
nanomaterials

Article

Development of a Novel Multifunctional Cementitious-Based
Geocomposite by the Contribution of CNT and GNP

Mohammadmahdi Abedi 1 , Raul Fangueiro 2,* and António Gomes Correia 1

����������
�������

Citation: Abedi, M.; Fangueiro, R.;

Correia, A.G. Development of a

Novel Multifunctional

Cementitious-Based Geocomposite by

the Contribution of CNT

and GNP. Nanomaterials 2021, 11, 961.

https://doi.org/10.3390/nano11040961

Academic Editor: Raffaele Barretta

Received: 25 February 2021

Accepted: 6 April 2021

Published: 9 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil Engineering, ISISE, University of Minho, 4800-058 Guimarães, Portugal;
mohammadmehdi.abedi@gmail.com (M.A.); agc@civil.uminho.pt (A.G.C.)

2 Department of Mechanical Engineering, University of Minho, Campus de Azurém,
4800-058 Guimarães, Portugal

* Correspondence: rfangueiro@dem.uminho.pt

Abstract: In this study, a self-sensing cementitious stabilized sand (CSS) was developed by the
incorporation of hybrid carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) based on
the piezoresistivity principle. For this purpose, different concentrations of CNTs and GNPs (1:1)
were dispersed into the CSS, and specimens were fabricated using the standard compaction method
with optimum moisture. The mechanical and microstructural, durability, and piezoresistivity perfor-
mances, of CSS were investigated by various tests after 28 days of hydration. The results showed that
the incorporation of 0.1%, 0.17%, and 0.24% CNT/GNP into the stabilized sand with 10% cement
caused an increase in UCS of about 65%, 31%, and 14%, respectively, compared to plain CSS. An
excessive increase in the CNM concentration beyond 0.24% to 0.34% reduced the UCS by around
13%. The addition of 0.1% CNMs as the optimum concentration increased the maximum dry density
of the CSS as well as leading to optimum moisture reduction. Reinforcing CSS with the optimum
concentration of CNT/GNP improved the hydration rate and durability of the specimens against
severe climatic cycles, including freeze–thaw and wetting–drying. The addition of 0.1%, 0.17%, 0.24%,
and 0.34% CNMs into the CSS resulted in gauge factors of about 123, 139, 151, and 173, respectively.
However, the Raman and X-ray analysis showed the negative impacts of harsh climatic cycles on the
electrical properties of the CNT/GNP and sensitivity of nano intruded CSS.

Keywords: self-sensing; stabilized sand; CNT/GNP; mechanical; microstructural; durability; piezore-
sistivity

1. Introduction

Among all monitoring methods, self-sensing composites with intrinsic stress, strain,
and damage sensing capabilities based on piezoresistivity provide a more integrated, real-
time, and practical solution for infrastructure damage detection, considering geomaterial
properties and nature. Although several studies have evaluated self-sensing in various
composites, such as concrete, cement paste, polymer, and asphalt [1–5], little research exists
that assesses the impact of this method in geomaterials. Self-sensing composites arise
from the dispersion of the conductive phase in the non-conductive composite [6–8]. These
conductive components form a conducting electrical network within the composites. When
the composites are subjected to strain, stress, or any other external factors, this conducting
network is disturbed, leading to a change in the electrical resistivity [9–12]. However, the
sensitivity and performance of self-sensing composite are affected by some factors such as
electrode status, current, temperature, humidity, and loading, among which the type of con-
ductive phase, their concentration, and distribution have particular importance [13–16]. Al-
though various types of fibrous and nanomaterials have been used as the conductive phase
in the cementitious matrix, carbon nanomaterials (CNMs) have attracted more attention
due to their unique electrical, physical, and mechanical properties [17–21]. Furthermore,
reinforcing cementitious composites by highly dispersed CNMs with low concentration
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can improve their mechanical, microstructural, and durability performance [10,22–26].
Recently, studies have been conducted on the synergic effects of carbon nanotubes (CNTs)
and graphene nanoplatelets (GNPs) on the mechanical, microstructural, durability, and
piezoresistivity performances of cementitious mortar using compatible, affordable, and
effective dispersion techniques [5,27,28]. These studies reported that hybrid CNTs/GNPs
can improve percolation and electron tunneling effects, which increase the conductive
path and, consequently, reduce the percolation threshold significantly. Hence, the synergic
effects of CNTs/GNPs also decrease the required concentration of conductive filler and
eliminate concerns about rising production costs and porosity formation. Accordingly, it
is possible that hybrid CNTs/GNPs combinations can also achieve similar performance
in cementitious stabilized sand (CSS). Taking this into account, this study aims to utilize
the advantages of the synergic effects of these CNMs in order to advance existing knowl-
edge by developing a novel piezoresistive self-sensing cementitious geocomposite. In
this route, different concentrations of hybrid CNT/GNP (1:1) were incorporated into the
mixture of the sand and 10% cement (by weight of the sand). The optimum moisture of
different nano-intruded mixture was measured and cylindrical specimens were fabricated
using the standard compaction method. The mechanical performance of specimens was
evaluated by unconfined compressive strength (UCS) tests. Microstructural properties
of CNM-reinforced CSS were also investigated by various tests. The durability of the
specimens was investigated against hybrid climatic cycles, including a combination of both
freeze–thaw and drying–wetting cycles, which represents harsh climatic conditions. In
addition, the piezoresistivity behaviors of nano-intruded specimens were evaluated using
the four probes method under cyclic compression loading. To investigate the sustainability
and long-term performance of this novel self-sensing CSS, the effects of water content and
severe climatic cycles on its piezoresistivity properties were also evaluated.

The outcomes of this study provide an extensive contribution to the new era of smart
cementitious geocomposites, with primary applications in transport and energy infrastruc-
ture, such as roller-compacted concrete dams, rammed earth, ground improvement, and,
in particular, pavement structural layers and critical zones, including transition zones.

2. Materials and Methods
2.1. Raw Materials

A multi-layer type of GNP and multi-wall CNT (MWCNT) with purities of approxi-
mately 99.5% and 98%, respectively, were utilized as conductive fillers in this study. The
characteristics of the GNPs and MWCNTs are summarized in Table 1 [27,28]. The morphol-
ogy of hybrid GNPs/CNTs in the dry mix state was also investigated by scanning electron
microscopy (SEM), as depicted in Figure 1.

Table 1. Characteristics of graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs).

