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Abstract: Scaffolds play a key role in tissue engineering applications. In the case of bone tissue
engineering, scaffolds are expected to provide both sufficient mechanical properties to withstand
the physiological loads, and appropriate bioactivity to stimulate cell growth. In order to further
enhance cell–cell signaling and cell–material interaction, electro-active scaffolds have been developed
based on the use of electrically conductive biomaterials or blending electrically conductive fillers to
non-conductive biomaterials. Graphene has been widely used as functioning filler for the fabrica-
tion of electro-active bone tissue engineering scaffolds, due to its high electrical conductivity and
potential to enhance both mechanical and biological properties. Nitrogen-doped graphene, a unique
form of graphene-derived nanomaterials, presents significantly higher electrical conductivity than
pristine graphene, and better surface hydrophilicity while maintaining a similar mechanical property.
This paper investigates the synthesis and use of high-performance nitrogen-doped graphene as a
functional filler of poly(E-caprolactone) (PCL) scaffolds enabling to develop the next generation
of electro-active scaffolds. Compared to PCL scaffolds and PCL/graphene scaffolds, these novel
scaffolds present improved in vitro biological performance.

Keywords: additive manufacturing; biomanufacturing; electro-active scaffolds; extrusion process;
doping; graphene; polycaprolactone; tissue engineering

1. Introduction

Biomanufacturing is a relatively new research domain focusing on the use of addi-
tive manufacturing technologies, biomaterials, cells, and biomolecular signals to produce
constructs for tissue engineering applications. These tissue constructs (scaffolds) play an
important role for cell attachment, proliferation, and differentiation, ultimately leading to
new tissue formation. Bone scaffolds must be biocompatible; biodegradable, with a degra-
dation rate that ideally should match tissue regeneration; presenting adequate mechanical
properties to support physiological loads once implanted in the body; high porosity al-
lowing good permeability and tissue ingrowth; and must be bioactive to stimulate and
accelerate the regeneration process [1–3].

In order to mimic the native bone structure and properties, bioceramics and bioglasses
have been widely used due to their biocompatibility, bioactivity, and high mechanical
strength [4]. However, they may present limited biodegradability, are brittle, and difficult
to process [5]. To overcome these limitations, biocompatible and biodegradable polymers
are the most commonly used materials in the field. Usually, polymeric materials are
blended with bioceramics, bioglasses or stimuli-responsive biomaterials such as electrical
conductive carbon nanomaterials or magnetic nanoparticles, to improve physical and
biological properties [6–10].
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These materials are usually processed using additive manufacturing, which gradually
replaces conventional manufacturing technologies such as solvent casting, salt leaching,
and electrospinning, as it allows the fabrication of scaffolds with high accuracy and repro-
ducibility [11,12].

