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Abstract: In this work, we successfully achieved wafer-scale low density InAs/GaAs quantum dots
(QDs) for single photon emitter on three-inch wafer by precisely controlling the growth parameters.
The highly uniform InAs/GaAs QDs show low density of 0.96/µm2 within the radius of 2 cm. When
embedding into a circular Bragg grating cavity on highly efficient broadband reflector (CBR-HBR),
the single QDs show excellent optoelectronic properties with the linewidth of 3 ± 0.08 GHz, the
second-order correlation factor g2(τ) = 0.0322 ± 0.0023, and an exciton life time of 323 ps under
two-photon resonant excitation.

Keywords: three-inch wafer-scale; low density QD; CBR-HBR

1. Introduction

Semiconductor quantum dots (QDs), due to its discrete energy levels as artificial
atoms, serve as a core element in the emerging application of optoelectronic devices includ-
ing lasers [1], solar cells [2], and photodetectors [3]. The rapid development of quantum
computing [4], quantum cryptography [5], as well as quantum key distribution (QKD) [6]
in recent years, busting many researches in low-density quantum dots for the generation of
ideal single-photons and entangled-photon pairs via external optical/electrical pulses [7,8].
Last three decades have witnessed the rapid development of QDs from concept to reality
via advanced molecular beam epitaxial technique, including Stranski–Krastanow (S–K)
mode growth [9], droplet epitaxy [8,10], as well as site-controlled growth [11,12]. Regard-
ing QD production methods, scalability is very important that allowed production of
individual, identical QDs deterministically at specific locations on a substrate, and emitting
highly coherent, identical photons at exactly the same energy. Currently, however, the
QD production methods are often in randomly positioned and highly inhomogeneous
QD populations, which strongly impairs the deterministic production of devices based on
single QDs, posing a steep challenge to scalability. Site-controlled growth, which addresses
spatial randomness, has suffered from defects in previously processed surfaces which di-
minish the quantum efficiency and coherence of emitted photons [13]. For the S–K growth,
In(Ga)As/GaAs QD-based devices have shown great performance as quantum emitters
with close to unity quantum efficiency [14,15] and near transform-limited emission [16].
However, reliable wafer-scale growth techniques have proved elusive. Low density less
than 1 dot/µm2 is a crucial element for single photon emitter, which needs to precisely
control of the experimental parameters including growth temperature [17], deposition
rate [18], deposition amounts [19], As flux [20], and III/V ratio [21]. A gradient InAs quan-
tum dot growth technique, which via stopping substrate rotation and applying an Indium
flux gradient to form a gradient density of InAs QDs [19,22,23], has been considered the
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most effective way to achieve low density InAs QDs. However, with the drawback of
low-yield of this technique, it’s of great importance to improve the utilize region for single
quantum dots of wafer scale via precisely controlling experimental condition.

In this work, we successfully obtained wafer-scale InAs/GaAs QDs for single photon
emitter with the density as low as 0.96/µm2 on a three-inch wafer by precisely controlling
the growth temperature, InAs deposition amount and capping GaAs thickness through
monitoring the temperature distribution of the substrate. We noted that due to the lim-
itation of our system that the substrate heater has only one heating filament, there is a
temperature distribution over the three-inch wafer which is the one responsible for nonuni-
formity of QDs. However, it provides a feasible approach to achieve wafer-scale uniform
low density single QDs for other growth systems that can uniformly control the thermal dis-
tribution of the whole wafer. The single QDs show excellent optoelectronic properties with
the linewidth of 3 ± 0.08 GHz, the second-order correlation factor g2(τ) = 0.0322 ± 0.0023,
and an exciton life time of 323 ps under two-photon resonant excitation, when coupling to
a circular Bragg grating cavity.