GNP

Surface Area
(m2 g−1)

Density
(g/cm3)

Carbon
Content

(%)

Tensile
Modulus

(Gpa)

PH Value
(30 ◦C)

Tensile
Strength

(GPa)
Layers Dimension Form Part

Number

120–150 0.6 >99.5 1000 7–7.65 5 10 < n < 60
Thickness Diameter Gray

Powder TGN201
4–20 nm 5–10 µm

MWCNT

Surface Area
(m2 g−1)

Density
(g/cm3) Color

Outside
Diameter

(nm)

Length
(µm) Ash (wt%)

Carbon
Content

(%)
Part Number

350 0.27 Black <8 30–10 <1.5 >98 GCM327
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Figure 1. CNT and GNP morphology (dry mix).

For hybrid CNT/GNP dispersion, Pluronic F-127 (PF-127) was used as a noncovalent
surfactant. This surfactant is a nonionic triblock copolymer surfactant and has a specific
bipolar molecule structure [28]. In addition, tributyl phosphate 97% (TBP) with 1

2 of the
surfactant weight ratio was used as an antifoaming agent to prevent porosity formation
caused by surfactant function, following previous research [28,29].

The sand used for this study was CEN Standard sand, with siliceous and clean particles
that were classified as well-graded sand according to the Unified Soil Classification System
(USCS). The physical properties of the sand are presented in Table 2. The ordinary Portland
cement type I (CEM I 42.5R) was also used as a binder to prepare the CSS.

Table 2. Sand particle size distribution.

Mesh Size (mm) 0.08 0.16 0.5 1 1.6 2

Cumulative retained (%) 99 ± 1 87 ± 5 67 ± 5 33 ± 5 7 ± 5 0

Specific gravity Gs 2.67 Cu a 7.5 Cc b 1.8
a Uniformity coefficient, b curvature coefficient.

2.2. CNT and GNP Dispersion Method

Nowadays, a compatible and effective method for hybrid CNT/GNP dispersion in
aqueous suspension, to be used in multifunctional cementitious composites, has been
developed. In this technique, high dosages of CNT/GNP (1%; by the water volume, (1:1))
were dispersed by 10% PF-127 (by weight of CNMs) with the addition of 50% TBP (by
weight of surfactant) via 3 h of sonication (80 W output power and 45 kHz frequency) at
40 ◦C [28]. A similar method was used for CNT/GNP dispersion [28].

Under these specific mixing conditions, negligible structural damage was expected for
the carbon nanomaterials. Raman spectroscopy (Figure 2) was also carried out on CNMs
using laser excitation with a wavelength of 532 nm to ensure the absence of adverse effects
on the structural qualities of CNTs and GNPs, such as edge-type defects, a reduction in
aspect ratio, and sp2 domain crystallinity (La), which have a deleterious influence on their
mechanical and electrical properties [30,31].
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Figure 2. Raman analysis results of CNTs and GNPs.

2.3. CSS Fabrication

In stabilized sands, the cement content usually varies by around 10% owing to the
target strength of the sand–cement [32,33]. In this study, 10% cement concentration (by
weight of the sand) was also utilized in order to fabricate CSS. First, the cement and sand
were added to a steel bowl and blended with a stainless steel blade at a rotational speed of
140 rpm for 1.5 min. Then, CNM suspensions composed of 0.1%, 0.17%, 0.24%, and 0.34%
CNT/GNP (by weight of the sand and equal portions, 1:1), prepared byωopt (for each CNM
concentration), were sprayed into the mixture and blended at a 285 rpm higher speed for
another 2.5 min. Thereafter, the mixture was poured into a plastic bag to prevent moisture
loss. The CSS cylindrical specimens were fabricated by the compaction method according
to the ASTM D698 compaction standard. Split molds with dimensions of 101.6 × 116.4 mm
were filled with the wet mixture in three equal-height layers. A calculated amount of the
well-mixed wet mixture was measured (to an accuracy of 0.01 g), poured into the split
mold, and then compacted carefully by a metal tamper to the desired height (controlled
by a caliper to an accuracy of 0.02 mm). After the molds were filled with the compacted
mixture, they were sealed at both ends and extracted after a 24 h period for hardening;
then, the specimens were cured underwater for 28 days. For the specimens that were used for
piezoresistivity tests, four square meshes of copper with dimensions of 50 mm × 50 mm were
embedded as electrodes at distances of 38.8 and 19.4 mm from the middle of the specimens
(Figure 3).
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The amount of the mixture moisture after compaction was also measured to ensure
the lack of water evaporation. Sample identification was conducted based on the variation
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of CNM concentrations in such a way that the specimens GC (0.1%), GC (0.17%), GC
(0.24%), and GC (0.34%) were composed of 0.1%, 0.17%, 0.24%, and 0.34% CNT/GNP
(by weight of dry sand), respectively. In order to evaluate the water content effects on
piezoresistivity behavior of the nano-intruded specimens, two specimens were made with
different water content and the same CNM concentration as specimen GC (0.34%). These
specimens, labelled GC (0.34 + 2%w) and GC (0.34−2%w), contained 2% more and 2% less
water than the optimum content, respectively.

2.4. Mechanical and Microstructural Characterization

The unconfined compressive strength test was used following the ASTM/D2166M
standard for the evaluation of mechanical properties of cylindrical specimens. The results
were calculated by the mean of at least 3 specimens. Because the modulus of elasticity
for cementitious geomaterials is typically expressed by the modulus at 50% of the peak
stress [34–37], the Tangent E (50%) of reinforced CSS by different CNM concentrations was
calculated at 50% of the maximum compression stress.

The effects of different CNM concentrations on maximum dry density andω opt were
investigated according to the ASTM D697-78 standard. Thermal analysis and X-ray diffrac-
tion analysis (XRD) was conducted for the evaluation of the cement hydration process [27].
The specimens’ fracture surfaces were also investigated using scanning electron microscopy
(SEM) and energy-dispersive X-ray spectrometry (EDX) [27,28]. Furthermore, an ultrasonic
nondestructive test was performed for the microstructural investigation following the BS
EN 12504-4 standard through two probes along the longitudinal axis. To evaluate the effects
of the adversarial environmental conditions on the physical and electrical performances
of the nano-intruded specimens, a hybrid climatic cycle, including both freeze–thaw and
drying–wetting cycles, as illustrated in Figure 4, was used. This cycle represents the harsh
climatic conditions in deserts. The percentages of the specimens’ weight loss and the
ultrasonic wave passing time after 12 cycles were utilized as a criterion for determining
the resistance of specimens to this climatic cycle. The quantitative approach, via Raman
spectroscopy, was utilized to investigate the defect status of CNMs evolved under the effect
of climatic cycles. Raman analysis was performed on dry CNTs and GNPs using an Ar ion
laser with an excitation wavelength of a 514.5 nm (2.41 eV) at room temperature.
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2.5. Piezoresistivity Measurement

