystal-
linity for IR, green and UV laser, respectively. 

Gold Films Untreated Laser Treated 
Thickness  IR (1030 nm) Green (515 nm) UV (343 nm) 

(nm) L (nm) L (nm) Crystallinity L (nm) Crystallinity L (nm) Crystallinity 
18 9.10 11.05 33% 12.09 40% 11.80 35% 
39 9.24 9.82 15% 12.8 27% 12.99 29% 
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3.4. XRD Analysis

In XRD spectra, the full width at half maximum (FWHM) of peaks are related to grain
size of the film. Smaller FWHM means larger grains and hence, better crystalline nature of
the film [31]. Since our Au films were initially polycrystalline, a sharp peak and reduced
FWHM indicates an improved crystal quality after laser scanning. The scattered peaks are
identified as 111, 200, 220 and 311 (Figure 6). In case of 18-nm Au film, peak (111) shows a
decrease in FWHM by 19% centered at 38.28◦ Bragg’s angle for IR, 25% decrease for green,
23% decrease for UV laser, respectively. Similarly, the FWHM is reduced by 5% for IR,
22% for green and 23.5% for UV laser treated 39-nm thick Au films. A slight red shift in
the 111 peak occurred after laser crystallization due to relaxation of internal compressive
stresses (strains) formed during thin film deposition [31]. The Scherrer equation is used to
estimate the size (L) of nano-crystallites as [32];

L(nm) =
0.94 (Scherrer constant) λ (CuKa 1.94 Angstrom)

βcosθ (radian)
(2)

where β is FWHM at diffracted angle (2 θ). The estimated crystallite sizes are in agreement
with the AFM measurements of particle sizes and overall particle/crystallite sizes which
were improved after laser scanning (Table 2). XRD results indicate that crystallization
occurred in the laser-scanned Au thin films.

Table 2. Estimated crystallite size from XRD analysis and corresponding improvements in crystallinity for IR, green and UV
laser, respectively.

Gold Films Untreated Laser Treated

Thickness IR (1030 nm) Green (515 nm) UV (343 nm)

(nm) L (nm) L (nm) Crystallinity L (nm) Crystallinity L (nm) Crystallinity

18 9.10 11.05 33% 12.09 40% 11.80 35%
39 9.24 9.82 15% 12.8 27% 12.99 29%
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3.5. Optical Properties

The effect of laser crystallization on optical properties of Au films was investigated
for green and UV laser-scanned samples, as these wavelengths were capable of triggering
interband absorption in Au. Figure 7 represents the transmittance spectra for 18-nm and
39-nm thick Au films after green and UV laser scanning. An increase in transmittance is
observed for 18-nm film from 13.08% (as deposited) to 17.13% (green) and 15.2% (UV) for
laser-scanned samples, respectively. The maximum transmittance depends on the type of
the material and for Au it is observed in the visible region. Au thin films have a maximum
transmittance at λ ≈ 500 nm which, is evident in Figure 7 [33]. This peak is slightly blue
shifted for thick films (39 nm) due to increased carrier density of the film. Transmittance
also depends on the degree of crystallization as the higher the number of grain boundaries
the larger the scattering, resulting in lower optical transmittance [34]. The increase in grain
size after laser scanning causes a decrease in the number of grain boundaries. Therefore,
the increase in optical transmission after the laser scanning in 18-nm films is due to the
improved crystallinity as confirmed by AFM and XRD characterizations. The optical
absorption of Au in the visible region is due to relativistic decrease in the gap between the
5d band and the Fermi level indicated by the low interband transition threshold (1.84 eV).
The transmission falls at higher wavelengths due to the interaction of laser light with high
numbers of electrons which reflect the light in the IR region. Intraband and interband
absorption occurs in the UV region due to strong absorption of laser photons by free
carriers in Au thin films. However, in the case of 39-nm thick Au films, transmittance
decreases slightly from 8.56% to 8.42% for green laser and to 5.58% for UV laser-treated
films, respectively. This decrease is due to higher film thickness and increased particle
densities where the improved grain sizes are responsible for this decrease in the laser
annealed 39-nm thick Au films.
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The experimental results obtained are promising and confirm a low temperature
crystallization process in Au thin films. No melting was observed on film surfaces nor
any damage, since the fluence range was kept below the damage threshold. A numerical
simulation study was performed to investigate the fs laser interactions with Au thin film
and the following non-equilibrium energy exchange between electrons and the lattice
system. The numerical results support a non-thermal crystallization process since the
fluence used was unable to cause any melting (Section 4).