2. Method

Our samples were grown on semi-insulating three-inch GaAs (001) substrates in a
solid-source MBE chamber equipped with high-energy electron diffraction (RHEED) and
a cracker cell for as evaporation. The details of experimental parameters including the
growth temperature of InAs layer, the thickness of GaAs capping layer, the deposition rate
and amount of InAs, and the As flux beam equivalent pressure, are listed in Table 1. The
deposition temperatures are calibrated by the transition temperature Tc (as measured by
thermocouple) when the reconstruction pattern of GaAs surface seen in RHEED transfers
from (2 × 4) to (2 × 3) [24]. In details, the substrates were degassed at 680 ◦C for 10 min
under an overpressure of as prior to growth. A 300 nm GaAs buffer layer was grown at
660 ◦C at a growth rate of 0.6 µm/h with an As flux of 4.8 × 10−6 Torr beam equivalent
pressure. This was followed by the first InAs QD layer growth, which was stopped at
a critical coverage for island formation (θc) monitored via RHEED pattern [25,26] (seen
in supplemental material Figure S1). Then the substrates were annealed at 680 ◦C for
10 min to evaporate the indium atoms completely and subsequently grown with 90 nm
GaAs and the second QD-layers. In details, as shown in Figure 1, Sample A was designed
to fabricate single layer of high density InAs QDs for the measurement of temperature
distribution of the three-inch wafer. It was deposited with 150%θC using high Indium
growth rate of 0.08 ML/s at the temperature of (Tc-40) ◦C. Samples B–I were designed to
optimize parameters to achieve three-inch wafer-scale low density InAs QDs, they were
deposited for Photoluminescence (PL) measurement by using ultra-low Indium growth
rate of 0.004 ML/s at the temperature of (Tc-25) ◦C. The high substrate temperature and
low deposition rate increase migration length of In atoms to achieve low density quantum
dots [27]. The variation in deposition amount of 100%θC, 90%θC, 85%θC, 83%θC, 80%θC
in samples B–F results in different QD density. While the variation in the thickness of
GaAs capping layer in samples G–I results in different QD emission wavelength. Then
the flushing technique [28] of InAs QDs is introduced to tune the size of QDs, which
was ongoing at 680 ◦C for 3 min under arsenic flux. An additional InAs QDs layer
without indium flushing was deposited on the top of 90 nm GaAs spacing layer for the
morphology measurement by atomic force microscopy [AFM, Bruker (Santa Barbara,
CA, USA), Dimension Icon in peak force tapping mode], using the same parameters of
substrate temperature, asenic flux, InAs deposition amount. The QD densities in AFM
images (1 µm ×1 µm) are calculated via the software of AFM Nanoscope Analysis, then
the substrates were cooled to room temperature immediately with the rate of 100 ◦C/min.
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Table 1. List of experimental parameters of investigated samples.

Sample
ID

Tc
Thermocouple

(◦C)

T (InAs)/
Thermocouple

(◦C)

Thickness of GaAs
Cap Layer

(nm)

In Deposited
Rate

(ML/s)

In Deposited
Amount

(θC)
As Flux (Torr)

A 602 562 0 0.08 150% 1.8 × 10−6

B 605 580 8.5 0.004 100% 5 × 10−7

C 603 578 8.5 0.004 90% 5 × 10−7

D 603 578 8.5 0.004 85% 5 × 10−7

E 605 580 8.5 0.004 83% 5 × 10−7

F 602 577 8.5 0.004 80% 5 × 10−7

G 600 575 6.5 0.004 83% 5 × 10−7

H 605 580 4.5 0.004 83% 5 × 10−7

I 605 580 2.5 0.004 83% 5 × 10−7
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Substrate temperature is one of the most pivotal parameters in the growth of low 