To investigate the piezoresistivity performance of CNM-reinforced CSSs, the speci-
mens with embedded electrodes were first dried at 70 ◦C for 72 h after 28 days of hydration
to ensure the absence of moisture effects on electrical conductivity values. As can be seen in
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Figure 3, a four-probe technique was used in this study to measure the fractional changes
in electrical resistivity (FCR) under cyclic axial compression loading. In this circuit, a
reference resistor of 100 Ω was connected to the outer probes in series powered by a direct
current (DC) source with a constant value of 20 V. Power was supplied for 40 min, and it
took between 25 and 30 min to stabilize the supply in CNM-reinforced CSS. Two digital
multimeters were used to measure the voltage variation of the two inner probes and resistor.
Three cycles of 4 kN axial compression loading at a rate of 40 N/s were used in order to
evaluate the CSS piezoresistivity behavior. The electrical resistivity ρ(t) of each sample was
obtained from the average of three voltage measurements and calculated by combining
first and second Ohm’s law equations (Equation (1) and Equation (2), respectively), as
presented in Equation (3) [10]:

R(t) =
V1(t)
I(t)

=
V1(t)

V2(t)/100
(1)

R(t) = ρ(t)
L
A

(2)

ρ(t) =
V1(t)

V2(t)/100
× A

L
(3)

where V1(t) and V2(t) are the inner probes and resistor voltage, respectively; R(t) is the
resistance between the two inner probes; I(t) is the current between the outer electrodes; A
is the contact surface between the electrode and CSS; and L is the spacing between the inner
electrodes. For the following assessment of CSS piezoresistivity, the FCR was calculated by
Equation (4):

FCR =
ρ(t)− ρ0

ρ0
(4)

where ρ0 is the initial electrical resistivity measured before loading and ρ(t) is the resistivity
at time t during the test. To evaluate the sensitivity of CNT/GNP reinforced CSS, the gauge
factor (GF) is also defined as the relative change in electrical resistivity over the strain
(Equation (5):

GF =
FCR

ε
(5)

where ε is the applied strain along the force axis.

3. Results
3.1. Compaction Tests Results

The compaction curves of plain and reinforced CSS by different CNM concentrations
are presented in Figure 5. As can be observed, the addition of 10% cement increased the
maximum density of pure sand and reduced the optimum moisture.

Reinforcing CSS by different concentrations of CNM also caused similar trends. The
incorporation of 0.1% hybrid CNT/GNP increased the maximum dry density to around
2241 kg/m3. However, specimens composed of 0.17% and 0.24% CNM also showed higher
maximum dry density; they were accompanied by a declining trend, such that an excessive
increase in the CNM concentration beyond 0.24% led to a decrease in the maximum dry
density compared to plain CSS. The results of the saturation degree (Sr) are also indicated
in Figure 6.
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Figure 6. Maximum dry density and degree of saturation for plain and reinforced CSS with different
CNM concentrations.

A similar trend to that of the compaction results was also observed for the saturation
degrees. The augmentation of the density affected by CNM reinforcement decreased the
void ratio, which consequently led to an increase in saturation degrees. The maximum
saturation degree of around 89% was achieved via the incorporation of 0.1% CNM into
the plain CSS, and an excessive increase in CNM concentration beyond 0.24% caused a
decrease in the saturation degree.

An interesting relationship between “γd/γd(max)” and “Sr-(Sr)opt” appeared, as illus-
trated in Figure 7. A similar trend has been reported in recent studies [38], indicating these
laboratory results can be applied directly in the field. This is a major issue that supports
the use of these novel materials in practice.
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Figure 7. “γd/γd(max)” vs. “Sr-Sr (opt)” relationship.

Although increases in maximum dry density caused by the addition of CNMs were
less significant, optimum moisture reductions were considerable. Reinforcing CSS by 0.1%
and 0.17% CNMs reduced the optimum moisture by about 21% and 14%, respectively,
whereas excessive increases in the CNM percentage increased the optimum moisture by
around 8% and 17% compared to plain CSS. However, the filler function of hybrid tubular
CNTs and plate-shaped GNPs was not ineffective; this mechanism does not play a crucial
role in the augmentation of the maximum dry density due to the low concentration of these
nanomaterials. In fact, their role as a moisture regulator is more effective in increasing the
slipperiness of cement and sand grains, and consequently, in CSS density improvement.
CNTs and GNPs absorb and decrease the free water among the cement and sand grains,
and also prevent the inhomogeneous distribution of water [29,39]. In addition, these nano-
scaled particles with a water-impregnated surface and high aspect ratio encourage the
slipping and latching of cement and sand grains together (Figure 8).
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It should be noted that, in the case of high CNM concentrations, the required moisture
increases abruptly, which can cause the gaps between the particles to reduce the maximum
dry density. This amount of moisture is possibly converted to free water at high compaction
energies. By starting the cement hydration process, the mechanical performance of CSS
gradually increases due to the microstructural improvement. The results of ultrasonic
non-destructive tests after a 28-day hydration period, as presented in Figure 9, also indicate
this issue.
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Figure 9. An ultrasonic wave passing time for plain and reinforced CSS with different CNM concen-
trations.

As can be observed, the ultrasonic wave passing time of compacted pure sand was
reduced by about 40% by the addition of 10% cement after 28 days of curing. In the
case of CNM-reinforced CSS, the passing times of the ultrasonic wave were also reduced
by incorporating certain amounts of CNMs into the plain CSS due to a more cohesive
microstructure, which was in line with the above compaction tests outcomes and the UCS
results discussed in Section 3.3. The lower amount of ultrasonic wave passing time was
achieved for CSS reinforced by 0.1% CNM, and an excessive increase in CNM concentration
beyond 0.24% increased the passing time compared to that of plain CSS.

In general, the reduction in optimum water content and the increasing maximum dry
density of the cementitious stabilized soil, as a result of different additions of CNMs, has
frequently been reported. Alsharef et al. [40], reported a 13.6% decrease in optimum water
content and a 1.5% increase in dry density by the dispersion of 0.075% MWCNTs into the
clayey sand. For the soil sample reinforced by carbon nanofibers (CNFs), the maximum
decrease in optimum water content was 14% at 0.075% CNFs content. Furthermore, dry
density increased from 1.86 to 1.88 (g/cm3).

3.2. Microstructural Investigations

In general, reinforcing the cementitious composite by specific amounts of CNMs
enhanced physical performance due to three main mechanisms, such as filler function, the
bridging and/or divination of nano cracks, and the increasing of the cement hydration
rate.