A wide range of functional fillers have been investigated for the fabrication of high-
performance bone tissue engineering scaffolds. The incorporation of magnetic nanoparti-
cles such as iron oxide nanoparticles have been used to create magnetic stimuli-responsive
scaffolds, showing improved hydrophilicity and mechanical properties, as well as the
ability to form an apatite layer promoting bone [13–15]. However, these scaffolds require
the use of an external ultrasound source and there are some concerns related to cytotoxicity
and long-term effects related to the bioaccumulation of the magnetic nanoparticles [16].
Carbon nanomaterials have been used to create electro-active scaffolds. A particularly
relevant carbon nanomaterial is Graphene (G), which has been explored for a wide range of
applications such as sensors [17], lithium-ion batteries [18], dye-sensitized solar cells [19],
and capacitors [20], owing to the remarkable electrical, optical, thermal, and mechanical
properties as well as high surface area (~2630 m2g–1) [21]. G present better physical interac-
tion with cells compared with other commonly used carbon nanomaterials (e.g., carbon
nanotubes) due to its 2D-like shape (higher ratio of peripheral to central carbon atoms) and
superior electrical conductivity under low volume percentage, showing a strong poten-
tial for in vitro and in vivo biological applications [22–24]. Previous studies proved that
additive manufacturing can successfully fabricate electro-active bone tissue engineering
scaffolds based on the combination of PCL and G. Results showed that the addition of
small concentrations of G can enhance the mechanical properties of PCL scaffolds, and
promote in vitro cell proliferation [25,26], differentiation [27], and in vivo bone regenera-
tion [28]. One possible mechanism enhancing osteogenesis through electrical stimulation
involves the up-regulation of intercellular calcium concentration through the activation
of voltage-gated Ca2+ modulating osteogenesis via calmodulin pathways [29]. Moreover,
bone is dynamically remodeled by signaling pathways, controlled by cells and the extra
cellular matrix, and transmitted through an electrical and chemical synapse. Usually,
implanted scaffolds disrupt these natural signaling pathways. However, previous studies
show that polymer/G scaffolds, due to their electrical conductivity, are able to preserve
signal conduction, contributing to bone formation even without the use of any external
electrical stimulation source [28,30]. Studies also demonstrated that the interactions be-
tween G and cells mainly depend on the physicochemical and electrical properties of G,
such as morphology, number of layers, surface properties, functionalization groups, and
the method of synthesis [31,32]. These factors can disturb the mechanism of cell uptake and
tissue response, affecting cell viability, reactive oxygen species generation, and gene expres-
sion [33,34]. It was also reported that the in vitro and in vivo cytotoxic of G is dependent
on shape, dose, and cell–material interaction time [35].

Doping G with heteroatoms such as nitrogen (N) and/or boron (B) is an effective ap-
proach to further enhance the performance of G, including its electronic, surface properties,
and biological responses [36]. Recently, nitrogen-doped graphene (N-G) with tuneable
surface polarities, strong electron withdrawing ability, and negligible environmental and
biological hazards [37–41], showed a strong potential for a wide range of applications,
including biological sensing, bioimaging, drug delivery, catalysis, and renewable en-
ergy generation [42–45]. N-G appears to be a promising bioactive material with superior
sensitivity, selectivity, and applicability for biological and medical applications [46,47],
compared with conventional organic fluorescent dyes, toxic semiconductor quantum dots,
and expensive noble-metal nanoparticles [46,48]. Moreover, the surface hydrophilicity
of graphene can be further modified by nitrogen doping [49]. However, the synthesis of
N-G at atmospheric-pressure, its biological properties, and the use of N-G for bone tissue
engineering applications has not yet been investigated. Therefore, this paper investigates
material synthesis, and physical and chemical properties of G and N-G. Moreover, PCL/G
and PCL/N-G blends containing the same concentration of G and N-G were prepared for
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the fabrication of electro-active bone tissue engineering scaffolds. Surface hydrophilicity
and in vitro biological were conducted to investigate the effect of N-G with respect to G.

2. Materials and Methods
2.1. Material Preparation

PCL was selected as the base material for the electro-active scaffold fabrication due to
its biocompatibility, biodegradability, and ease of process by material-extrusion additive
manufacturing. Three millimeter PCL pellets (CapaTM 6500, Perstorp, Warrington, UK),
with 1.1 g/cm3 density and 60 ◦C melting temperature were used in this research.

G was prepared using liquid-phase exfoliation with graphite as previously reported
by our group [50]. In brief, the graphite powder was first mixed with a solvent containing
0.8 mass fraction of N-methyl-2-pyrrolidone (NMP) and 0.2 mass fraction of water, and the
graphite concentration was controlled at 5 mg/mL. Then, the mixed solution was sonicated
for 6 h in a bath sonicator with a 100 W nominal power and 37 kHz frequency, followed
by centrifugation (3000 rpm, 30 min). The colloidal supernatant was further collected by
filtration and dried at 50 ◦C to yield G.