4. Numerical Modelling
Two Temperature Gold-Quartz Interface Model

COMSOL Multiphysics® software was used to model the response and interplay of
18-nm Au thin film on a quartz substrate when treated by 1030-nm, 500-fs ultrashort laser
pulses. It is important to understand energy transfer from laser excited electrons withing
thin metal film and to the dielectric substrate by considering Au-quartz interface into
the model. A striking feature of ultrashort laser mater interaction is that only electrons
are excited by photon–electron interactions within the pulse duration and become hot by
establishing an electron temperature Te where the lattice is considered as cold; the lattice
temperature Tl is unchanged. This results in extremely high temperature gradients between
electrons and the lattice, creating two temperatures (Te and Tl) within the material. This
non-equilibrium heat transfer can be described by the two-temperature model (TTM) as
in [17,35]

Ce(Te)
∂Te

∂t
= ∇(ke∇Te)− G(Te − Tl) + S(x, t), (3)

Cl(Tl)
∂Tl
∂t

= ∇(kl∇Tl) + G(Te − Tl) (4)

where subscripts (e, l) denote the electron and lattice subsystem. C, T, and k represent volu-
metric heat capacity (Jm−3K−1), temperature (K) and thermal conductivity (Wm−1K−1),
respectively. (Wm−3 K−1) is an temperature dependent electron–phonon coupling factor
and accounts for the rate of energy transfer from hot electrons to the cold lattice. The laser
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energy was Gaussian distribution over both time and space and the volumetric laser source
term S(x,t) can be written as [17];

S(r, t) =
(α× 0.94× φo × (1− R)

tp
exp

[
−2x2

ω2
o
− 4ln2

(
t− tr

tp

)2
]

exp(−αz) (5)

where α is the absorption coefficient (m−1), φo is applied laser fluence (Jcm−2), R is reflec-
tivity, ωo is spot radius, tr is reference time and tp is the laser pulse duration.

In metals, electrons are responsible for heat conduction, whereas phonons dominate
heat conduction in semiconductors and dielectric materials [36]. As the quartz is a dielectric
with no free electrons, there could be two possible mechanisms for heat transfer across
the metal–nonmetal interface: (i) through coupling between metal electrons and substrate
phonons with an interfacial resistance Res and (ii) through coupling between metal electrons
and metal phonons and then heat transfer by metal phonons to phonons in the substrate
with interfacial resistance Rls [36]. A third equation is introduced into the model to describe
thermal conduction from the Au film to a quartz substrate as [35]

Cs
∂Ts

∂t
= ∇(ks∇Ts), (6)

where Ts is lattice temperature of substrate, Cs and ks are heat capacity and thermal
conductivity of substrate. The interface boundary conditions can be written as [35]

− ke
∂Te

∂x

∣∣∣∣
x=L

=
Te − Ts

Res

∣∣∣∣
x=L

(7)

− kl
∂Tl
∂x

∣∣∣∣
x=L

=
Tl − Ts

Rls

∣∣∣∣
x=L

(8)

− ks
∂Ts

∂x

∣∣∣∣
x=L

=
Te − Ts

Res

∣∣∣∣
x=L

+
Tl − Ts

Rls

∣∣∣∣
x=L

(9)

Res is thermal resistance between Au electrons and substrate phonons; Rls is the resistance
between Au phonons and phonons in the substrate and L is the film thickness. The
temperature dependent electron heat conductivity can be written as [37]

ke = χ
(ϕe

2 + 0.16)
5
4
(

ϕe
2 + 0.44

)
ϕe

(ϕe2 + 0.092)
1
2 (ϕe2 + ηϕl)

, (10)

ϕe =
Te

TF
, and ϕl =

Tl
TF

, (11)

where TF is the Fermi temperature of Au and χ and η are material dependent constants.
Temperature dependent Ce and G(T) are taken from [38]. Thermophysical parameters used
in the simulation are listed in Table 3 and the initial temperature in the simulation was kept
at 300 K.

When an ultrashort laser is irradiated on a metal surface, the energy is absorbed by the
free carriers in metals through photon–electron interactions and the electronic subsystem
changes from ground state to the excited state. After few fs electrons re-establish the Fermi–
Dirac distribution and the characteristic time required by the electrons to restore their
states is called the electron relaxation time [17]. Initially the excited electrons are localized
within the optical absorption depth (12.5 nm for IR) and diffuses into the deeper parts
as a result of large temperature gradients in the system. As the electron heat capacity is
typically orders of magnitude lower than lattice, the electrons temperature (Te) reaches up
to thousands of kelvins where the lattice temperature (Tl) is almost unperturbed (Te > Tl).
After picoseconds (ps), the thermal energy is then transferred to the lattice by means of
electron–phonon interactions until a thermal equilibrium is achieved.
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The simulation results describing the evolution of electron and lattice temperatures
for 18-nm Au film at quartz substrate are presented in Figure 8 for the IR femtosecond laser
wavelength. Figure 8a shows the temporal distribution of electron temperature, lattice
temperature at the Au film surface and center of the laser beam (x = 0, z = 0) and substrate
temperature at the Au–quartz interface (x = 0, z = 18-nm). Laser fluence of 0.124 Jcm−2