Although the incorporation of an optimum concentration of hybrid CNTs and GNPs
with different 1D and 2D geometrical shapes makes it possible to fill wider ranges of porosi-
ties, among the hydration products that led to their reinforcement, a high concentration of
CNMs caused the formation of agglomerations and, consequently, increased the amount of
porosities (Figure 10).

In addition, the EDX results, which are listed in Table 3, indicate that the needle-shaped
crystals around the agglomerates have similar chemical composition to that of ettringite.
The CNMs agglomerates are properly placed in terms of ettringite formations due to the
high quantities of accumulated water. The ettringite crystals have a needle-shaped, brittle,
and porous structure, which can act as a starting point for micro-cracks, and consequently
reduce physical performance. In contrast, the incorporation of an optimum concentration
of hybrid CNTs and GNPs can prevent nano- and micro-scale crack propagation via their
bridging mechanism. Furthermore, these CNMs increase the required energy of crack
expansion by the deviation of its path or direction (Figure 11).



Nanomaterials 2021, 11, 961 10 of 26
Nanomaterials 2021, 11, x FOR PEER REVIEW 10 of 26 
 

 

 
Figure 10. Scanning electron microscopy (SEM) images of the reinforced CSS by high CNM concentration CG (0.34%) (the 
areas with white markings are the areas selected for EDX analysis). 

In addition, the EDX results, which are listed in Table 3, indicate that the needle-
shaped crystals around the agglomerates have similar chemical composition to that of 
ettringite. The CNMs agglomerates are properly placed in terms of ettringite formations 
due to the high quantities of accumulated water. The ettringite crystals have a needle-
shaped, brittle, and porous structure, which can act as a starting point for micro-cracks, 
and consequently reduce physical performance. In contrast, the incorporation of an opti-
mum concentration of hybrid CNTs and GNPs can prevent nano- and micro-scale crack 
propagation via their bridging mechanism. Furthermore, these CNMs increase the re-
quired energy of crack expansion by the deviation of its path or direction (Figure 11). 

Table 3. Cement hydration crystal chemical composites. 

Position 
Elements (%) 

C O Ca Al Si S Mg K Fe P 
Figure 10 (A1) 8.72 36.53 35.81 3.67 10.47 1.29 0.52 0.19 0.29 0.61 
Figure 10 (A2) 11.29 36.59 33.23 4.57 12.01 1.11 0.27 0.37 0.15 0.41 
Figure 10 (A3) 9.3 38.44 31.73 6.18 11.71 1.95 0.43 0.11 0.27 0.24 
Figure 10 (A4) 81.31 4.27 7.91 - 5.72 - - - - 0.79 

 
Figure 11. SEM morphology of CNTs and GNPs crack bridging and deviation mechanism in CNM-reinforced CSS. 

Figure 10. Scanning electron microscopy (SEM) images of the reinforced CSS by high CNM concentration CG (0.34%) (the
areas with white markings are the areas selected for EDX analysis).

Nanomaterials 2021, 11, x FOR PEER REVIEW 10 of 26 
 

 

 
Figure 10. Scanning electron microscopy (SEM) images of the reinforced CSS by high CNM concentration CG (0.34%) (the 
areas with white markings are the areas selected for EDX analysis). 

In addition, the EDX results, which are listed in Table 3, indicate that the needle-
shaped crystals around the agglomerates have similar chemical composition to that of 
ettringite. The CNMs agglomerates are properly placed in terms of ettringite formations 
due to the high quantities of accumulated water. The ettringite crystals have a needle-
shaped, brittle, and porous structure, which can act as a starting point for micro-cracks, 
and consequently reduce physical performance. In contrast, the incorporation of an opti-
mum concentration of hybrid CNTs and GNPs can prevent nano- and micro-scale crack 
propagation via their bridging mechanism. Furthermore, these CNMs increase the re-
quired energy of crack expansion by the deviation of its path or direction (Figure 11). 

Table 3. Cement hydration crystal chemical composites. 

Position 
Elements (%) 

C O Ca Al Si S Mg K Fe P 
Figure 10 (A1) 8.72 36.53 35.81 3.67 10.47 1.29 0.52 0.19 0.29 0.61 
Figure 10 (A2) 11.29 36.59 33.23 4.57 12.01 1.11 0.27 0.37 0.15 0.41 
Figure 10 (A3) 9.3 38.44 31.73 6.18 11.71 1.95 0.43 0.11 0.27 0.24 
Figure 10 (A4) 81.31 4.27 7.91 - 5.72 - - - - 0.79 

 
Figure 11. SEM morphology of CNTs and GNPs crack bridging and deviation mechanism in CNM-reinforced CSS. Figure 11. SEM morphology of CNTs and GNPs crack bridging and deviation mechanism in CNM-reinforced CSS.

Table 3. Cement hydration crystal chemical composites.

Position
Elements (%)

C O Ca Al Si S Mg K Fe P

Figure 10 (A1) 8.72 36.53 35.81 3.67 10.47 1.29 0.52 0.19 0.29 0.61
Figure 10 (A2) 11.29 36.59 33.23 4.57 12.01 1.11 0.27 0.37 0.15 0.41
Figure 10 (A3) 9.3 38.44 31.73 6.18 11.71 1.95 0.43 0.11 0.27 0.24
Figure 10 (A4) 81.31 4.27 7.91 - 5.72 - - - - 0.79

3.3. Cement Hydration Evaluation

Tricalcium silicate (Ca3SiO5, abbreviated C3S), dicalcium silicate (Ca2SiO4, C2S), tetra
calcium aluminoferrite (Ca4AlnFe2-nO7, C4AF), tricalcium aluminate (Ca3Al2O6, C3A),
and small amounts of gypsum (CaSO4.2H2O) and clinker sulfate (Na2-SO4, Ka2SO4) are
the main components of the chemical composition of cement grains in the anhydrous
state [27]. C3A, C3S, C4AF, and C2S react with water following specific chemical reactions
during the hydration process to produce monosulfonate (AFm), hydrate of calcium silicate
(C-S-H) gel, ettringite (AFt), and calcium hydroxide (CH) [41,42]. During these reactions,
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the formation of CH, C-S-H, AFt, and AFm with various geometries and crystal shapes, as
the most influential hydration products, plays a key role in determining the final properties
of the cement and, eventually, through the evolution of the hydration process, they form
a dense microstructure [43]. One of the major techniques used for the investigation of
cement hydration products is thermogravimetric analysis (TGA). The results of TGA tests
are illustrated in Figure 12a. In addition, the results of differential scanning calorimetry
(DSC) have been presented in Figure 12b in order to better observe the temperature range
associated with each weight decay. A range of weight losses for the powder of cementitious
composite samples was observed in the TGA curves between 105 and 1000 ◦C, as found in
previous studies [44,45].
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Figure 12. Thermal analysis of plain and reinforced CSS by different concentrations of CNMs: (a) TGA thermograms,
(b) DSC thermograms.