N-G was synthesized through ball milling of graphite and melamine as the nitrogen
precursor using a planetary ball-mill machine (Emax, Restch, Haan, Germany) (Figure 1).
0.5 g of graphite and 0.25 g of melamine were added into a stainless-steel grinding jar
(100 mL) containing 300 ZrO2 grinding ball (3 mm). The jar was sealed at ambient condi-
tions followed by installing it in the planetary ball-mill machine. The mixture was then
ball milled with 900 rpm for 5 h. After ball milling, the prepared product was washed
with 80 ◦C water several times, followed by filtration with a polytetrafluoroethene (PTFE)
membrane with a pore size of 1 µm. The filtered solid sample was then collected and
dried at 60 ◦C to yield the N-G nanosheets. The obtained G and N-G presented similar
morphology including 1–3 nm thickness and 400~600 nm surface lateral size.
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Figure 1. Schematic illustration of the preparation of N-G through ball milling.

2.2. Scaffold Fabrication

PCL/G pallets and PCL/N-G pallets were prepared through a physical melt-blending
process, and three different concentrations of G and N-G (1, 3, and 5 wt.%) were considered.
Briefly, PCL pellets were heated up to 150 ◦C in a crucible, allowing a molten state, and
carbon nanomaterial fillers were added at different designed concentrations. The mixed
materials were stirred for 20 min to guarantee a homogenous dispersion. After cooling to
room temperature, the obtained materials were cut into small pieces suitable for printing.
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A material-extrusion additive manufacturing system (3D Discovery, RegenHU, Villaz-
Saint-Pierre, Switerzland) was considered for the fabrication of all scaffolds. To ensure
reproducible scaffold manufacturing with a constant filament diameter close to the nozzle
diameter (330 µm), the following optimal processing parameters were considered: 92 ◦C
of melting temperature, 270 µm of layer thickness, screw rotation velocity of 8 rpm, and
deposition velocity of 13 mm/s. The designed filament distance was 680 µm, and the
lay-down pattern was 0◦/90◦ to obtain square shape pores. The overall dimensions of
fabricated scaffolds are 32 mm × 32 mm × 3.2 mm.

2.3. Characterization of Graphene
2.3.1. Scanning Electron Microscopy, Transmission Electron Microscopy and Atomic
Force Microscopy

To study the surface morphology of the raw material before synthesis (graphite), and
after synthesis (G and N-G), as well as scaffold morphology, scanning electron microscopy
(SEM) observations were performed using a field emission SEM with a 15 kV accelerating
voltage (FESEM, 6700F, JEOL, Tokyo, Japan). Transmission electron microscopy (TEM) was
utilized to further investigate the morphology and nanostructure of G and N-G, using a
field emission TEM (Philips Tecnai F20 G2 FETEM, Thermo-Fisher Scientific, Waltham,
MA, USA) with 200 kV accelerating voltage. SEM and TEM samples were prepared by
solution dry-casting of the colloidal solution on silicon wafer and carbon-coated copper
grids (300 mesh, Ted Pella Inc., Redding, CA, USA) respectively. Furthermore, atomic
force microscopy (AFM) was also considered to additionally probe the mechanochemical
cracking of a large thickness of graphite into thin grapheme-like nanostructures. The P-100
AFM system (Ardic instruments, Taipei, Taiwan) was used with a tapping mode and the
samples were prepared by ethanol solution and spin coating on mica substrates.

2.3.2. X-ray Photoelectron and Raman Spectroscopy

X-ray photoelectron (XPS) was considered to investigate the chemical content and
configuration of N-G. Furthermore, the atomic-scale structural information of G and
the density of defects induced by N doping in the N-G were obtained from micro Raman
measurements. Thin films of G and N-G were formed on silicon wafers by drop coating and
drying in ambient conditions for 24 h for both XPS and Raman spectroscopy measurements.
XPS was carried out using a VG ESCA Scientific Theta Probe (UK). The pass energy and
take off angle was 50 eV and 53◦ respectively. In addition, the beam size was 400 µm for a
Al Kα (1486.6 eV) radiation as the excitation source. Raman measurements were performed
with a JASCO 5100 spectrometer (λ = 533 nm) (Japan) under room temperature. To avoid
the effect of laser heating, the laser power was maintained at 0.2 mW.