density InAs QDs as it effects the adsorption, desorption, migration processes of In atoms 
[27]. To achieve wafer-scale samples, we firstly investigate the temperature distribution 
of the three-inch substrate in our growth system. High density InAs QDs grown at lower 
temperature without Indium desorption [29] (Sample A) are used to comprehensively cal-
ibrate the temperature in the whole wafer. Figure 2b,c are the experimental results from 
sample A, Figure 2b illustrates representative AFM results of InAs QDs along [110] crys-
tallographic direction from left to the right of the wafer with 5 mm interval distance. As 
shown in (4)–(11), the QD density increases gradually from center to the edge within the 
radius of 2 cm, but increase more rapidly from 2 cm to the edge. Other crystallographic 
directions including [1−10], diagonal 1, diagonal 2 demonstrate the same regularity as 
well, as shown in Figure 2c. These results indicate that there is a temperature distribution 
over the three-inch wafer. Hence eight other high density QD samples grown at different 
temperatures of 567 °C, 562 °C, 557 °C, 552 °C, 547 °C, 542 °C, 537 °C, and 532 °C are 
fabricated to determine this distribution by investigating their QD densities in the same 
region (detailed AFM results are in Supporting Information Figure S2). Regardless of in-
dium desorption at lower temperature, we found that the QD density increases almost 
linearly as a function of the deposition temperature in Figure 2d. Thus, the temperature 
distribution of the whole three-inch wafer is deduced, as shown in Figure 2e. In the radius 
of 2 cm as depicted in the inset image, the temperature is stable and about 8 °C lower than 
that of the center. While it decreases more rapidly and about 25 °C lower from the position 

Figure 1. Schematic process of the quantum dot (QD) growth: Sample A was designed to fabricate
single layer of high density InAs QDs for the measurement of temperature distribution of the three-
inch wafer, while Samples B–I were designed to optimize parameters to achieve three-inch wafer-scale
low density InAs QDs.

3. Results and Discussion

Substrate temperature is one of the most pivotal parameters in the growth of low den-
sity InAs QDs as it effects the adsorption, desorption, migration processes of In atoms [27].
To achieve wafer-scale samples, we firstly investigate the temperature distribution of the
three-inch substrate in our growth system. High density InAs QDs grown at lower temper-
ature without Indium desorption [29] (Sample A) are used to comprehensively calibrate the
temperature in the whole wafer. Figure 2b,c are the experimental results from sample A,
Figure 2b illustrates representative AFM results of InAs QDs along [110] crystallographic
direction from left to the right of the wafer with 5 mm interval distance. As shown in
(4)–(11), the QD density increases gradually from center to the edge within the radius of
2 cm, but increase more rapidly from 2 cm to the edge. Other crystallographic directions
including [1–10], diagonal 1, diagonal 2 demonstrate the same regularity as well, as shown
in Figure 2c. These results indicate that there is a temperature distribution over the three-
inch wafer. Hence eight other high density QD samples grown at different temperatures
of 567 ◦C, 562 ◦C, 557 ◦C, 552 ◦C, 547 ◦C, 542 ◦C, 537 ◦C, and 532 ◦C are fabricated to
determine this distribution by investigating their QD densities in the same region (detailed
AFM results are in Supporting Information Figure S2). Regardless of indium desorption at
lower temperature, we found that the QD density increases almost linearly as a function of
the deposition temperature in Figure 2d. Thus, the temperature distribution of the whole
three-inch wafer is deduced, as shown in Figure 2e. In the radius of 2 cm as depicted in the
inset image, the temperature is stable and about 8 ◦C lower than that of the center. While it
decreases more rapidly and about 25 ◦C lower from the position of +3.5 cm to the center,
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and about 30 ◦C from the position of −3.5 cm to the center. The left side edge decreases
more rapidly than the right one is mainly due to the more defect at the cut edge leading
high thermal conductivity.
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Figure 2. (a) three-inch wafer geometric structure: crystallographic directions of [110] and [1–10], diagonal 1 and diagonal
2; 0 represents the geometric center of the wafer, the arrow direction represents the positive direction, respectively.
(b) Representative AFM results of InAs quantum dots of sample A in [110] crystallographic direction: (1)–(14) from left to
right with 5 mm interval distance. (c) Density distribution of the four directions of sample A of the whole wafer, black line
represents [110], red line represents [1–10], green line represents diagonal 1, blue line represents diagonal 2, respectively.
(d) The density of quantum dots as a function of substrate temperature with red error bars. (e) wafer-scale temperature
distribution of three-inch wafer with inset graphics shows small fluctuation of temperature from −2 to 2 cm.