From the TGA thermogram, the first decrease was up to 105 ◦C, which can be at-
tributed to the elimination of sample-free water and moisture of CSS. Due to the dehydra-
tion of chemically bound water existing in hydration materials such as ettringite, C-A-S-H,
carbo-aluminates, and C-S-H, the second decline in the TGA curves occurred between
105 and 400 ◦C. The next significant decline was detected between 400 and 550 ◦C, which
can be linked to the CH dehydroxylation. The fourth and final decay was due to calcium
carbonate, and clinker carbonation was found between 600 and 800 ◦C [46,47].

Results showed that the incorporation of an optimum concentration of CNMs into the
CSS increased the hydration products and specifically raised the amount of the CH and
C-S-H gel [48,49]. The maximum quantity of cement hydration products was achieved by
the addition of 0.1% hybrid CNT/GNP, and an excessive increase in the CNM concentration
caused the reduction in hydration.

The positive effects of CNMs on the cement hydration process have been reported in
previous studies [50,51]. CNMs can increase and accelerate the formation of numerous
cement hydration products owing to their nucleation agent effects and their surficial
functional groups, thereby resulting in strong bonding performance between CNMs and
the cementitious matrix [27]. Comparing the results of this study with previous studies
that used similar CNMs shows that, in samples made by compaction method, the higher
amount of hydration products was obtained in a lower dosage of this nanomaterial. This
can be directly related to the reduction in water content in this fabrication method [27].

It should be noted that the excessive increase in CNM concentration absorbs the water
needed for the cement hydration process, which reduces the hydration products and, in
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some cases, stops the hydration process of the cement. As mentioned in this study, PF-127
was used in order to disperse the CNMs. The molecular structure of the PF-127 is composed
of a central hydrophobic chain of polyoxypropylene (PPO) and two hydrophilic chains of
polyoxyethylene (PEO) placed on two sides. The PPO chains are absorbed on the surface
of the CNMs during specific reactions and PEO chains also trap water molecules on the
surface and between layers of CNMs and their agglomerates [28].

The XRD analysis result of hardened plain CSS and CSS reinforced by different CNM
concentrations, presented in Figure 13, also showed a similar trend. As can be observed,
the amount of the hydration product was increased by the incorporation of a certain
concentration of CNM (0.1%), while an excessive increase in CNMs caused a reduction
in CH and C-S-H, in addition to increasing unhydrated cement components, such as C2S
and C3S.
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Figure 13. X-ray diffraction analysis (XRD) patterns of hardened plain and reinforced CSS by different
CNM concentrations.

3.4. Mechanical Characterizations

The results of axial unconfined compressive strengths, in addition to the axial strain at
failure (maximum stress) and the tangent modulus at 50% of the peak stress (E (50%)), for
plain and reinforced CSS, by different CNM concentrations, are illustrated in Figure 14a,b.

As can be seen, the incorporation of 0.1%, 0.17%, and 0.24% CNMs into the CSS caused
an increase in UCS of about 65%, 31%, and 14%, respectively, compared to the plain CSS,
while an excessive increase in the CNM concentration beyond 0.24% to 0.34% led to a
reduction in UCS by around 13%.
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after 28 days of hydration.

Furthermore, the results showed that reinforcing CSS by specific CNM concentrations
caused reductions in the ductility of specimens, such that the addition of 0.1%, 0.17%, and
0.24% CNM increased the E (50%) of plain CSS by about 48%, 32%, and 16%, respectively.
The specimen GC (0.34%), which was composed of a high CNM concentration, did not
show a noticeable change in the amount of rupture modulus.

Concerning the failure strain, a similar trend was observed. However, the incorpora-
tion of 0.1%, 0.17%, and 0.24% CNM into the CSS reduced the maximum strain by around
25%, 19%, and 9%. An excessive increase in the CNM concentration up to 0.34% caused an
increase in maximum strain of about 6%. Indeed, reinforcing cementitious composites by
CNMs reduced their ductility and increased their stiffness.

Correia et al. [37] also reported an increase in UCS and E (50%) by around 65% and
145%, respectively, for clayey sand, which compacted cement and MWCNT by 11% and
1%, respectively.

3.5. Durability Investigation

The percentage of the specimens’ weight loss and their ultrasonic wave passing time
after 12 climatic cycles, as the criteria of the specimens’ resistance and durability against the
climatic cycle, is illustrated in Figure 15. As can be observed, the plain specimen showed a
weight reduction of around 4.2%, whereas this amount for specimens composed of 0.1%,
0.17%, and 0.24% CNM was 2.4%, 3.2%, and 3.5%, respectively. These results show the
positive effects of CNMs in terms of durability augmentation of cemented sand against
harsh climatic cycles. However, increasing the concentration of the CNMs beyond 0.1%
caused a reduction trend for the specimens’ resistance to the climatic cycle, in such a way
that the incorporation of 0.34% CNM caused a greater weight loss than that of the plain
specimen, equal to 4.51%. The dense and highly cohesive microstructure of the CSS caused
by the intrusion of specific CNM concentrations increased the resistance of the sample
to decay, contractions, and expansions caused by the climatic cycle. The results of the
ultrasonic non-destructive tests also show a similar trend. The ultrasonic wave passing
time along the longitudinal axis of the plain specimen was around 35.5 µs after 12 cycles,
whereas the obtained passing times for the specimens containing 0.1%, 0.17%, 0.24%, and
0.34% CNM were 30.1, 32.2, 34, and 37.1 µs, respectively.
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3.6. Electrical Behavior Investigation
3.6.1. Electrical Conductivity

The electrical resistivity of plain and reinforced CSS by different CNM concentrations
is shown in Figure 16. As expected, the electrical conductivity of the CNM-reinforced
specimen increased significantly due to the conductive path formation by percolation and
electron tunneling mechanisms.
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Figure 16. Electrical resistivity of hardened plain and reinforced CSS by different CNM concentra-
tions.