2.3.3. Electrical Conductivity Measurement

Thin films of G and N-G were prepared to determine the electrical conductivity
of G and N-G. Five milligrams of the sample was added into 20 mL deionized water,
and the solution was dispersed by using a high energy homogenizer (disperser T-10,
IKA, Königswinter, Germany) at 75 W for 10 min. Vacuum filtration of the as-prepared
dispersions was then performed using a polyvinylidene difluoride (PVDF) filter with
0.2 µm pore size and 47 mm diameter (Pall Corporation, Port Washington, NY, USA).
Finally, the films were dried at ambient conditions for 24 h, and the sheet resistance was
measured by a commercial electrical four-point meter (MCP-T610, Loresta-GP, Mitsubishi
Instrument Inc., Tokyo, Japan) with a PSP type probe (1.5 mm inter-pin distance). The areas
of the films were divided into 10 measured positions to determine the average values.

2.4. Characterization of Scaffolds
2.4.1. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) was considered to evaluate the actual carbon
nanomaterial concentration present in the scaffold after fabrication. Thermal Analysis
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Q500 analyzer (TA Instrument, New Castle, DE, USA) was used, and tests were conducted
in air atmosphere with 60 mL/min airflow rate. The experimental temperature ranged
from room temperature up to 590 ◦C with a 5 ◦C/min increasing rate. Scaffolds were
cut into 2 g samples and the weight change was recorded by TA Universal Analysis 2000
software (TA Instrument, USA).

2.4.2. Surface Hydrophilicity Characterization

To evaluate the surface hydrophilicity of all printed scaffolds, static apparent water-
in-air contact angle (WCA) analysis was considered using a KSV CAM 200 system (KSV
Instruments, Espoo, Finland). The sessile drop method was used, and deionized water
droplets of ~1 mL were dropped on the surface of the scaffold using a micrometric liquid
dispenser (Hamilton, Reno, NV, USA). The shapes of the droplets were recorded with a
high-speed framing camera (DMK 21F04 FireWire monochrome camera, Imaging Source,
Bremen, Germany), and analyzed by using the Attension Theta software (Biolin Scientific,
Gothenburg, Sweden) to obtain contact angle values.

2.4.3. In Vitro Biological Characterization

Scaffolds were cut into small blocks (11 mm × 11 mm × 3.2 mm) to fit in 24-well
culture plates. All samples were sterilized with 70% ethanol for 1 h, rinsed with phosphate
buffered saline (PBS) (Sigma-Aldrich, Gillingham, Dorset, UK), and air-dried for 24 h in an
incubator at 37 ◦C prior to the cell seeding. Human adipose-derived stem cells (hADSCs)
(Invitrogen, Waltham, MA, USA) (passages 4–6) were used to evaluate the cytotoxicity and
cell–material interaction of all fabricated scaffolds. 5 × 104 hADSCs (counted by Cellometer
Auto 1000 Bright Field Cell Counter (Nexcelom Bioscience, Lawrence, MA, USA)) were
seeded to each scaffold, and cultured in 0.8 mL MesenPRO RS™ basal medium (Thermo
Fisher Scientific, Waltham, MA, USA) under standard conditions (37 ◦C, 5% CO2 and
95% humidity).