(φth for 18-nm film) was used in simulating electron and lattice temperature evolution as a
result of laser interaction with Au thin film. The model predicts that Te rises sharply due to
small heat capacities of electrons and reaches a maximum of 5580 K at 1.49, ps whereas Tl
rises at a slower rate. Electrons start to thermalize by transferring their energies to other
electrons and with the lattice through electron–phonon interactions. As a result, Te starts
decreasing and Tl starts rising (Figure 8a). The thermalization time at which electrons and
lattice establish an equilibrium is 52.68 ps. Tl rises to a maximum of 978 K, less than the
melting temperature of Au (1337.33 K) [17]. The substrate temperature (Ts) also increases
but at a slower rate and increases from 300 K to 343 K (Figure 8a inset).
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The simulation was performed at a fluence (0.20 Jcm−2) relatively higher than φth
in order to observe melting (Figure 8b). It is observed that Te reaches 6577 K at 1.41 ps
(Figure 8b). Tl increases up to 1299 K, still lower than melting temperature of Au but,
if a higher value of fluence is applied, it will result in the melting of the lattice. In the
case of Ts, temperature varies from 300 K to 360 K at 0.20 Jcm−2 applied fluence and
electrons completely thermalize their energies with the lattice at 40.65 ps. At both fluences
of 0.124 Jcm−2 and 0.20 Jcm−2, Tl remained below the melting point of Au suggesting
that such low fluences were unable to cause any melting in the system. From these
computation results, we infer that our crystallization process is a non-melt process. Upon
laser irradiation, electrons are excited first and such excitation can modify the electron
density distribution in the solid, giving rise to modified forces between atoms and can
directly affect the order of the lattice. The modified interatomic forces in turn cause coherent
atomic motion and structural transitions on a very short time scale (sub-picosecond) [39].
Such transitions occur without electron to phonon energy transfer (picoseconds) and are
called non-thermal phase transitions. We suggest that crystallization occurred as a result of
non-thermal solid-state diffusion of atoms in interstitial sites at a local scale of nanometers.
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Table 3. Thermophysical properties of gold and quartz used in the model.

Property Gold Quartz (SiO2)

Melting temperature Tmelt (K) 1337.33 [17] 1943 [29]
Mass density ρ (Kgm−3) 19320 [40] 2620 @ 293 K [29]
Fermi temperature TF (K) 6.42 × 104 [41] —–
Lattice heat capacity Cl (Jm−3K−1) 2.5 × 106 [42] 1.93 × 106 [43]
Thermal heat conductivity kl (Wm−1K−1) 317 @ 300 K [44] 13.93 @ 300 K [43]
Absorption coefficient α (m−1) 8.178 × 107 @ 1030 nm [24] 0.725 @ 1030 nm [45]
Reflectance R 0.97 @ 1030 nm [24] 0.8821 @ 1030 nm [46]
Constants χ (Wm−1K−1) and η for equation 10 353, 0.16 [37]
Rls (m2K W−1) 2.5 × 10−8 [47]

5. Conclusions

We investigated a low temperature Au thin film crystallization by scanning with highly
overlapped fs laser pulses of three different harmonics. The effect of laser wavelengths is
explored for a laser induced damage threshold (φth) and laser induced crystallinity on two
Au films thicknesses deposited on a 500-µm quartz substrate. The damage threshold is sig-
nificantly influenced by the laser wavelength and film thickness. Up to 40% improvements
in crystallinity are achieved for 18-nm films with green laser and 29% in 39-nm Au films
with UV laser, respectively. Surface characterization and a two-temperature Au–quartz
interface model suggest that the proposed low fluence based crystallization process is
melt-free and can be applied in crystallization of Au film on a heat sensitive substrate.

The proposed low temperature process in the current study for metal (Au) films
crystallization using ultra-short laser pulses is also proven to be promising, as has been
demonstrated for crystallizing indium doped tin oxide (ITO) thin films [34]. This method
is unique in providing selective and localized crystallization with high precision without
damaging the substrate and any nearby heat-sensitive surfaces or components. It could be
highly relevant in improving the electrical properties of thin film-based electrochemical
and optical-based sensors for signal enhancement applications. Our process is significant
as it enables the reduction of deposition and annealing temperatures to produce conductive
gold thin films for their better application in medical, commercial, and industrial disciplines
where surface functionality is a key factor.
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