Increasing the carbon concentration continuously increased the conductivity of the
composite in such a way that the electrical resistivity of specimens composed of 0.1%,
0.17%, 0.24%, and 0.34% CNM decreased by around 46%, 74%, 92%, and 95%, respectively,
compared to the plain CSS. According to these results, the percolation threshold for this
type of reinforced CSS could be around 0.24% due to the insignificant effect of CNM on
reducing electrical resistivity in increments beyond 0.24%. By comparing the results with
other studies that used similar types of sand, cement, dispersion method, and CNM, in
order to investigate piezoresistivity and electrical conductivity of cementitious mortar
(W/C = 0.5) [5,28], it can be observed that decreasing the cement concentration in CNM-
reinforced cementitious composite led to the reduction in electrical resistivity. Comparing
these results also showed that the use of a compaction fabrication method can reduce the
electrical resistivity by up to 80%.
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3.6.2. Effects of Water Content on Electrical Conductivity

The electrical resistivity of the specimens with different water content and the same
CNM concentration are shown in Figure 17. These specimens were composed of 0.34%
CNM and fabricated with optimum, 2% more than optimum, and 2% less than optimum
water content.

Nanomaterials 2021, 11, x FOR PEER REVIEW 15 of 26 
 

 

other studies that used similar types of sand, cement, dispersion method, and CNM, in 
order to investigate piezoresistivity and electrical conductivity of cementitious mortar 
(W/C = 0.5) [5,28], it can be observed that decreasing the cement concentration in CNM-
reinforced cementitious composite led to the reduction in electrical resistivity. Comparing 
these results also showed that the use of a compaction fabrication method can reduce the 
electrical resistivity by up to 80%. 

3.6.2. Effects of Water Content on Electrical Conductivity 
The electrical resistivity of the specimens with different water content and the same 

CNM concentration are shown in Figure 17. These specimens were composed of 0.34% 
CNM and fabricated with optimum, 2% more than optimum, and 2% less than optimum 
water content. 

As shown in Figure 17, the electrical resistivity of the specimens containing 2% more 
water than the optimum concentration was reduced by around 33% compared to the spec-
imens fabricated at the optimum water content, while, for the specimen composed of 2% 
less water than the ωopt, the electrical resistivity was increased by about 20%. Generally, 
increasing the water content assists CNM dispersion, which causes an increase in electri-
cal conductivity [52–54]. In addition, increasing the water content increased the formation 
of ettringite (AFt) crystals, which are filled with water molecules and charged ions. These 
needle-shaped crystals also increase the electron tunneling effect and percolation mecha-
nism, which reduce the electrical resistance. 

 
Figure 17. The electrical resistivity of the specimen CG (0.34%) at optimum, 2% more than opti-
mum, and 2% less than optimum water content. 

3.6.3. Effects of Climatic Cycles on Electrical Conductivity 
The electrical resistivity of the reinforced specimens with different concentrations of 

CNM after climatic cycles is shown in Figure 18. By comparison with the results of the 
electrical resistivity of the specimens before climatic cycles (Section 3.6.1), it is clear that 
the electrical conductivity of the samples drastically decreased following the climatic cy-
cles. 

Figure 17. The electrical resistivity of the specimen CG (0.34%) at optimum, 2% more than optimum,
and 2% less than optimum water content.

As shown in Figure 17, the electrical resistivity of the specimens containing 2% more
water than the optimum concentration was reduced by around 33% compared to the
specimens fabricated at the optimum water content, while, for the specimen composed
of 2% less water than theωopt, the electrical resistivity was increased by about 20%. Gen-
erally, increasing the water content assists CNM dispersion, which causes an increase in
electrical conductivity [52–54]. In addition, increasing the water content increased the for-
mation of ettringite (AFt) crystals, which are filled with water molecules and charged ions.
These needle-shaped crystals also increase the electron tunneling effect and percolation
mechanism, which reduce the electrical resistance.

3.6.3. Effects of Climatic Cycles on Electrical Conductivity

The electrical resistivity of the reinforced specimens with different concentrations of
CNM after climatic cycles is shown in Figure 18. By comparison with the results of the
electrical resistivity of the specimens before climatic cycles (Section 3.6.1), it is clear that the
electrical conductivity of the samples drastically decreased following the climatic cycles.

Nanomaterials 2021, 11, x FOR PEER REVIEW 16 of 26 
 

 

 
Figure 18. Electrical resistivity of the reinforced specimens with different concentrations of the 
CNM after climatic cycles. 

As can be seen, the electrical resistivity of the specimens composed of 0.1%, 0.17%, 
0.24%, and 0.34% CNM increased by around 5, 3, 1.5, and 1.4 times, respectively, com-
pared to the normal specimens. The destructive effects of wetting–drying combined with 
freeze–thaw cycles on the conductive system, including CNMs and free charged ions, are 
the major reason for the decrease in the electrical conductivity of the composite. 

The morphology of CNMs after climatic cycles at different magnifications is illus-
trated in Figure 19. The SEM images clearly indicate the surficial structure of GNPs suf-
fered from relatively severe degradation and damage. The surface texture of GNPs and 
their layers disintegrated due to the destructive effects of hybrid wetting–drying and 
freeze–thaw cycles, which caused a reduction in the electrical conductivity of the compo-
site. In addition, EDX analysis was performed for CNMs, and their chemical compositions 
are listed in Table 4. 

 

Figure 19. (a,b) CNM morphologies after climatic cycles (the areas with white markings are the areas selected for EDX 
analysis). 

  

Figure 18. Electrical resistivity of the reinforced specimens with different concentrations of the CNM
after climatic cycles.



Nanomaterials 2021, 11, 961 16 of 26

As can be seen, the electrical resistivity of the specimens composed of 0.1%, 0.17%,
0.24%, and 0.34% CNM increased by around 5, 3, 1.5, and 1.4 times, respectively, compared
to the normal specimens. The destructive effects of wetting–drying combined with freeze–
thaw cycles on the conductive system, including CNMs and free charged ions, are the
major reason for the decrease in the electrical conductivity of the composite.

The morphology of CNMs after climatic cycles at different magnifications is illustrated
in Figure 19. The SEM images clearly indicate the surficial structure of GNPs suffered from
relatively severe degradation and damage. The surface texture of GNPs and their layers
disintegrated due to the destructive effects of hybrid wetting–drying and freeze–thaw
cycles, which caused a reduction in the electrical conductivity of the composite. In addition,
EDX analysis was performed for CNMs, and their chemical compositions are listed in
Table 4.
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Figure 19. (a,b) CNM morphologies after climatic cycles (the areas with white markings are the areas selected for EDX
analysis).

Table 4. CNMs’ chemical composition.