Evaluations were conducted at 1, 3, 7, and 14 days after cell seeding, using the Alamar
Blue assay, to quantitatively monitor the cytotoxicity of the scaffolds. At each test point,
scaffolds were first transferred to a new well plate, and then 0.8 mL of medium containing
0.001% Resazurin sodium salt (Sigma-Aldrich, Gillingham, Dorset, UK) was added to each
well. The incubation was conducted for 4 h under standard conditions. Then 150 µL of
medium from each well was transferred into a 96-well plate and the fluorescence intensity
was measured by a Multi-Detection Microplate Reader Synergy HT (BioTec, Minneapolis,
MN, USA) (540 nm excitation wavelength and 590 nm emission wavelength).

3. Results and Discussion
3.1. Graphene Characterisation

Figure 2a shows a representative SEM image of the graphite before liquid-phase exfo-
liation or ball milling, indicating an average particle size of around 30 µm. In comparison,
Figure 2b,c shows representative SEM images of the agglomerations of G and N-G that
exhibit a significant particle-size reduction down to 1~5 µm. The agglomeration could
be a consequence of SEM sample preparation. In addition, TEM images (Figure 2d,e)
show that both G and N-G present few-layered two-dimensional nanosheet-like structures
with lateral sizes ranging from 400–600 nm. By analyzing the line scan profiles of AFM
images (Figure 2f,g) from A to B and C to D respectively, it was possible to obtain the
thickness of G and N-G (1 to 3 nm), which is similar to few-layered graphene nanosheets.
These results indicate that the fabricated G and N-G have similar surface morphologies
and nanostructures.
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Figure 2. SEM images of (a) graphite, (b) G, and (c) N-G; TEM images of (d) G and (e) N-G; AFM
images of (f) G and (g) N-G.

Figure 3a shows the XPS scan spectra, exhibiting C1s and O1s peaks at 284.6 and
534.0 eV. The N1s peak at 398.9 eV demonstrates the presence of the N atoms in the
structure of N-G. Moreover, XPS analysis of N-G clearly shows the presence of N, C, and
O atoms with an atomic content of 92.7%, 3.1%, and 4.2%, respectively, indicating that
the fabricated samples are metal-free nanomaterials. XPS (HRXPS) results (Figure 3b)
provide additional evidence of the incorporation of N atoms into the G lattice. The N1s
HRXPS spectrum describes the N-G with three different nitrogen doping configurations,
including pyridinic N centered at 398.2 eV (26.17 at.%), pyrrolic N centered at 400.5 eV
(55.55 at.%), and graphitic N centered at 401.3 eV (18.28 at.%). These results suggest that
the N dopants have been successfully doped into the sp2 carbon network of G. The three N
doping configurations in G can change the surface polarities of the G surface, making it
more polar and hydrophilic. Moreover, the N dopants within the G lattice can further alter
the band structures of the G, potentially leading to improved electrical conductivity.



Nanomaterials 2021, 11, 929 7 of 14Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 3. (a) XPS and (b) N1s HRXPS spectra of N-G nanosheets. (c) Raman spectra of graphite, G 
and N-G. 

Figure 3c shows the Raman spectra of G and N-G, which were normalized with re-
spect to the G-band at 1580 cm−1. The spectra also exhibit D-band and 2D band at 1335 
cm−1 and 2690 cm−1 respectively. It is known that the G-band arises from the bond stretch-
ing of all sp2 bonded pairs while the D-band is associated with the sp3 defect sites [51]. 
The relative ratio of D-band intensity to G-band intensity (ID/IG ratio) is associated with 
disorders and defects in graphene-like structures [52]. Results showed that the ID/IG ratios 
of N-G are larger than G and raw graphite, suggesting that the electronic structure of the 
sp2 carbons can be changed by N doping, which could influence the electronic properties 
[53,54]. In addition, it also suggests that doping of N atoms into G structures may generate 
more electroactive sites in produced 3D bone tissue engineering scaffolds. 

Table 1 summarizes the averaged sheet resistance of G and N-G. Results indicate that 
the sheet resistance of N-G is about 13 times lower than G, suggesting that the electrical 
conductivity of G can be significantly enhanced by N atom doping.  