After confirming temperature distribution, the critical coverage θc for 2D to 3D transi-
tion is precisely determined from the RHEED signals (as seen in Supplemental Material
Figure S1). As shown in Table 2, a nearly linear increase of θc with temperature range
from (Tc-40) ◦C to (Tc-20) ◦C contradicts a simple thermally activated process. When the
temperature increases to (Tc-15) ◦C, we found there is no 3D transition, that is in reason-
able agreement with temperature-dependent indium segregation and desorption during
growth. To increase the repeatability of the growth process, the first InAs layer was grown
at a temperature of (Tc-25) ◦C for in situ determining the θc. Different QD densities are
investigated by changing the InAs deposition amounts from 100%θC to 80%θC in Samples
B–F. Typical AFM images at the central of the wafer are shown in Figure 3a. Only small
dots below 10 nm height observed at the deposition of 100%θC, 90%θC and 85%θC with
domain QD height in 6 nm, 4 nm, 5 nm, respectively. Average height and density of small
QDs decrease as the deposition amount decrease. The insert graphic shows some larger
dots above with height in 7–10 nm. When comes to the deposition of 83%θC and 80%θC
only small dot below 6 nm and 5 nm demonstrated, separately. We observed another
phenomenon with bimodal dot distribution (with larger dots above 12 nm height and small
dots below 8 nm height) in 83%θC, which we consider that it is mainly caused by different
diffusion length of Indium atoms in different substrates (Seen in Supplemental Material
Figure S3). Figure 3c illustrates the micro-PL spectra of Samples B–F in the central of the
wafer. In the deposition of 80%θC, none isolated lines observed, indicating the ultra-low
confinement of electrons and holes of QDs below the height of 5 nm. A single line emits
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from single dot at wavelength centered around 900 nm observed in 83%θC, we note that
the QD emission is rare in the center part of this sample as it takes a long time to find
a emission line, thus we believe QD height of 6 nm do no contribution to the emission.
The broad peaks in Samples B–D are identified as the emission from the 7–8 nm height
InGaAs QDs correspond to previous study [20]. We suppose that large QDs with height
above 8.5 nm have been decomposed during indium flushing, which approved by the
reconstruction pattern seen in RHEED transfers to (2 × 4) again. Additionally, we observed
a flat surface with roughness of 0.2 nm measured by AFM with an extra sample which
stopped growth after the process of indium flushing (as seen in Supplemental Material
Figure S4).

Table 2. Optimization of θC under various substrate temperatures.

T (Calibration)/◦C T (InAs)/Thermocouple
(◦C)

In Deposited Rate
(ML/s) As Flux (Torr) InAs Deposited

Amount/ML

(Tc-40) ◦C 562 0.004 5 × 10−7 1.60

(Tc-30) ◦C 572 0.004 5 × 10−7 1.67

(Tc-25) ◦C 577 0.004 5 × 10−7 1.86

(Tc-20) ◦C 582 0.004 5 × 10−7 1.92

(Tc-15) ◦C 587 0.004 5 × 10−7 Not appear
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We further optimize the uniformity of QD by investigating the influence of the thick-
ness of GaAs capping layer during Indium flushing process [30,31]. The thickness of GaAs 
capping layer in Sample G-I are 6.5 nm, 4.5 nm, 2.5 nm, respectively. We note that there 
are no emission lines in Sample I with 2.5 nm GaAs capping layer as found in Sample F 

Figure 3. (a) Representative of AFM images of 1 µm× 1 µm in center part of three-inch wafer with different InAs deposition
of 100%θc, 90%θc, 85%θc, 83%θc, 80%θc, respectively; (b) Statistical height distribution of QDs in the region of 5 µm × 5 µm,
corresponding ensemble photoluminescence spectra from sample B to F with emission wavelength rage from 880 nm to
1040 nm in (c).