Position
Elements (%)

C O Ca Al Si S Mg K Fe P

Figure 19 (B1) 29.46 37.61 15.7 4.81 8.15 2.64 0.71 0.14 - 0.83
Figure 19 (B2) 34.51 35.18 14.64 3.19 7.12 3.91 0.29 0.18 0.27 0.71
Figure 19 (B3) 32.77 39.41 11.92 3.89 7.51 3.24 0.42 0.12 0.15 0.58

The results show that the quantity of carbon element in GNP chemical compounds was
greatly reduced by climatic cycles compared to the normal specimens (Table 3, Position A4).
However, increasing the oxygen concentration is evidence of GNPs’ excessive oxidation,
which also caused GNPs to be surrounded by other elements and ions, such as Fe, Mg, Ca,
Si, S, Al, and K, which can eliminate the free capacity of the π-electron in GNPs and CNTs.
It should be noted that the π-electron plays as a crucial rule in the electrical conductivity of
the CNMs [55,56].

Raman spectroscopy was also carried out on CNTs and GNPs in order to more accu-
rately investigate the CNMs after climatic cycles; its analysis results are shown in Figure 20.
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tural defects and the reduction in the sp2 domain (La). This can greatly reduce the inherent 
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Figure 20. Raman spectra of the CNMs after climatic cycles.

In the Raman spectra of CNTs and GNPs, the D band refers to the presence of defect
concentrations and disturbances in C-C bonds, which are also referred to as non-sp2 (sp3)
structural defects. Indeed, in the perfect hexagonal sp2-based carbon crystal structure, the
D band is not as high, but, owing to the disturbance of the aromatic system, it is active for
defective and small layers [31,57].

The G band in GNPs and CNTs defines a graphitic crystallinity state that can be
ascribed to the C-C bonds’ tangential vibration (sp2 hybridization) and upshift to high
wave numbers under the chaotic state [58]. Ultimately, the 2D band is an overtone of
the defect-related D band and purity grade of the sample, which is specified with its
corresponding intensity and broadening [59,60]. Hence, the variations in the characteristics
of G, D, and 2D in Raman spectra represent the evolution of structural specification [31].
As can be seen, the intensity of the D and 2D band in both CNMs and GNPs after hybrid
climatic cycles was significantly increased, which testifies to the presence of significant
(sp3) structural defects and the reduction in the sp2 domain (La). This can greatly reduce
the inherent electrical conductivity of CNTs and GNPs [31].

3.6.4. Piezoresistivity Investigations

The fractional change in resistivity against the axial strain under the cyclic compression
loading for reinforced CSS by different CNM concentrations is indicated in Figure 21.
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As can be seen, the negative values were achieved for FCR. In compression loading,
the CNM particles and conductive paths became closer to each other, which consequently
decreased the second resistance and caused negative values for FCR following Equation (4).
The FCR amounts did not reach zero at the end of each loading cycle and a negligible
amount of FCR remained after unloading, which is consistent with the strain remaining at
the end of each loading cycle, and was increased by increasing load cycles. These remaining
amounts were lower than those of previous studies [5] due to the compaction fabrication
methods.

The variation of the strains with the fractional changes in resistivity for reinforced CSS
by different CNM concentrations is also illustrated in Figure 22. A power function with
a proper approximation was utilized to express the relationship between strain and FCR.
Generally, the slopes of the diagrams consist of two parts. Although the slopes of the first
part were increased by the increase in the CNM concentration, the specimens composed of
lower CNM dosage showed higher slopes in the second part.
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Figure 22. Variation of strain with the FCR for reinforced CSS by different CNM concentrations.

By increasing the CNM concentration beyond the percolation threshold, the sensitivity
of the composites against the high amount of stress and/or strain was decreased due
to the saturation of the composite structure from the conductive paths. By comparing
these results with previous studies, it can be seen that the scatters of the data have been
decreased [5].

3.6.5. Effects of Water Content on Piezoresistivity Performance

The fractional changes in electrical resistivity vs. the axial strain for specimens CG
(0.34%) fabricated with ±2% water relative to the optimum water content, under the cyclic
compression loading, have been shown in Figure 23.

The results showed that fractional changes in electrical resistivity were increased by
increasing the water content, while decreasing the water content caused a reduction in
fractional changes in electrical resistivity. As mentioned, increasing the water content, in
addition to the enhancement of the dispersion of nanoparticles and the improvement of
conductive behavior by ionic conduction, also increases the amounts of strain due to higher
amounts of porosities among the microstructure of the specimen (Figure 24). Hence, the
conductive paths are more affected, which eventually leads to more fractional changes in
the electrical resistivity.
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Figure 23. The fractional change in resistivity together with axial strain under cyclic compression
loading for specimen CG (0.34%) at optimum, 2% more than optimum, and 2% less than optimum
water content.
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Although, in specimens composed of lower water content, the grains are not well
locked together and the amount of strain is also larger due to the high amount of porosity,
the fractional changes in electrical resistance are lower due to the poor ionic conduction and
dispersion of CNMs. As indicated in Figure 24, increasing the water concentration until the
optimum increases the density of the samples, and a decrease in density is subsequently
observed. The presence of the extra water content between the grain causes gaps between
them and finally leads to porosities formation. By increasing effective stress or after drying,
the free water will be eliminated and ultimately cause the strain to increase. In the case of
lower water content, the lack of water required for lubrication prevents grains from locking
properly in each other, which finally leads to the formation of porosity and increased strain
when the specimen is subjected to the load. However, in low water content, the formation
of the porous and needle-shaped crystals of ettringite is lower, which can lead to lower
strain compared to the higher water content cases.

The variations of strain against the fractional changes in electrical resistivity for the
specimen containing 0.34% CNMs at optimum, 2% more than optimum, and 2% less than
optimum water content, have been illustrated in Figure 25.

Nanomaterials 2021, 11, x FOR PEER REVIEW 21 of 26 
 

 

 
Figure 25. Variations of strain with the FCR for specimen CG (0.34%) at optimum, 2% more than 
optimum, and 2% less than optimum water content. 

As can be seen, the slope of the diagram for the specimen composed of higher water 
content is steeper than specimens fabricated at optimum and lower water content, which 
is evidence of its higher sensitivity. Additionally, the data scatter of the specimen CG 
(0.34%) is lower compared to the other specimens. Besides, the specimens that contained 
higher water content showed higher data scatter, which may be due to its porous micro-
structure. 

3.6.6. Effects of Climatic Cycles on Piezoresistivity Performance 
The fractional change in resistivity vs. strain for nano intruded specimens after cli-

matic cycles have been shown in Figure 26. As can be seen, the specimen CG (0.1%) did 
not show the piezoresistivity behavior after climatic cycles. In addition, the fractional 
changes in electrical resistivity of other specimens were decreased significantly. However, 
the amounts of their strain at the peak of loading and end of the loading showed signifi-
cant growth. Despite such circumstances, increasing the CNM concentration also caused 
an increasing of the fractional changes in electrical resistivity, as well as peak and residual 
strains. 