Table 1. Electrical conductivity measurement result. 

Sample Averaged Sheet Resistance (103 Ω/sq) 
G 377.01 ± 10.23 

N-G 28.16 ± 1.13 
  

Figure 3. (a) XPS and (b) N1s HRXPS spectra of N-G nanosheets. (c) Raman spectra of graphite, G and N-G.

Figure 3c shows the Raman spectra of G and N-G, which were normalized with respect
to the G-band at 1580 cm−1. The spectra also exhibit D-band and 2D band at 1335 cm−1 and
2690 cm−1 respectively. It is known that the G-band arises from the bond stretching of all
sp2 bonded pairs while the D-band is associated with the sp3 defect sites [51]. The relative
ratio of D-band intensity to G-band intensity (ID/IG ratio) is associated with disorders and
defects in graphene-like structures [52]. Results showed that the ID/IG ratios of N-G are
larger than G and raw graphite, suggesting that the electronic structure of the sp2 carbons
can be changed by N doping, which could influence the electronic properties [53,54]. In
addition, it also suggests that doping of N atoms into G structures may generate more
electroactive sites in produced 3D bone tissue engineering scaffolds.

Table 1 summarizes the averaged sheet resistance of G and N-G. Results indicate that
the sheet resistance of N-G is about 13 times lower than G, suggesting that the electrical
conductivity of G can be significantly enhanced by N atom doping.

Table 1. Electrical conductivity measurement result.

Sample Averaged Sheet Resistance (103 Ω/sq)

G 377.01 ± 10.23
N-G 28.16 ± 1.13
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3.2. Scaffold Non-Biological Characterisation

Morphological analysis (Figure 4) compares the printed scaffolds with the designed
one. Measurement results suggest the scaffold presents a regular interconnected porous
structure, with filament diameter close to the nozzle diameter, ranging from 330–350 µm,
confirming that this additive manufacturing technology is a viable technique to fabricate
PCL, PCL/G, and PCL/N-G scaffolds with good reproducibility. Results also show that
the addition of small concentrations of carbon nanomaterials has a minor influence on
the scaffold morphology (around 330 µm for PCL scaffolds, 330–340 µm for PCL/G scaf-
folds, and 335–350 µm PCL/N-G scaffolds). All scaffolds were produced using the same
combination of optimal processing parameters previously mentioned.
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Figure 4. Scaffold design, fabrication, and morphological characterization. (a) 3D modelling
(32 mm × 32 mm × 3.2 mm, 0/90◦ laydown pattern, 330 µm filament diameter, 680 µm filament
distance); (b) 3D Discovery material extrusion 3D printer; (c) printing process; (d) fabricated scaffolds
(cut to 11 mm × 11 mm × 3.2 mm) (left to right: PCL, PCL/G 5 wt.%, PCL/N-G 5 wt.%); SEM
images of top view of scaffolds (e) PCL, (f) PCL/G 5 wt.%, and (g) PCL/N-G 5 wt.%; SEM images of
cross-section view of scaffolds (h) PCL, (i) PCL/G 5 wt.%, and (j) PCL/N-G 5 wt.%.