We further optimize the uniformity of QD by investigating the influence of the thick-
ness of GaAs capping layer during Indium flushing process [30,31]. The thickness of GaAs
capping layer in Sample G-I are 6.5 nm, 4.5 nm, 2.5 nm, respectively. We note that there are
no emission lines in Sample I with 2.5 nm GaAs capping layer as found in Sample F with
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80%θC deposition amount. Figure 4 summarizes PL measurements of ~120 QDs of Sample
E, G and H, demonstrating the uniformity of the emission wavelength. A PL broadening
of 11 meV was found for Sample H. This is slightly smaller than that achieved by the S–K
QD growth in Sample E. The blueshift of the wavelength with thinner GaAs cap layers is
probably caused by the decreased dot size via the flushing technique, which influences the
band gap of the single QDs [31,32].

Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 10 
 

 

with 80%𝜃𝜃𝐶𝐶 deposition amount. Figure 4 summarizes PL measurements of ~120 QDs of 
Sample E, G and H, demonstrating the uniformity of the emission wavelength. A PL 
broadening of 11 meV was found for Sample H. This is slightly smaller than that achieved 
by the S–K QD growth in Sample E. The blueshift of the wavelength with thinner GaAs 
cap layers is probably caused by the decreased dot size via the flushing technique, which 
influences the band gap of the single QDs [31,32].  

 
Figure 4. Statistical wavelength distribution of about 120 single QDs with different GaAs capping layer of 8.5 nm, 6.5 nm 
and 4.5 nm in sample E, G, H, respectively. 

Now we turn to study the density distribution of sample H in the wafer-scale. We 
divide the three-inch wafer into seven regions from −3 cm to +3 cm with 1 cm interval 
distance along [110] crystallographic direction. Figure 5a shows representative AFM im-
ages and the corresponding statistical QD height distribution in (b). Due to short migra-
tion length of In atoms, the density of 7–8 nm QDs emitted around 900 nm increases from 
center to edge of the wafer as the temperature decreases [33]. Typical emission spectra of 
the QDs under above-barrier excitation using a continuous wave 785 nm laser, corre-
sponding with the wide-field silicon electron multiplied charged couple device (Si-
EMCCD) images of the fluorescence from the response samples, are described in Figure 
5d,e. Figure 5d illustrates fluorescent images from QDs measured under red LED (730 nm) 
illumination, we count the QD density of the blight dots in the image. Within the radius 
of 2 cm we got a large scale of individual QDs with sharp emission lines, from where −2 
cm to +2 cm with QD density of 0.96/μm2 , 8.5 × 10−2/μm2 , 1.3 × 10−3/μm2 ,  9.6 ×
10−3/μm2 5.8 × 10−2/μm2, respectively. This would be a popular QD density region for 
further nanostructure fabrication and optical positioning [34]. Figure 5e shows the repre-
sentative ensemble PL spectra when the 785 nm laser (with faculae radius about several 
microns) excites the QDs on the seven regions. The number of emission lines increase from 
the center to the edge as the density in AFM illustrated. We should note that small dots 
below 6 nm would not be illuminated [20]. 

Figure 4. Statistical wavelength distribution of about 120 single QDs with different GaAs capping layer of 8.5 nm, 6.5 nm
and 4.5 nm in sample E, G, H, respectively.