Generally, the destructive effects of the climatic cycles can be categorized into two 
main groups of adverse effects on composites’ microstructure, and inherent properties of 
CNMs. The effects of successive expansion due to water freezing along with the decay of 
hydration products due to frequent wetting–drying cycles, reduce the cohesiveness of the 
composite microstructure and cause its deterioration, as well as the formation of nano 
cracks. 

This feeble matrix with defective microstructure does not have the required strength 
to maintain conductive paths and by increasing the load a sudden interruption occurred 
in conductive paths. Meanwhile, as mentioned in Section 3.6.3, the electrical conductivity 
of the CNMs has been extremely reduced due to the severe weather cycle. The relation 
between fractional changes in electrical resistivity of specimens and this axial strain after 
climatic cycles, under compression loading, has been illustrated in Figure 27. 

Figure 25. Variations of strain with the FCR for specimen CG (0.34%) at optimum, 2% more than
optimum, and 2% less than optimum water content.

As can be seen, the slope of the diagram for the specimen composed of higher water
content is steeper than specimens fabricated at optimum and lower water content, which is
evidence of its higher sensitivity. Additionally, the data scatter of the specimen CG (0.34%)
is lower compared to the other specimens. Besides, the specimens that contained higher
water content showed higher data scatter, which may be due to its porous microstructure.

3.6.6. Effects of Climatic Cycles on Piezoresistivity Performance

The fractional change in resistivity vs. strain for nano intruded specimens after
climatic cycles have been shown in Figure 26. As can be seen, the specimen CG (0.1%)
did not show the piezoresistivity behavior after climatic cycles. In addition, the fractional
changes in electrical resistivity of other specimens were decreased significantly. However,
the amounts of their strain at the peak of loading and end of the loading showed significant
growth. Despite such circumstances, increasing the CNM concentration also caused an
increasing of the fractional changes in electrical resistivity, as well as peak and residual
strains.
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Figure 26. The fractional change in resistivity together with axial strain under cyclic compression
loading for reinforced CSS by different CNM concentrations after climatic cycles.

Generally, the destructive effects of the climatic cycles can be categorized into two
main groups of adverse effects on composites’ microstructure, and inherent properties of
CNMs. The effects of successive expansion due to water freezing along with the decay
of hydration products due to frequent wetting–drying cycles, reduce the cohesiveness of
the composite microstructure and cause its deterioration, as well as the formation of nano
cracks.

This feeble matrix with defective microstructure does not have the required strength
to maintain conductive paths and by increasing the load a sudden interruption occurred
in conductive paths. Meanwhile, as mentioned in Section 3.6.3, the electrical conductivity
of the CNMs has been extremely reduced due to the severe weather cycle. The relation
between fractional changes in electrical resistivity of specimens and this axial strain after
climatic cycles, under compression loading, has been illustrated in Figure 27.
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As shown, increasing the CNM concentration resulted in a steeper slope. However,
the slopes of the specimens composed of 0.24% and 0.34% CNM were almost equal. Fur-
thermore, the scattering of the data was increased compared to the normal nano-intruded
specimens (Figure 22).

3.6.7. Gauge Factor

The variation of the gauge factors for reinforced CSS with different CNM concentra-
tions and water content, in normal conditions and also after climatic cycles, is shown in
Figure 28. The results indicate that, in normal conditions, increasing the CNM concentra-
tion raised the gauge factors, which shows the sensitivity improvement of the specimens
against the strain. Generally, increasing the CNM concentration from 0.1% to 0.17%, 0.24%,
and 0.34% led to the enhancement of the gauge factor by around 13%, 22%, and 40%,
respectively.
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Figure 28. Variation of CNM reinforced specimens’ gauge factors under compression loading: (a) in normal condition,
(b) with different water content, (c) after climatic cycles.

Comparing these results with previous studies, which used hybrid CNT/GNP for
reinforcing mortar [5], showed that the use of the compaction fabrication method can
somewhat reduce the sensitivity and gauge factor.

As shown in Figure 28b, increasing the water content increased the gauge factor;
increasing the water content by 2% more than optimum content increased the gauge factor
of specimen CG (0.34%) by around 10%, whereas reducing the water by 2% compared to
the optimal value reduced the gauge factor by 34%.
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The investigation of the specimens’ gauge factors after climatic cycles (Figure 28c)
clearly shows that the gauge factors decreased compared to those of the normal case due to
the destructive effects of the climatic cycle. Indeed, the gauge factors of the specimens com-
posed of 0.17%, 0.24%, and 0.34% CNM were reduced by 72%, 61%, and 30%, respectively,
compared to the normal specimens.

4. Conclusions

This study was a systematic effort to develop a novel self-sensing cementitious geo-
composite (cementitious stabilized-sand (CSS)), based on piezoresistivity behavior, with
high physical and mechanical performance.

The series of tests carried out on specimens with different concentrations of hybrid
CNTs and GNPs (1:1) dispersed into cementitious stabilized sand (with cement constituting
10% of the dry weight of the sand), compacted at the optimum water content, revealed
that 0.1% was the optimum concentration of carbon nanomaterials to achieve the best me-
chanical behavior (strength and stiffness), the maximum electrical resistance and enhanced
durability of the geocomposite against severe climatic cycles, including freeze-thaw and
wetting–drying. These results were explained by the microstructure of the geocomposite
(SEM, EDX, XRD, and TGA tests) and showed that the combination of 1D and 2D carbon
nanomaterials (CNMs), in addition to filling the nano and micro porosities, can bridge
and/or deviate the cracks, which can prevent their expansion. However, reinforcing CSS
by CNMs generally increased the modulus and, consequently, reduced the ductility of the
composite. Although reinforcing the CSS by 0.1% hybrid CNT/GNP increased the rate
of the cement hydration due to their nucleation effects, excessive increases in the CNM
concentration reduced hydration products due to the required water absorption of the
hydration process. Furthermore, the Raman spectroscopy and piezoresistivity investiga-
tions indicated that the harsh climatic cycles negatively impacted the inherent electrical
properties of the CNMs and, consequently, the sensitivity of the composite.

The outcomes of this study clearly showed the significant benefits of the compaction
method, which is representative of transport and energy infrastructure works, in terms
of mechanical and piezoresistivity performance enhancement, compared with mixing
procedures typically used for cementitious composites.

In summary, we believe that this novel approach contributes to the new era of smart
composite materials in intelligent structures.
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