Figure 5 shows the TGA curves of all samples. The onset temperature of large weight
loss of PCL scaffolds is 365 ◦C, suggesting that the PCL started to be decomposed from
365 ◦C, which agrees with a previous work [55]. In contrast, with the addition of 1,
3, and 5 wt.% of G and N-G into the PCL polymeric matrix, the onset decomposition
temperatures were slightly decreased, ranging between 355–365 ◦C. This small decrease
of the onset decomposition temperature of PCL/G and PCL/N-G scaffolds is due to the
defects generated during the preparation of G and N-G [56]. Nevertheless, the TGA results
suggest the thermal stability of PCL was almost preserved after adding G and N-G during
the scaffold fabrication. Considering the chemical structures of PCL, G, and N-G, it is
possible that the interaction between the PCL hydrocarbon chains and basal planes of G
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and N-G, and dipole–dipole attractions between the carbonate groups of PCL and oxygen-
containing functional groups of G and N dopants and oxygen-containing functional groups
of N-G could occur within the fabricated scaffolds. It is envisaged that those molecular
interactions between PCL, G, and N-G can help to improve the arrangement of G and N-G
in the PCL polymeric matrix, maintaining the thermal stability of PCL [57]. Furthermore,
TGA results presented in Table 2 showed no significant carbon nanomaterial weight loss
during the melt-blending or printing process, indicating that the melt-blending is a viable
method to incorporate nanomaterials into the polymer matrix, without any involvement of
solvent. Additionally, as all scaffolds were printed at 90 ◦C, processing conditions do not
induce any degradation of PCL.
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Table 2. TGA characterization results (n = 5).

Designed Scaffold TGA Result (wt.%)

PCL /
PCL/G (1 wt.%) 0.963 ± 0.007
PCL/G (3 wt.%) 2.611 ± 0.002
PCL/G (5 wt.%) 4.903 ± 0.003

PCL/N-G (1 wt.%) 1.070 ± 0.005
PCL/N-G (3 wt.%) 3.279 ± 0.002
PCL/N-G (5 wt.%) 5.227 ± 0.002

Table 3 shows the WCA results at different time points (0, 15, and 30 s), which suggest
that the addition of small concentration of G and N-G have a minor impact on the scaffold
contact angle. However, an exception was found for 5 wt.% PCL/N-G scaffolds that
presented a statistically higher WCA value than PCL scaffolds, which may be attributed to
the agglomeration of carbon nanomaterials at higher concentrations, and as a consequence
the carbon nanomaterial at the surface of the scaffold’s fibers may exhibit a 3D block form
rather than a 2D nanosheet form. For the other groups, all PCL/G and PC/N-G scaffolds
presented lower WCA than PCL scaffolds. However, only 1 wt.% PCL/G scaffolds showed
a statistically significant difference. Previous studies proved that cell adhesion, modulated
by protein adhesion, is strongly related to surface wettability [58]. Previous results also
suggest that, depending on the cell type, moderate hydrophilic (contact angle around
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30–70◦) surfaces are most suitable for cell attachment and proliferation [58–60], while
superhydrophilic (0◦) and superhydrophobic (above 150◦) surfaces can lead to a dramatic
reduction of cell adhesion [58–60]. Moreover, results also seem to indicate that surface
hydrophilicity and nanotopography have a major influence on mesenchymal stem cells
osteoblastic differentiation and osteoblast maturation [61]. Hydrophilic surfaces have
been shown to enhance osteoblast maturation [62], production of local factors [62,63], and
mineralization [64] compared to hydrophobic surfaces. These observations seem to denote
that the 1 wt.% and 3 wt.% carbon nanomaterial scaffolds may present more promising
surface properties for cell seeding, proliferation, and differentiation.

Table 3. Water-in-air contact angle measurement results (n = 4). The significance levels were set at * p < 0.01 and ** p < 0.001
compared with control (PCL).

Time PCL PCL/G
(1 wt.%)

PCL/G
(3 wt.%)

PCL/G
(5 wt.%)

PCL/N-G
(1 wt.%)

PCL/N-G
(3 wt.%)

PCL/N-G
(5 wt.%)

0 s 88.11◦± 2.00◦ 79.97◦ ± 0.98◦ ** 84.15◦ ± 3.85◦ 86.74◦ ± 3.36◦ 84.91◦ ± 2.29◦ 88.01◦ ± 1.18◦ 95.29◦ ± 2.54◦ *
15 s 86.72◦± 2.37◦ 78.94◦ ± 0.79◦ * 83.13◦ ± 3.92◦ 85.42◦ ± 3.91◦ 84.00◦ ± 2.28◦ 87.25◦ ± 0.61◦ 95.02◦ ± 2.58◦ *
30 s 86.41◦± 2.45◦ 78.51◦ ± 0.92◦ * 82.33◦ ± 4.19◦ 85.05◦ ± 3.87◦ 83.66◦ ± 2.24◦ 87.00◦ ± 0.60◦ 94.87◦ ± 2.59◦ *