Now we turn to study the density distribution of sample H in the wafer-scale. We
divide the three-inch wafer into seven regions from −3 cm to +3 cm with 1 cm interval
distance along [110] crystallographic direction. Figure 5a shows representative AFM images
and the corresponding statistical QD height distribution in (b). Due to short migration
length of In atoms, the density of 7–8 nm QDs emitted around 900 nm increases from center
to edge of the wafer as the temperature decreases [33]. Typical emission spectra of the
QDs under above-barrier excitation using a continuous wave 785 nm laser, corresponding
with the wide-field silicon electron multiplied charged couple device (Si-EMCCD) images
of the fluorescence from the response samples, are described in Figure 5d,e. Figure 5d
illustrates fluorescent images from QDs measured under red LED (730 nm) illumination,
we count the QD density of the blight dots in the image. Within the radius of 2 cm
we got a large scale of individual QDs with sharp emission lines, from where −2 cm to
+2 cm with QD density of 0.96/µm2, 8.5 × 10−2/µm2, 1.3 × 10−3/µm2, 9.6 × 10−3/µm2

5.8 × 10−2/µm2, respectively. This would be a popular QD density region for further
nanostructure fabrication and optical positioning [34]. Figure 5e shows the representative
ensemble PL spectra when the 785 nm laser (with faculae radius about several microns)
excites the QDs on the seven regions. The number of emission lines increase from the
center to the edge as the density in AFM illustrated. We should note that small dots below
6 nm would not be illuminated [20].
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Figure 5. Both topographic, optical and statistical QD height distribution of sample H along [110] crystallographic
direction, which is divided into seven regions from −3 to +3 with 1 cm interval distance, (a) Representative AFM images
in 1 µm × 1 µm, (b) Statistical height distribution of QDs in 5 µm × 5 µm, (c) The seven regions, (d) Example fluorescent
images from QDs measured under red LED (730 nm) illumination, a 800-nm long-pass filter (LPF) is inserted into the
collection path when measuring the QD images shown in EMCCD, (e) the representative ensemble PL spectra under 785 nm
laser illumination.

For single-photon purity assessment, we encapsulate our single QD of Sample H (in
the region 2 in Figure 5) into the state-of-art nanostructure circular Bragg grating cavity on
highly efficient broadband reflector (CBR-HBR) as the same process of previous study [35].
Figure 6a illustrates the structure of CBR-HBR which consists of a circular GaAs disk
surrounded by a set of concentric GaAs rings, sitting on a SiO2 layer with a back-reflector
consisting of a gold layer as previously study [36]. Photoluminescence spectrum of QD emit
at ~905 nm under two-photon resonant excitation and emission narrow line width fitted
by Voigt curves of 3 ± 0.08 GHz in Figure 6b. Second-order autocorrelation measurement,
under ‘π pulse’ two-photon resonant excitation by using a Hanbury–Brown and Twiss
set-up, shows a low value of g2(τ) = 0.0322 ± 0.0023 in Figure 6c. The nearly absence
of coincidence events at zero time delay indicates the high purity of the emitted single
photons. The photoluminescence decay data in Figure 6d fitted by monoexponentially
decay function, allowing us to extract a lifetime of 323 ps.
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4. Conclusions

In summary, through carefully investigating the thermal distribution of three-inch
wafer, as well as precisely controlling the InAs deposition temperature, deposition amount
and GaAs capping layer, we have achieved uniform emission wavelength of low density
InAs/GaAs QDs that suitable for nanofabrication within the radius of 2 cm. By embedding
the QD into CBG-HBR, a pure and bright single quantum emitter with the second-order
correlation g2(τ) = 0.0322 ± 0.0023 and lifetime of 323 ps are demonstrated under two-
photon resonant excitation. We noted that if the growth system can uniformly control the
temperature distribution of the whole wafer, wafer-scale uniform low density single QDs
on three-inch wafer and beyond can be achieved. It will pave a way for the generation of
scalable quantum light sources [37].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11040930/s1, Figure S1: RHEED patterns of evolution of GaAs surface during InAs
deposition along [1–10] azimuth, Figure S2: AFM images of QD density change with different
substrate temperature when deposit of 150%θC InAs, Figure S3: AFM and height distribution of
bimodal dots in 83%θC deposition, Figure S4: RHEED in situ monitoring and AFM images after
3 min In flushing.
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