3.3. Biological Characterization

Figure 6 shows the fluorescence intensity measurement results that represent the
metabolic activity of cells. From day 1–14, all scaffolds showed an increasing trend in terms
of fluorescence intensity, indicating no significant cytotoxicity. These results suggest that
all considered scaffolds are suitable to support cell attachment and proliferation.

1 
 

 

Figure 6. Cell viability/proliferation behavior on different scaffolds at 1, 3, 7, and 14 days after cell seeding. The significance
levels were set at ** p < 0.01, and *** p < 0.001 compared with control (PCL), # p < 0.05, ## p < 0.01, and ### p < 0.001
compared among all graphene-loaded (G and N-G) scaffold.



Nanomaterials 2021, 11, 929 11 of 14

At day 1 after cell seeding, PCL, 1 wt.% PCL/G, 1 and 3 wt.% PCL/N-G scaffolds
showed significantly higher fluorescence intensity values than the other scaffolds, with
the highest results observed for 1 wt.% PCL/N-G scaffolds. After day 3, the effect of N-G
became dominant, with 1 wt.% PCL/N-G scaffolds presenting statically higher values
than all the other scaffolds. PCL/G scaffolds (1 wt.% and 3 wt.%) also show a better
biological performance with the cell metabolic activity, but this effect is only evident at a
later stage compared to PCL/N-G scaffolds. However, 5 wt.% PCL/G, 3 wt.% PCL/N-
G, and 5wt.% PCL/N-G scaffolds seem to exhibit poorer biological performance (low
fluorescence intensity values) than PCL scaffolds, suggesting that the carbon nanomaterial
concentration is approaching a cytotoxic threshold level (3 wt.% for N-G and 5 wt.% for G).
Overall, the 1 wt.% PCL/N-G scaffold group seems to be the most suitable substrate for
cell attachment and cell spreading. Results also indicate that lower concentrations of G and
N-G (below a threshold) significantly enhance the biological performance of the scaffolds,
this enhancement effect being more significant with N-G than G.

4. Conclusions

This paper successfully proved the strong potential of applying G and N-G for the
fabrication of electro-active scaffolds for bone tissue engineering applications. SEM, AFM,
TEM, XPS, and micro Raman results demonstrated that the N dopants were successfully
integrated with G. N-G, due to its nitrogen doping, exhibits superior electrical conductivity
compare to G, which improves cell-cell signaling and cell-material interactions, and im-
proved surface hydrophilicity. This results in significantly higher biological performance
as observed with hADSCs. This enhancement effect is more significant under low con-
centration (1 wt.%), which also reveals the potential of using lower concentrations of N-G
to replace higher concentrations of G, thus minimizing the dose-dependent cytotoxicity
from G. In comparison to PCL, a biocompatible material, results also suggest a threshold
value of both G and N-G after which higher concentrations start to become toxic. This
cytotoxicity threshold value for N-G seems to occur at lower concentration than G, but
further investigations are required. At high concentration levels, after internalization,
graphene induces cytotoxic effects by decreasing mitochondrial activity while increasing
intracellular reactive oxygen species (ROS), caspase-3, and lactate dehydrogenase lev-
els [65,66]. Furthermore, PCL/G electro-active scaffolds showed significant potential to
enhance in vivo angiogenesis and osteogenesis effect, ultimately leading to enhanced bone
tissue engineering efficacy [28]. Therefore, we can expect to achieve significantly better
results with the proposed PCL/N-G scaffolds.
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